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Filtered renewal processes are used to forecast daily river flows. For these processes, contrary to filtered Poisson processes, the time
between consecutive events is not necessarily exponentially distributed, which is more realistic. The model is applied to obtain one-
and two-day-ahead forecasts of the flows of the Delaware and Hudson Rivers, both located in the United States. Better results are

obtained than with filtered Poisson processes, which are often used to model river flows.

1. Introduction

Let {N(t),t > 0} be a Poisson process with rate A. A filtered
Poisson (sometimes called shot noise) process is a continuous-
time stochastic process {X(t),t > 0} defined by

N()
Xt =Yw(tr,Y,) X@®=0iN®=0, (1)
n=1

in which the random variables 7,,7,,... denote the arrival
times of the events of the Poisson process and Y,,Y,,...
are assumed to be independent and identically distributed
random variables that are also independent of {N(t),t > 0}.
The function w(, -, -) is called the response function.

In many applications, the response function is chosen of
the form

w(t,T,Y,)=Y,e " (2)

where ¢ is a parameter that must be estimated. It then
gives the value at time ¢ of an event of magnitude Y, of
the Poisson process that occurred at time 7,. Moreover,
the random variables Y}, Y,,... are generally assumed to be
exponentially distributed with parameter y. With the above
response function, the filtered Poisson process behaves as in
Figure 1. Actually, this behavior depends on the form of the
response function, but not on the distribution of the time
between the events. Therefore, the same behavior would be

observed in the case when {N(t),t > 0} is a renewal process.
Remember that a Poisson process is a particular renewal
process.

To model the daily flows of rivers given their most
recent observed values, conceptual and physical models
based on the filtered Poisson process have been widely used
successfully for many decades; see, for example, Weiss [1],
Kelman [2], Koch [3], and Konecny [4]. Filtered Poisson
processes are still being used to model various phenomena
in civil engineering; see Yin et al. [5] and Miyamoto et al. [6].

Now, especially in hydrological applications, the form of
the response function in (2) is taken for granted rather than
being justified by the observations of the variable of interest.
Actually, it is generally simply an assumption made to obtain
a mathematically tractable model.

Similarly, the actual distribution of the Y, s is not inves-
tigated. However, if one is only interested in forecasting the
value of X(t+0), based on the values of the process up to time
t, this does not really cause a problem because the forecast is
normally based on the mean of the Y, ’s, and the distribution
itself is not needed.

Finally, and even more importantly, the assumption that
{N(t),t = 0} is indeed a Poisson process is not tested. Again,
this is a simplifying assumption, because one can then make
use of the nice properties of the Poisson process, notably the
fact that it has independent and stationary increments.

Next, notice that, with the response function in (2), the
effect on the value of the process of an event that occurred at
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FIGURE 1: Example of a trajectory of a filtered Poisson process
defined by (1) and (2).

time 7, is maximum at that time instant and {X(¢),t > 0}
has discontinuities at the arrival times of the events of the
Poisson process. In the case of the application in hydrology
that consists in modeling the flow of rivers, if one looks
at real hydrographs, one sees that there is a more or less
extended period of time during which the flow increases
from a minimum to a maximum. Even if river flows data
are generally available on a daily basis, one does not observe
very sudden increases of the flow, followed by an exponential
decrease. Rather, it takes on average two to three days for the
flow to reach a maximum, and the decrease is more or less
rapid.

To obtain a more realistic model for the variations of river
flows, by taking into account the periods of flow increase,
Lefebvre and Guilbault [7] used the following response
function:

w(t,1,Y,)=Y,(t- Tn)def(H”)/C, (3)

where d is a positive parameter. With this response function,
the river flow begins to increase immediately after time 7,,,
but the maximum is reached after dc time units (i.e., generally
days) and then it starts to decrease. Their work was improved
by the authors, who provided a method to estimate the
parameter d. They found that, for the applications that they
considered, d was in the interval (0,1).

With a Poisson process being a continuous-time Markov
chain, the time that the process spends in a given state
is exponentially distributed, which is a strictly decreasing
density function. Let T}, T,,... be the times between two
successive events, that is, the interarrival times. In the case
of river flows, the interarrival time is generally a random
variable with a density function that is increasing at first.
Hence, the assumption that {N(t), ¢ > 0} is a Poisson process
is at least doubtful.

