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Design strategies for parallel iterative algorithms are presented. In order to further study different tradeoff strategies in design
criteria for integrated circuits, A 10 × 10 Jacobi Brent-Luk-EVD array with the simplified 𝜇-CORDIC processor is used as an
example.The experimental results show that using the 𝜇-CORDIC processor is beneficial for the design criteria as it yields a smaller
area, faster overall computation time, and less energy consumption than the regular CORDIC processor. It is worth to notice that
the proposed parallel EVD method can be applied to real-time and low-power array signal processing algorithms performing
beamforming or DOA estimation.

1. Introduction

We are on the edge of many important developments which
will require parallel data and information processing. The
transmission systems are using higher and higher frequencies
and the carrier frequencies are increasing to 10GHz and
above. Because of the smaller wavelength more antennas can
be implemented on a single device leading to massive MIMO
systems. Parallel VLSI architectures will be needed in order
to provide the required computational power for 10GHz and
above, massive MIMO, and big data processing [1, 2].

In parallel matrix computation at the circuit level,
implementing an iterative algorithm on a multiprocessor
array results in a tradeoff between the complexity of an
iteration step and the number of required iteration steps.
Therefore, as long as the algorithm’s convergence properties
are guaranteed, it is possible to adjust the architecture,
which can significantly reduce the complexity with regard
to the implementation. Computing the parallel eigenvalue
decomposition (EVD) as a preprocessing step to MUSIC or
ESPRIT algorithm with Jacobi’s iterative method is used as
an important example as the convergence of this method is
extremely robust to modifications of the processor elements
[3–6].

In [7], it was shown that Brent-Luk-EVD architecture
with a modified CORDIC for performing the plane rotation

of the Jacobi algorithm can be realized in advanced VLSI
design. Based on it, a Jacobi EVD array is realized by imple-
menting a scaling-free microrotation CORDIC (𝜇-CORDIC)
processor in this paper, which only performs a predefined
number of CORDIC iterations. Therefore, the size of the
processor array can be reduced for implementing a large-scale
EVD array in parallel VLSI architectures. After that, several
modifications of the algorithm/processor are studied and
their impact on the design criteria is investigated for different
sizes of EVD array (10 × 10 to 80 × 80). Finally, a strategy
to comply with the design criteria is established, especially
in terms of balancing the number of microiterations and
the computational complexity. The proposed architecture
is ideal for real-time antenna array applications, such as a
flying object carrying an antenna array for beamforming or
DOA estimation that would require a real-time, low-power,
and efficient architecture for EVD, or joint time-delay and
frequency estimation using a sensor network.

This paper is organized as follows. Serial and parallel
Jacobi methods are described in Section 2. In Section 3, the
design issues of the parallel Jacobi EVD array are discussed,
leading to the simplification from a regular full CORDIC to
the 𝜇-CORDIC processor with an adaptive number of itera-
tions. Section 4 shows the implementation results. Section 5
concludes this paper.
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Figure 1: A 4 × 4 Brent-Luk-EVD array, where 𝑛 = 8 for an 8 × 8
symmetric matrix [3].

2. Parallel Eigenvalue Decomposition

2.1. Jacobi Method. An eigenvalue decomposition of a real
symmetric 𝑛 × 𝑛 matrix 𝐴 is obtained by factorizing 𝐴 into
three matrices 𝐴 = 𝑄 ∧ 𝑄

𝑇, where 𝑄 is an orthogonal
matrix (𝑄𝑄𝑇 = 𝐼) and ∧ is a diagonal matrix containing the
eigenvalues of 𝐴. The Jacobi method approximates the EVD
iteratively as follows:

𝐴
𝑘+1

= 𝑄
𝑘
𝐴
𝑘
𝑄
𝑇

𝑘
, with 𝑘 = 0, 1, 2, . . . , (1)

where 𝑄
𝑘
is an orthonormal plane rotation by the angle 𝜃 in

the (𝑖, 𝑗) plane.
The plane rotations 𝑄

𝑘
, where 𝑘 = 1, 2, 3, . . ., can be

executed in various orders to obtain the eigenvalues.Themost
common order of sequential plane rotations {𝑄

𝑘
} is called

cyclic-by-row, meaning (𝑖, 𝑗) is chosen as follows:

(𝑖, 𝑗) = (1, 2) (1, 3) ⋅ ⋅ ⋅ (1, 𝑛) (2, 3) ⋅ ⋅ ⋅ (2, 𝑛) ⋅ ⋅ ⋅ (𝑛 − 1, 𝑛) .