In Lefebvre [8], the author tested the hypothesis that
the T,,’s are exponentially distributed. He found that, for the
Delaware River, it was not accurate. Instead, it was shown
that both a gamma and a Rayleigh distribution fitted the data
much better. The objective was to forecast the peak flows
of the Delaware River, which is a difficult task due to the
very weak correlation between the successive peaks. To try to
forecast these peak flows, the author used a filtered renewal
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process as a model for the river flow. An advantage in using
a Rayleigh distribution for the interarrival time is that the
filtered renewal process can be transformed into a filtered
Poisson process by working on a different time scale.

Poisson and renewal processes have been used in hydrol-
ogy to model low flows (see, for instance, Loaiciga and
Leipnik [9] and Yagouti et al. [10]) as well as various physical
phenomena such as traffic noise (see Marcus [11]). Andersen
[12, 13] gave new theoretical results on filtered renewal
processes (see also the references therein).

The aim of the present paper is to show that we can obtain
more accurate short-term forecasts of river flows by making
use of filtered renewal processes rather than filtered Poisson
processes. To do so, we will first need to develop a formula
to forecast the flow at time X(t + &), given the history of
the process up to time t. Because we cannot appeal to the
memoryless property of the exponential distribution, the task
of finding an estimator for X (¢+6) is more difficult. The values
of the river flow before time ¢ must be taken into account,
contrary to the case of filtered Poisson process, for which the
forecasts depend only on X(¢).

Moreover, because we want to clearly see the improve-
ment obtained by using a more realistic distribution for
the interarrival time, we will take the response function
defined in (2). Indeed, as mentioned above, filtered Poisson
processes having this response function are commonly used
in hydrology, and the forecasting formulas are then easy to
derive and implement. Therefore, it will be easier to judge the
quality of the model that we propose.

In the next section, filtered renewal processes will be
formally defined and the formulas needed to forecast the river
flows will be developed. Then, in Section 3, the results will
be applied to forecast the flows of the Delaware and Hudson
Rivers. Finally, a few concluding remarks will be made in
Section 4.

2. River Flows Modeled as a Filtered
Renewal Process

Let X(t) denote the flow of a certain river at time t. We assume
that

N(1t)
X)) =Y Ye " (X)) =0if N®=0), 4
n=1

in which {N(t),t > 0} is a renewal process. The 7,’s are the
arrival times of the events of the process {N(¢),t > 0}, and the
times T,, = 7,—T,_; between the successive renewals are inde-
pendent and identically distributed random variables. Finally,
the (positive) random variables Y7;,Y,,... are independent
and identically distributed (and independent of {N(t),t >
0}).

Thus, the process is characterized by the sudden increases
of the river flow caused by the events that occur at times
T}, Ty5 - - .. A renewal cycle is defined as the time T, between
two consecutive peaks. For the interarrival time, the following
distributions (in addition to the exponential distribution) will
be considered in Section 3: lognormal, gamma, Weibull, and
Rayleigh.
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Next, in order to be able to forecast the river flow at time
t + 8, we must first estimate the parameter ¢ that appears in
the response function. If there are no signals between ¢ and
t + 1, then X(t + 1) is given by

Xt+1)=ex@). (5)

Hence, to estimate the parameter ¢, we can consider all
the days where the flow decreased in the data set and calculate
the ratio X(¢+1)/X (). The point estimate of ¢ is then derived
from the arithmetic mean R of this ratio:

C=-———=. (6)

In the case of the random variables Y,,, which constitute
a random sample of a parent random variable Y, their exact
distribution is not needed. Indeed, only the expected value of
Y will be used to forecast the value of X(t + §). Therefore, we
simply have to compute the mean increase of the river flow
during the calibration period of the model.

We will now derive formulas to estimate the river flow one
and two days in advance. These formulas can be used with
any distribution for the interarrival time T, which denotes the
parent variable of the T, ’s.

2.1. Forecasting the Flow at Time t + 1. We will first try to
forecast the river flow at time ¢ + 1, given all the information
available up to . To do so, we assume that there will be at most
one event in the interval (t,¢ + 1]. At any rate, as mentioned
above, in practice flow values are generally available on a daily
basis. Therefore, it is not really possible to determine whether
more than one event occurred in (t,t + 1]. When it does
happen, these events can be considered as a single large event.