(2)

The execution of all 𝑁 = 𝑛(𝑛 − 1)/2 index pairs (𝑖, 𝑗) is
called a sweep. Matrix𝐴 will converge into a diagonal matrix
∧ once 𝑘 sweeps are applied, where∧ contains the eigenvalues
𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
:

lim
𝑘→∞

𝐴
𝑘
= diag [𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑛
] =

[
[
[
[
[

[

𝜆
1

0 ⋅ ⋅ ⋅ 0

0 𝜆
2

...
... d 0

0 ⋅ ⋅ ⋅ 0 𝜆
𝑛

]
]
]
]
]

]

.

(3)

2.2. Jacobi EVD Array. Instead of performing the plane
rotations𝑄

𝑘
one by one in a cyclic-by-row order, they can be

separated into multiple subproblems and executed in parallel
on a log 𝑛 dimensional multicore platform. Ahmedsaid et al.
[3] first presented a parallel array based on Jacobi’s method. It
consists of 𝑛/2×𝑛/2 PEs and each PE contains a 2×2 subblock
of the matrix 𝐴. Figure 1 shows a typical 4 × 4 EVD array

with 16 PEs. This Jacobi array can perform 𝑛/2 subproblems
in parallel. Initially, each PE holds a 2 × 2 submatrix of 𝐴:

PE
𝑝𝑞

= (

𝑎
2𝑝−1,2𝑞−1

𝑎
2𝑝−1,2𝑞

𝑎
2𝑝,2𝑞−1

𝑎
2𝑝,2𝑞

) , (4)

where 𝑝 and 𝑞 = 1, 2, . . . , 𝑛/2.
A rotation angle has to be chosen in order to zero out

the off-diagonal elements of the submatrix by solving a 2 × 2

symmetric EVD subproblem as shown in the following:

[

[

𝑎


𝑖𝑖
𝑎


𝑖𝑗

𝑎


𝑗𝑖
𝑎


𝑗𝑗

]

]

= 𝑅 ⋅ [

𝑎
𝑖𝑖

𝑎
𝑖𝑗

𝑎
𝑗𝑖

𝑎
𝑗𝑗

] ⋅ 𝑅
𝑇
, (5)

where 𝑅 = [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ].

The maximal reduction {𝑎


𝑖𝑗
, 𝑎


𝑗𝑖
} = 0 can be obtained by

applying the optimal angle of rotation 𝜃opt:

𝜃opt =
1

2

arctan(
2𝑎
𝑖𝑗

𝑎
𝑗𝑗
− 𝑎
𝑖𝑖

) , (6)

where the range of 𝜃opt is limited to |𝜃opt| ≤ 𝜋/4.
This optimal angle 𝜃opt, which can annihilate the off-

diagonal elements (𝑎
2𝑝−1,2𝑞

and 𝑎
2𝑝,2𝑞−1

), is computed using
diagonal PEs in (6). Once these rotation angles are computed,
they will be sent to the off-diagonal PEs. This transmission is
indicated by the dashed lines in the vertical and horizontal
direction in Figure 1. All off-diagonal PEs will perform a
two-sided rotation with the corresponding rotation angles
obtained from the row (𝜃

𝑟
) and column (𝜃

𝑐
), respectively.

Once these rotations are applied, the matrix elements are
interchanged between processors as indicated by the diagonal
solid lines in Figure 1, for the execution of the next 𝑛/2
rotations. One sweep needs to perform 𝑛 − 1 of these parallel
rotation steps. After several sweeps (iterations) are executed,
the eigenvalues will concentrate in the diagonal PEs.

3. CORDIC Approach

3.1. Regular CORDIC. Within each PE, a simple way to solve
the subproblemof (5) inVLSI for zeroing out the off-diagonal
elements is to use the CORDIC algorithm. An orthogonal
CORDIC rotator is defined as [8, 9]

𝑥
𝑖+1

= 𝐴
𝑖
[𝑥
𝑖
− 𝑦
𝑖
⋅ 𝑑
𝑖
⋅ 2
−𝑖
]

𝑦
𝑖+1

= 𝐴
𝑖
[𝑦
𝑖
+ 𝑥
𝑖
⋅ 𝑑
𝑖
⋅ 2
−𝑖
]

𝑧
𝑖+1

= 𝑧
𝑖
− 𝑑
𝑖
⋅ tan−12−𝑖

𝐴
𝑖
= √1 + 2

−2𝑖
𝑖 = 1, 2, 3, . . . , 𝑛

(7)

when 𝑛 → ∞, 𝐴
𝑛
≅ 1.647.

In the Cartesian coordinate system, the CORDIC orthog-
onal rotation mode can be used to compute (5) by separating
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the two-sided rotation into two parts, 𝐺 = [𝐺
𝑇

1
; 𝐺
𝑇

2
] = 𝐴 ⋅ 𝑅

𝑇

and 𝑅 ⋅ 𝐺. 𝐴 ⋅ 𝑅
𝑇 that is computed by

𝐺
1
= [𝑎
𝑟

𝑖𝑖
, 𝑎
𝑟

𝑖𝑗
]

𝑇

= [

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ] ⋅ [𝑎

𝑖𝑖
, 𝑎
𝑖𝑗
]

𝑇

,

𝐺
2
= [𝑎
𝑟

𝑗𝑖
, 𝑎
𝑟

𝑗𝑗
]

𝑇

= [

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ] ⋅ [𝑎

𝑗𝑖
, 𝑎
𝑗𝑗
]

𝑇

,

(8)

where the plane rotationwith the desired rotation angle 𝜃opt is
executed using two CORDIC rotators. The CORDIC proces-
sors apply 𝑛 steps, usually 𝑛 = 32 for single floating precision.
A constant scaling value 𝐾 = 1/𝐴

𝑛
= 0.6073 is subsequently

required to fix the rotated vectors 𝐺
1
= [𝑎
𝑟

𝑖𝑖
, 𝑎
𝑟

𝑗𝑖
]
𝑇 and 𝐺

2
=

[𝑎
𝑟

𝑖𝑗
, 𝑎
𝑟

𝑗𝑗
]
𝑇 in order to retain the orthonormality. Similarly,

these two CORDIC rotators can also be applied to compute
𝑅 ⋅ 𝐺:

[𝑎


𝑖𝑖
, 𝑎


𝑗𝑖
]

𝑇

= [

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ] ⋅ [𝑎

𝑟

𝑖𝑖
, 𝑎
𝑟

𝑗𝑖
]

𝑇

,

[𝑎


𝑖𝑗
, 𝑎


𝑗𝑗
]

𝑇

= [

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ] ⋅ [𝑎

𝑟

𝑖𝑗
, 𝑎
𝑟

𝑗𝑗
]

𝑇

.

(9)

Meanwhile, the angle 𝜃opt can also be determined by using
the CORDIC orthogonal vector mode. The CORDIC rotates
the input vector through whatever angle is necessary to align
the resulting vector with the 𝑥-axis:

𝑥
𝑛
= 𝐴
𝑛
√𝑥
2

0
+ 𝑦
2

0

𝑦
𝑛
= 0

𝑧
𝑛
= 𝑧
0
− 𝑑
𝑖
⋅ tan−12−𝑖.

(10)

The CORDIC with an orthogonal vector mode can
compute the arctangent result iteratively 𝜃 = arctan(𝑦/𝑥), if
the angle accumulator is initialized with zero (𝑧

0
= 0).

In the VLSI design, two common approaches can be
used to realize the CORDIC dependence flow graph in
hardware: the folded (serial) or the parallel (pipelining)
[10, 11]. Note that we limit our efforts to the conventional
CORDIC iteration scheme, as given in (7). In Figure 2(a), the
structure of a folded CORDIC PE is shown, which requires
a pair of adders for plane rotation and another adder for
steering the next angle direction (computing the following
𝑧
𝑖
and 𝑑

𝑖
). All internal variables are buffered in the registers

separately until the iteration number is large enough to obtain
the result. The signs of all three intermediate variables are
fed into a control unit that generates the rotation direction
flags 𝑑

𝑖
to steer the add or suboperations and keep track

of the rotation angle 𝑧
𝑖
. For example, off-diagonal PE

43
can

directly apply the flags 𝑑
𝑖
from PE

33
to (8)’s 𝐺

1
and PE

44
to

(8)’s 𝐺
2
. After the rotation, the required scaling procedure

can be obtained using the part of Figure 2(b) that fixes 𝐴
𝑛
,

where two multiplexers are required to select the inputs into
the barrel shifters.This folded dependence graph is typical for

the orthogonal rotation mode and benefits in a small area in
the VLSI design.