Apart from the case when the interarrival time T has
an exponential distribution, we must take the history of the
process into account to calculate the probability that there will
indeed be an event in (f,¢ + 1]. Let

Ui = TN(t)+i - TN(t)+i—l fOr i= ]., 2, e (7)

That is, U, is the time elapsed between the (i — 1)st and the ith
event after the most recent one that occurred before or at time
t. The random variables T' and U, are identically distributed.
‘We must compute

pe=P[U <k+1|U; >k|, (8)
where k is the (integer) number of days since the most recent
signal was observed. We have

[ fo, () du

= . )
I fu, @y du

Px

With the help of a mathematical software, we can obtain
numerical values of this probability for any density function
fu, and any value of k.

Next, if T is exponentially distributed, it is well known
that, given that there is a signal (i.e., an event) between t and

t + 1, the conditional density of T is uniform on the interval
(t,t + 1], so that the signal in question occurred on average
at time t + 1/2. In the general case, we must compute the
conditional density function of U, in the interval (k, k + 1],
given that U, > k.

If there is indeed a signal between t and ¢ + 1, the forecast
of the river flow at time ¢ + 1 would be

Zk =X (t) 671/2 +E [Y] ﬁ
1 (10)

k+1 5 N
X L e +1_“)/CfU1 (u) du.

Therefore, the forecast of the river flow at time ¢ + 1, given the
entire history of the process up to ¢, is given by

X(t+1)=X® e (1-p)+Zps

= X (t)e '+ pE[Y] AT [Ul S
1

5 rk+l -
x ¢ k+D/E J e”/CfU1 (u) du.
k

2.2. Forecasting the Flow at Time t + 2. Let U, = U, |
{U; > k}. To forecast the river flow at time ¢ + 2, given all the
information available up to time ¢, we need the distribution
of the random variable Sy := U, ; +U,, where U, is defined in
(7).

We now assume that the probability that there will be
more than two signals in the interval (t,¢ + 2] is negligible
(irrespective of the value of k). The density function of S is
given by the convolution of the density functions of U, ; and
U,:

fo (s +K) = LOO fo, @) fu, (s +k-wdu.  (12)

Since U, is a nonnegative random variable, we can write that

stk
fs, (s+k) = J-k Ju,, W) fu, (s +k—-u)du for s> 0.
(13)

In the case when T has an exponential distribution with
parameter A, we know that (S; — k) has a gamma distribution
with parameters &« = 2 and A. In the other cases, we must
generally evaluate the above integral numerically.



e 2°X (1)

e—2/cX (t) + Yl* e—(k+2—U1,k)/c

X({t+2)=

e*Z/CX (t) + Yl* e*(k+2*U1)k)/C

+Y2* e—(Z—UZ)/c

whereY;" denotes the size of the ith signal in the interval (¢, t+
2]. As mentioned above, we assume that

PlUs>2- (U —-k)-U,] = 1. (15)

We must first compute
Pk =P[Uy € (kk+2]]. (16)
When U, has an exponential distribution with parameter A,
px=PlU €(02]] =1-¢" 17)

In general, we have

J:+2 fUl (1) du

=k (18)
Prk _[k fo, () di
Next,
Pk =P [U+U, € (kk+2]] = P[S; € (k, k+2]]
2
_ L fo (s +K)ds )

s+k
:r “ fu,, W) fu, (s +k—u)du | ds.
o | Jk :

Alternatively, using the fact that U, , and U, (= 0) are
independent random variables, we may write that

Pk =P[U + U, € (k,k +2]]

k+2
- L P[Uyy +U, € (kk+2] | Uy = ] fyy, () s

k+2
=J' P[U, € (k-uk+2-ul] fy,, (u)du
. ,
k+2 k+2—u
_ J “ fo, ) dv] fu.. (w)du.
k 0 :

(20)
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The value of X(t + 2) is given by

ifU > k+2,

ifU <k+2

and U, >2 - (U - k), (14)
ifU +U, <k+2

(and U3 >2- (U —k)-U,),

Finally, by independence,

P{U s k+2}n{U; > 2= (U - k)]

k+2
=J P[U, € (k+2~u,00)] fy,, (u)du
f :