In practice, the angle accumulator is not required for the
off-diagonal PEs. The 𝑑

𝑖
from (7) can be used to steer the

rotators.Thus, the transmission on the vertical and horizontal
dashed lines in Figure 1 will be replaced by a sequence of 𝑑

𝑖

flags, meaning that the off-diagonal computation efforts for
computing the optimal angle 𝜃opt can be omitted.

3.2. Simplified 𝜇-Rotation CORDIC. As the process tech-
nologies continue to shrink, it becomes possible to directly
implement a Brent-Luk-EVD array with the Jacobi method
[12, 13]. However, the size of the EVD array that can be
implemented on the current configurable device with the
regular CORDIC is still small, say, 4 × 4. Therefore, we
must simplify the architecture in order to integrate more
processors. A scaling-free 𝜇-CORDIC for performing the
plane rotation in (5) is used [5, 6], where the number of
inner iterations is reduced from 32 iterations to only one
iteration.

The definition of 𝜇-CORDIC can be developed from (7)
as

𝑥
𝑖+1

= �̂� [𝑥
𝑖
− 𝑦
𝑖
⋅ 𝑑
𝑖
⋅ 2
−𝑖
]

𝑦
𝑖+1

= �̂� [𝑦
𝑖
+ 𝑥
𝑖
⋅ 𝑑
𝑖
⋅ 2
−𝑖
]

�̂� =
√cos2𝜃 + sin2𝜃 = 1 + 𝜖,

(11)

where �̂� is the required scaling factor per iteration and 𝜖 is the
scaling error.The idea of the 𝜇-CORDIC rotation is to reduce
the number of iterations of the full CORDIC to only a few
iterations.Meanwhile, the scaling error 𝜖will be small enough
to be neglected as long as the orthonormality is retained.
Figure 3 shows four different methods for different sizes of
𝜇-rotation angles and Table 1 shows a lookup table for the 𝜇-
CORDIC, listing 32 approximated rotation angles for each 𝜇-
rotation type, the required number of shift-add operations
and its computation cycles. Note that the approximated
angles are stored as two times of tan 𝜃. When the rotation
angle is very tiny (i.e., 𝜖 is tiny, too), Type I with only one
iteration will comply with the limited working range 1 −

2
−(𝑛
𝑚
+1)

< �̂� < 1 + 2
−(𝑛
𝑚
+1), if the selected 𝑛

𝑚
(𝑛
𝑚
∈ 1 ⋅ ⋅ ⋅ 32)

is larger than 16. In Figure 3(a), a pair of shift-add operations
realizing one iteration step is sufficient. Furthermore, it is
scaling free when the angle 2 × tan 𝜃 ≤ 3.05176 × 10

−5. These
orthonormal 𝜇-rotations are chosen such that they satisfy
a predefined accuracy condition in order to approximate
the original rotation angles and are constructed by the least
computation efforts.

Next, for the Type II rotation (as shown in Figure 3(b)),
when 𝑛

𝑚
is selected from 8 to 15 for small angles, two pairs of

shift-add operations are enough to retain the orthonormality.
Moreover, when the 𝑛

𝑚
is selected from 5 to 7, Type III

requires three 𝜇-rotations. No scaling is required by Types
I through III. Finally, for large rotation angles, the scaling
errors cannot be omitted. Figure 3(d) shows the correspond-
ing dependence flow graph for Type IV. Besides the rotation
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Figure 2: Flow graph of a folded CORDIC (recursive) processor.

itself, it requires two pairs of shift-add operations at the
beginning of the flow graph, while 2 to 4 pairs of shift-add
operations are required to fix the scaling factor �̂�:

�̂� = (1 + 2
−2(𝑘+1)

) (1 + 2
−4(𝑘+1)

) ⋅ ⋅ ⋅ (1 + 2
−2
𝑀

(𝑘+1)
) .