)]

k+2 k+2-u
= J [1 - J fu, ) dv] fu,, () du
k 0 :

[ E R E—C

k+2—u

= P1k ~ Pak

The forecast of the river flow at time ¢ + 2, given the entire
history of the process up to time ¢, is thus given by

X(t+2)
=X 0 e (1-pry)
- k+2 n
+ {X ) e F + E[Y] L g k2wl o, @) du}
X (pl,k - Pz,k)
N k+2 N
+ {X ) e F+ E[Y] L e KB f () du

k+2

k+2-u
+E[Y]j “0 ey ) dv]

k
X fi v, ) d“} Pk
. k+2 n
=Xt e+ {E [Y] J e R (W) du]» Pk
. ,

N {E[Y] Jkk+z[

X fULk (u) d”]’ Pk

k+2-u R
j eI () dv]

0
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. 5 _rk+2 _
=X()e "+ {E [Y]e ™ +2)/CJ e”/CfUlk () du} Pik
% y

+ k+2-u
4 {E[Y] Jk ’ [eZ/EJ ’ ety (v)dv]
0

k

X fu,, 1) d”} Dok

(22)

3. Forecasting the Flows of the Delaware and
Hudson Rivers

To assess the quality of the forecasts obtained with the
renewal filtered process, we need to apply the formulas
developed in the previous section to real-life data. As in
[7], we chose the Delaware and Hudson Rivers, located
in the United States, at the Montague (01438500) and the
North Creek (01315500) gage stations, respectively. The flow
values are available on the Internet at the following address:
http://nwis.waterdata.usgs.gov. To calibrate the model, we
used the data from October 2008 to September 2009.

Remarks. (i) When one is dealing with real-life data, things are
not as simple as the mathematical models suggest. Looking
at the actual hydrograph of the Delaware River, we observe a
number of weak peaks that occur while the flow is decreasing
and for which the increasing period lasts only one day before
the flow resumes its decline. Similarly, there are sometimes
small increases of the flow value occurring just after a
minimum was observed that last only one day. In building
the data set, there is always a subjective part. We decided to
neglect these weak peaks, thus considering only the peaks
that appear quite clearly in the hydrograph.

(ii) Because the river flow is observed on a daily basis,
we must discretize the set of possible values taken by the
interarrival time T. We computed the number k of days
elapsed between consecutive peaks in the data set. In the
case of the first observed peak, k is the number of days
elapsed since the beginning of the calibration period. Then, k
is obtained by subtracting the arrival times of the consecutive
peaks. Notice that k is greater than or equal to 1.

We first consider the Delaware River. For this river, we
found that the average value T of the interarrival times in
the data set is equal to 6.8889 days. Moreover, the standard
deviation of the observations is given by s; = 3.8977 days.
Based on these values, one may at once conclude that T is very
unlikely to be exponentially distributed. Indeed, remember
that the mean and the standard deviation of an exponential
distribution with parameter A are both equal to 1/A.

Next, the value of the point estimate of the (unitless)
parameter ¢ (see (6)) is ¢ = 9.2592, and the average value of
the magnitude Y of the signals is given by Y = 984.6121 cubic
feet per second.

For the distribution of the random variable T, we tested
the following models:

(i) an exponential distribution with parameter A,

E(t)
IS

0 005 01 015 02 025 03 035 04

—— Gamma
—— Weibull
—— Rayleigh

—— Empirical CDF
—— Lognormal
== Exponential

FIGURE 2: Empirical and fitted distribution functions for the random
variable T' (Delaware River).

F(t)

T
—— Empirical CDF —e— Gamma
—— Lognormal —— Weibull
= = Exponential —o— Rayleigh

FIGURE 3: Empirical and fitted distribution functions for the random
variable T (Hudson River).

(ii) a lognormal distribution with parameters y and o,

(iii) a gamma distribution with shape parameter « and
scale parameter A,

(iv) a Weibull distribution with shape parameter A and
scale parameter x,

(v) a Rayleigh distribution with parameter o.

Table1 summarizes the results of the chi-square
goodness-of-fit tests for each distribution and gives the
respective parameter estimates. We find that, as expected,
the exponential distribution is rejected, whereas the other
distributions are all accepted, according to the P-values of
the tests. The empirical cumulative distribution function
as well as the distribution functions of the various models
considered above is shown in Figure 2. We clearly see that
the exponential distribution does not fit the data nearly as
well as the other four models.