(12)

Note that the scaling costs 𝑀 = 2 to 4 pairs of shift-add
operations. In general, the cost of Type IV is bounded by
2 + 𝑀 pairs of shift-add operations. For example, when the
index 𝑘 is 2, the scaling is

�̂�
2
= (1 + 2

−6
) (1 + 2

−12
) (1 + 2

−24
) . (13)

These four subtypes have three identical parts: Type I with
one iteration, the scaling part of Type IV, and the second
iteration of Type II. These three parts can be integrated
together by using multiplexers to select the data paths,
as shown in Figure 4, where 2 adders, 2 shifters, and 4
multiplexers are required [5].

3.3. Adaptive 𝜇-CORDIC Iterations. To improve the com-
putational efficiency, the 𝜇-CORDIC has been modified to
perform 6 iterations per cycle as CORDIC-6. As the global
clock in a synchronous circuit is determined by the critical
path, the maximum timing delay per iteration is 6 cycles
(when the index 𝑘 is 1, Type IV).Therefore, the inner iteration
steps of the angles are repeated until they are close to the
critical one. The required number of repetitions is quoted in
Table 1. For example, when the rotation angle index 𝑘 is 8,
it will repeat three times from the index 𝑘 = 8 to the index
𝑘 = 10; when the rotation angle index 𝑘 is 20, it is repeated six
times from the index 𝑘 = 20 to the index 𝑘 = 25. On the other
hand, we can adjust the number of iterations by selecting the
average angle during the last sweep and name it as CORDIC-
mean.

4. Experimental Results

4.1. Matlab Simulation. The full CORDIC with 32 iteration
steps, the 𝜇-CORDIC with one iteration step, and two
different adaptive modes have been tested using numerous



VLSI Design 5

add

add

−d

x

y

x

y

k d

k

≫k

≫k

(a) Type I

Re
g

Re
g

Re
g

Re
g add

addadd

add

−d k − 1 −1

k − 1 −1

x

y

x

y

k d

k

≫k

≫k

≫k

≫k

(b) Type II

Re
g

Re
g

Re
g

Re
g

Re
g

Re
g

Re
g

Re
g

add

add add

add

add

add

−

−d

d

k − 1 −1

k − 1 −1

k − 2

k − 2

x

y

x

y

k

k

d

d

≫k

≫k

≫k

≫k

≫k

≫k

(c) Type III

Buffer registerAdder or substractor

Re
g

Re
g

Re
g

Re
g

Re
g

Re
g

Re
g

Re
g

Regadd

add

add add

add

add

add

add

add

Right shift k bit

−d −1k − 2

−1k − 2

2k − 2 +1

2k − 2 +1

+14k − 4

+14k − 4

x

y

x

y

k

k

d

≫k

≫k

≫k

≫k

≫k

≫k

≫k

≫k

≫k

(d) Type IV

Figure 3: Four 𝜇-CORDIC rotations.

random symmetric matrices 𝐴 of size 8 × 8 to 160 × 160 (i.e.,
EVD array sizes range from 4 × 4 to 80 × 80). Figure 5(a)
shows the average number of sweeps needed to compute
the eigenvalues/eigenvectors for each size of the EVD array,
where the sweep number increases monotonically.

When the Jacobi EVD array size is 10×10, the 𝜇-CORDIC
requires 12 sweeps while the full CORDIC only requires 6
sweeps per EVD computation. If we adjust the inner rotations
to six times, the sweep number will be 10, smaller than the 𝜇-
CORDIC but more than the full CORDIC. Note that using
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Table 1: The lookup table for 𝜇-rotations CORDIC with 32-bit
accuracy, showing the rotation type, the 2× tan 𝜃 angle, the required
shift-add operations for rotation and scaling, the required cycle
delay, and repeat number for CORDIC-6.

Index Type Angle Shift-add Cycle
𝑘 2 × tan 𝜃 rot. sca. cnt. re.
1 IV 1.49070 4 8 6 1
2 IV 0.54296 4 6 5 1
3 IV 0.25501 4 6 5 1
4 IV 0.12561 4 4 4 1
5 III 6.25841 10−2 6 0 3 2
6 III 3.12606 10−2 6 0 3 2
7 III 1.56263 10−2 6 0 3 2
8 II 7.81266 10−3 4 0 2 3
9 II 3.90627 10−3 4 0 2 3
10 II 1.95313 10−3 4 0 2 3
11 II 9.76563 10−4 4 0 2 3
12 II 4.88281 10−4 4 0 2 3
13 II 2.44141 10−4 4 0 2 3
14 II 1.22070 10−4 4 0 2 4
15 II 6.10352 10−5 4 0 2 5
16 I 3.05176 10−5 2 0 1 6
17 I 1.52588 10−5 2 0 1 6
18 I 7.62939 10−6 2 0 1 6
19 I 3.81470 10−6 2 0 1 6
20 I 1.90735 10−6 2 0 1 6
21 I 9.53674 10−7 2 0 1 6
22 I 4.76837 10−7 2 0 1 6
23 I 2.38419 10−7 2 0 1 6
24 I 1.19209 10−7 2 0 1 6
25 I 5.96046 10−8 2 0 1 6
26 I 2.98023 10−8 2 0 1 6
27 I 1.49012 10−8 2 0 1 6
28 I 7.45058 10−9 2 0 1 5
29 I 3.72529 10−9 2 0 1 4
30 I 1.86265 10−9 2 0 1 3
31 I 9.31323 10−10 2 0 1 2
32 I 4.65661 10−10 2 0 1 1

the average rotation angle to decide the rotation number as
the CORDIC-mean seems to be an unwise method because
it requires more sweeps. Although the 𝜇-CORDIC requires
double sweeps than the full CORDIC, it actually reduces the
number of the inner CORDIC rotations, which results in
improved computational complexity. For example, a 10 × 10

array with the Full CORDIC PE needs 6 sweeps × 32 inner
CORDIC rotations and the CORDIC-6 needs 10 sweeps × 6
innerCORDIC rotationswhereas the𝜇-CORDICPE requires
only 12 sweeps × 1 inner CORDIC rotation. In Figure 5(b),
the average number of shift-add operations required for
each rotation method for different sizes of EVD arrays is
demonstrated whereas 𝜇-CORDIC needs significantly fewer
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Figure 4: The block diagram of a scaling-free 𝜇-CORDIC PE,
including 2 adders, 2 shifters, and 4 multiplexers.

shift-add operations than others. The adaptive CORDIC-
6 method can offer a compromise between the hardware
complexity and the computational effort.

Figure 5(c) shows the off-diagonal Frobenius normversus
the sweep numbers for each array size of 80 × 80 with double
floating precision. Each rotation method converges to the
predefined stop criteria: ‖𝐴off‖𝐹 × 10

−8. The ‖𝐴off‖𝐹 is the
Frobenius norm of the off-diagonal elements of𝐴 (i.e.,𝐴off =

𝐴 − diag(diag(𝐴))).
Figure 5(d) shows the reduction of the off-diagonal

Frobenius norm versus the sweep numbers for single floating
precision. It can be noticed that the off-norms do not reach
the convergence criteria, and each size of the EVD array has
different stop criteria for each rotation method (default IEEE
754 single). Therefore, we can first analyze the Frobenius
normof the off-diagonal elements inMatlab and then observe
it until it reaches its maximal reduction. Afterwards, a lookup
table can be generated and directly assign these stop criteria
to the target hardware circuit or IP component.

4.2. VLSI Implementation. The 𝜇-CORDIC is modeled and
compared to the folded Full CORDIC in VHDL with the
resizing feature.These twomethods have been integrated into
parallel EVD arrays, with sizes 4 × 4 and 10 × 10, through a
configurable interface separately. After that, they have been
synthesized by using the Synopsys Design Compiler with the
TSMC 45 nm standard cell library. Note that the word length
is 32 bits with the IEEE 754 single floating precision for both
CORDIC methods using the same floating point unit from
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Figure 5: Simulations of four rotation methods.

OpenCORE. Table 2 lists the synthesis results for area, timing
delay, and power consumption.