Now, in the case of the filtered Poisson process (1) with the
response function defined in (2), to estimate the river flow at
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TABLE 1: Goodness-of-fit tests for the distribution of the random variable T (Delaware River).
Distribution Exponential Lognormal Gamma Weibull Rayleigh
Parameters 1/6.8889 1.7574, 0.6187 3.0544, 2.2554 7.7974,1.8975 5.5817
P-value 0.0344 0.7887 0.7723 0.6927 0.7008
TABLE 2: Criteria for comparing the forecasting models (Delaware River).
Filtered renewal process Filtered Poisson process
Lognormal Gamma Weibull Rayleigh Exponential
Mape 12.58% 12.49% 12.55% 12.56% 12.76%
X(t+1) Nash 0.8288 0.8290 0.8287 0.8287 0.8356
Pc 0.1674 0.1664 0.1663 0.1669 0.2522
Corr 0.9188 0.9186 0.9180 0.9188 0.9187
Mape 20.36% 20.33% 20.34% 20.34% 21.83%
X(t+2) Nash 0.5447 0.5445 0.5445 0.5445 0.5573
Pc 0.2930 0.2893 0.2869 0.2863 0.3344
Corr 0.7735 0.7732 0.7731 0.7730 0.7734
. . Ac
time t + 1 we compute the expected value of X(¢ + 1) given lim Var [X (8)] = 5, (28)
all the past observations. Because of the memoryless property t—eo U
of the exponential distribution, we find that this conditional _ s/
expectation only depends on the most recent value of the flow, Wm pxe xess) =€ (29)

that is, X(¢). We obtain (see [7]) that
E[Xt+DX] =@ e V' X@)+E[X ()], (23
where

E[X(1)] = %(1 ~e ). (24)

Similarly, to estimate the river flow at time ¢ + 2, we only
need to calculate

E[X(t+2)|X(t)]=E[ Y Yne_(”z_r")/ch(t)]

n:0<7,<t+2

e 2’

Y v WX (t)]

n:0<7, <t
+E[ y Yne_(HZ_T”)/CIX(t)]
nit<t, <t+2

=e*XH+E[X ()],
(25)

where
Ac -2/c
E[X(Z)]:;(l—e ). (26)
Moreover, we have that

lim E[X ()] = % (27)

t— 00

where px(;) x(+s) denotes the correlation coefficient of X(t)
and X(t + §).

By making use of these three equations, we can estimate
the parameter A of the Poisson process, the parameter y of
the assumed exponential distribution of the Y,’s, and the
parameter ¢ in the response function. Actually, we do not
need point estimates of A and u to forecast the flow. From
(27), we deduce that we can simply estimate the ratio Ac/p
that appears in both (24) and (26) by the mean value of the
observed data when the process is in steady state. Finally,
to estimate the parameter ¢, we first compute the empirical
correlation coefficient r; between the flow values at times ¢
and t + 1 and then we set ¢ = —1/1In(r;) (see (29)). With
the value of r, being close to 1, the previous formula is well
defined.

Remark. If one is only interested in forecasting the river flow
at time t + §, one may estimate ¢ by computing the empirical
value of py () x(+s) and making use of (29).

We are now ready to compare the forecasts derived from
both the filtered Poisson process and the filtered renewal
process with the various distributions considered for the
interarrival time T. We used the formulas given above to
forecast the flow of the Delaware River for the 89-day period
from February to April 2010.

To assess the accuracy of the forecasts, we consider four
criteria commonly used in hydrology: the mean absolute
percentage error (Mape), the Nash criterion (Nash), the peak
criterion (Pc), and the correlation coefficient (Corr) between
the observed and forecasted values.

The Nash criterion is based on the mean square error and
is used to assess the predictive power of hydrological models.
It evaluates the quality of the forecasts from the differences
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TABLE 3: Goodness-of-fit tests for the distribution of the random variable T (Hudson River).