As expected, the combinational logic area and the power
consumption of the𝜇-CORDICPE aremuch smaller than the
Full CORDIC. Furthermore, in order to determine the time
required to compute the EVD of a 𝑛 × 𝑛 symmetric matrix, it
can be obtained by
𝑇total = 𝑇delay × 𝐾iteration × 𝐾sweep × [3 (𝑛 − 1) + Δ + 3] ,

(14)

where 𝑛 = 8, 16, 20, 30, . . . , 160, Δ = 𝑛/2 − 1.
The total timing delay per EVD operation is defined by

the critical timing delay× the number of inner CORDIC rota-
tions× average number of outer sweeps× size of thematrix𝐴.
It can be observed that the total operation time is dependent
on the relationship between the inner CORDIC rotations

and the outer sweeps. Therefore, one obtains a speedup by
a factor of 21.4 by reducing the number of inner CORDIC
rotations. Although the reduction of power consumption is
less significant due to an extra 𝜇-CORDIC’s controller and
multiplexers, it actually 6 consumes much less energy per
EVD computation due to the shorter computation time. Note
that the 𝜇-CORDIC PE requires two inner iterations on
average due to the different rotation cycles, from six to one
inner iteration, as shown inTable 1. Figure 6 shows the energy
consumption for sizes of the array from 4× 4 to 80× 80. Both
rotation methods consume much less energy than the Full
CORDIC, where the 6-CORDIC can obtain a factor of 40.9
and the 𝜇-CORDIC can obtain a factor of 104.3 on average
for energy reduction compared to the Full CORDIC.

In [14], a Jacobi single cycle-by-row EVD algorithm [15]
has been implemented with a single CORDIC processor.
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Table 2: Comparison of 4 × 4 and 10 × 10 Jacobi EVD arrays.

PE array size Full CORDIC 4 × 4 𝜇-CORDIC 4 × 4 Full CORDIC 10 × 10 𝜇-CORDIC 10 × 10

Area
Combinational 0.847mm2 0.296mm2 5.143mm2 1.829mm2

Noncombinational 0.390mm2 0.123mm2 2.306mm2 0.833mm2

Total 1.237mm2 0.419mm2 7.449mm2 2.662mm2

Power

Cell 62.283mW 18.239mW 388.379mW 123.215mW
Net 0.465mW 0.433mW 2.993mW 2.678mW

Leakage 11.909mW 3.765mW 86.136mW 23.966mW
Total 74.657mW 22.437mW 477.508mW 149.859mW

Timing Critical 4.454 ns 1.213 ns 4.286 ns 2.247 ns
Frequency 224.5MHz 824.4MHz 233.3MHz 445MHz

Size of EVD array

Full CORDIC
CORDIC-6

100000000

10000000

1000000

100000

10000

1000

100

1

10

0.1

En
er

gy
 co

ns
um

pt
io

n 
(m

J)

806040302520151084

𝜇-CORDIC

Figure 6: The energy consumption per EVD operation with each
size of EVD array (operating at 100MHz).

Since it requires a very complex controller and lookup tables,
the throughput is not comparable with a real Brent-Luk’s par-
allel EVD array [13]. In comparison to [13], Full CORDIC for
Jacobi Brent-Luk-EVD parallel architecture is implemented
in FPGA; however, current configurable device can only
perform 4 × 4 EVD array. The experimental results show
that performing the unitary rotation in CORDIC processor
is a good solution. It required smaller area size, improved
the overall computation time, and reduced the energy con-
sumption. Furthermore, the unitary-rotation method can be
also applied to other more efficient CORIDC architectures
as long as the orthogonality is obtained during CORDIC
iterations, such as pipelineCORDIC [16, 17], or implementing
the rotators with better adder structures [18, 19].

As the process technologies continue to shrink, it
becomes possible to directly implement a Brent-Luk-EVD
array with the Jacobi method [12, 13]. However, the size
of the EVD array that can be implemented on the current
configurable device with the regular CORDIC is still small,
say, 4×4.Therefore, wemust simplify the architecture in order
to integrate more processors. A scaling-free 𝜇-CORDIC for
performing the plane rotation in (5) is used [5, 6], where the
number of inner iterations is reduced from 32 iterations to
only one iteration.

5. Conclusions

The EVD was computed by the parallel Jacobi method,
which was selected as an example for a typical iterative
algorithmwhich exhibits very robust convergence properties.
A configurable Jacobi EVD array with both Full CORDIC
and 𝜇-CORDIC is implemented in order to further study
the tradeoff strategies in design criteria for parallel integrated
circuits. The experimental results indicate that the presented
𝜇-CORDICmethod can reduce the size of the combinational
logic, speed up the overall computation time, and improve the
energy consumption.
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