Distribution Exponential Lognormal Gamma Weibull Rayleigh
Parameters 1/8.3488 1.8754, 0.6625 9.2134,1.3399 2.1785, 3.8324 7.9978
P-value 0.0013 0.6983 0.3203 0.2532 0.000139
TABLE 4: Criteria for comparing the forecasting models (Hudson River).
Filtered renewal process Filtered Poisson process
Lognormal Gamma Weibull Exponential
Mape 12.33% 12.14% 12.33% 15.58%
X(t+1) Nash 0.8240 0.8243 0.8240 0.8360
Pc 0.2875 0.2895 0.2872 0.4818
Corr 0.9146 0.9146 0.9146 0.9146
Mape 20.84% 21.00% 21.15% 32.78%
X(t+2) Nash 0.5841 0.5838 0.5835 0.6222
Pc 0.4558 0.4533 0.4518 0.5575
Corr 0.7908 0.7909 0.7910 0.7910
x10* x10*
4 T T T T T T T T 4
3.5 35¢
3 3r
é 2.5 é 2.5
§ 2 § 2
& 15 & o151
1 1F
0.5 0.5
0 0

0 100 20 30 40 50 60 70 80 90
Days

—— Observed value
« Predicted value (FPP)
o Predicted value (FRP)

FIGURE 4: Observed and forecasted values of the flow of the
Delaware River at time ¢ + 1.

between the expected and observed daily values. It is equal to
1in case of a perfect fit. For its part, the peak criterion is used
to measure the quality of the forecasts during the critical peak
period. The closer to 0 it is, the better the forecasts are.

Table 2 displays the results obtained with the two compet-
ing models. Looking at these results, we notice that the Mape,
Nash, and Corr criteria yield practically the same values for
the filtered renewal and filtered Poisson processes. However,
the filtered renewal process did much better than the filtered
Poisson process when we consider the peak criterion. This
criterion is especially important because accurate forecasts
are really needed during the peak period.

We now turn to the Hudson River. The value of the point
estimate of the constant ¢ for this river is ¢ = 9.1172 and the
average magnitude of the signals is Y = 229.2533, which is
much smaller than in the case of the Delaware River.

Proceeding as above, we performed chi-square goodness-
of-fit tests for the various distributions considered. The results

0 10 20 30 40 50 60 70 80 90
Days

—— Observed value
« Predicted value (FPP)
o Predicted value (FRP)

FIGURE 5: Observed and forecasted values of the flow of the
Delaware River at time ¢ + 2.

are presented in Table 3 (see also Figure 3). This time, we see
that both the exponential and Rayleigh distributions must be
rejected, while the lognormal distribution clearly provides the
best fit to the data.

The values of the four criteria used to compare the models
are shown in Table 4. We discarded the Rayleigh distribution,
because it yielded a very bad fit to the data. As in the case of
the Delaware River, the values of the Nash and Corr criteria
are quite similar, while the important peak criterion and
the Mape criterion are much smaller for the filtered renewal
process than for the filtered Poisson process.

Finally, we present the observed and forecasted values of
the flows of the Delaware and Hudson Rivers at times ¢ + 1
and ¢ +2 in Figures 4, 5, 6, and 7, based on the filtered Poisson
process (FPP) and the filtered renewal process (FRP) with a
lognormal distribution for the interarrival time T Notice that
the filtered renewal process is generally better than the filtered
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Poisson process at forecasting high flow values, which is our
main concern.

4. Conclusion

In this paper, we were able to significantly improve the short-
term hydrological forecasts produced by filtered Poisson
processes by using a more realistic distribution for the inter-
arrival time of the signals, thus working with filtered renewal
processes. As we saw in the previous section, the filtered
Poisson process, despite its lack of realism, is able to yield
reasonable short-term forecasts. One possible explanation is
the fact that the forecasting formulas derived from this model
are very easy to implement. Also, contrary to the filtered
renewal process, it does not require subjective decisions to
estimate its various parameters. However, the filtered Poisson
process was not able to produce forecasts as accurate as
those derived from the filtered renewal process during the
important peak period.

International Journal of Engineering Mathematics

In addition to being used to forecast flow values, the
models considered in this paper can also give us an estimate
of the probability that the river flow will exceed a certain
threshold in the next few days. This threshold may be a value
that corresponds to a flow above which the risk of flooding is
very high.

Finally, we could use the response function in (3) to
further improve the forecasts. To do so, we would have to be
able to estimate the parameter d in that response function and
then obtain formulas that generalize the ones in (11) and (22),
which is probably not an easy task.
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