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In this paper, the Galerkin method is used to obtain approximate solutions for Kirchhoff plates stochastic bending problem
with uncertainty over plates flexural rigidity coefficient. The uncertainty in the rigidity coefficient is represented by means of
parameterized stochastic processes. A theorem of Lax-Milgram type, about existence and uniqueness of the theoretical solutions,
is presented and used in selection of the approximate solution space. The Wiener-Askey scheme of generalized polynomials chaos
(gPC) is used tomodel the stochastic behavior of the displacement solutions.The performance of the approximateGalerkin solution
scheme developed herein is evaluated by comparing first and second order moments of the approximate solution with the same
moments evaluated from Monte Carlo simulation. Rapid convergence of approximate Galerkin’s solution to the first and second
order moments is observed, for the problems studied herein. Results also show that using the developed Galerkin’s scheme one gets
adequate estimates for accrued probability function to a random variable generated by the stochastic process of displacement.

1. Introduction

The field of stochastic mechanics has been subject of
extensive research and significant developments in recent
years. Stochastic mechanics incorporates the modeling of
randomness or uncertainty in the mathematical formulation
of mechanics problems. This is in contrast to the more estab-
lished field of structural reliability, where uncertainty and
randomness are also addressed, but where problem solutions
are obtained mainly based on deterministic mechanics mod-
els. The stochastic analysis applied to engineering structural
systems, in addition to providing more information, can lead
in some applications to more knowledge on the behavior of
mathematic models used in presence of uncertainty.

The analysis of stochastic engineering systems has
received new impulse with use of finite element methods to
obtain response statistics. Initially, finite element solutions
were combined with the Monte Carlo method, and samples
of random system response were obtained.Thismethodology

is based on samples generation and, from there, getting the
system’s set of realizations and, then, to get the estimates of
responses and histograms statistics with the set of achieve-
ments. This procedure demands, due to samples dimension,
much computing effort and time. In order to minimize this
inconvenience, but following the same approach, the work of
Yamazaki et al. [1] onemay be quoted, which usedNeumann’s
series along with Monte Carlo’s methods and finite elements
to reduce samples dimension, needed to determine statistical
estimates of response; thus one may quote also the work
of Araújo and Awruch [2], who applied the technique to
structural problems subject to static and dynamic load and
the geometrical nonlinearity with uncertainty on mechanical
properties of materials.

An alternative to get the numerical solutions to stochas-
tic problems without samples generation and realization,
emerged from an association of perturbation and finite
elements methods, [2–5]. In this method, uncertainty on
parameters of the system is represented through an expansion
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to the second order and through Galerkin’s type method
equations are gotten for the stochastic solution process.
One may quote Sobczyk’s [6] works with this methodol-
ogy, in order to study the free vibrations problem from
a rectangular plate with Young’s module modeled as a
random field; Nakagiri et al. [4] formulated the problem
with self-values for thin plates composite materials, with
uncertainty on fibers’ direction; Ramu [7] used Galerkin’s
technique to study the free vibration problem with Young’s
module and mass distribution modeled by random fields;
Kaminski [5] uses the principle of minimum complementary
energy and a second order Taylor’s series for uncertainty
representation in mechanical properties of the problem and
to get the stochastic process of tensions. This methodology
presents good performance for problems in which uncer-
tainty presents small dispersion (𝜇/𝜎 ≤ 0.1) in system’s
parameters.

At the end of the 80s, Spanos and Ghanem [8] used the
Galerkin finite element method to solve a stochastic beam
bending problem, where Young’s modulus was modeled as
a Gaussian stochastic process. The space of approximate
solutions was built using the finite elementmethod and chaos
polynomials. These polynomials form a complete system in
𝐿
2(Ω,F, 𝑃) = Ψ

𝐿
2
(Ω,F,𝑃), where Ψ = span⟨{𝜓

𝑖
}
∞

𝑖=0
⟩ is the

space generated by the chaos polynomials and (Ω,F, 𝑃) is
a probability space. The following works stand out with this
methodology: Ghanem and Spanos [9] used the Galerkin
method and the Karhunem-Loeve series to represent uncer-
tainty in the bending modulus by means of a Gaussian
process. The ideas presented in this study were innovative
and represented a new method to solve stochastic prob-
lems. Particularly, the construction of approximation space
through Galerkin method with polynomials chaos provides
that the stochastic approach to have similarities with the
deterministic approach, thus becoming a motivating factor
for using this methodology.

Babuška et al. [10] presented a stochastic version of the
Lax-Milgram lemma. The authors showed that, for certain
problems of mechanics, use of Gaussian processes can lead
to loss of coercivity of the bilinear form associated with the
stochastic problem. This difficulty was indeed encountered
in the study of da Silva Jr. [11] and resulted in noncon-
vergence of the solution for the bending of plates with
random parameters. This nonconvergence was due to the
choice of a Gaussian process to represent the uncertainty
in some parameters of the system. This failure to converge
also affects solutions based on perturbation or simulation
methods. Although the message of Babuška et al. was assim-
ilated by some researchers [12–15], one finds very recent
papers where Gaussian processes are still used to represent
the uncertainty in strictly positive mechanical properties
[16–18].

In recent years, much effort is being addressed at rep-
resenting uncertainty in stochastic engineering systems via
non-Gaussian processes. In the paper by Xiu and Karni-
adakis [19] the Askey-Wiener scheme was presented. This
scheme represents a family of polynomials, denominated
as generalized polynomials chaos (gPC’s), which generate

dense probability spaces with limited and unlimited sup-
port. This increases the possibilities for uncertain system
parameter modeling. The use of gPC’s has increased, from
engineering applications standpoint, since they were used
firstly by Ghanem; while one can quote several works, in
several areas of engineering, such as those regarding plates
bending problem especially, there are many works using the
perturbation method [20–24]; however only few used gPC’s.
Chen and Soares [16] used Kharunen-Loeve’s expansion
and the gPC’s to get numerical solutions for the plates
bending problem in composite material; Vanmarcke and
Grigoriu [25] studied the bending of Timoshenko beams
with random shear modulus; Elishakoff et al. [26] employed
the theory of mean square calculus to construct a solution
to the boundary value problem of beam bending with
stochastic bending modulus; Chakraborty and Sarkar [27]
used the Neumann series and Monte Carlo simulation to
obtain statistical moments of the displacements of curved
beams, with uncertainty in the elasticity modulus of the
foundation. Although they present numerical solutions for
stochastic beam problems, none of the papers referenced
above address the matter of existence and uniqueness of the
solutions.

In the present paper, the Galerkin method is used
to obtain approximated, numerical solutions for Kirchhoff
plates bending problem with uncertainty in flexural rigidity
coefficient. Uncertainties in the flexural rigidity coefficient
are represented by parameterized random processes [28].
A major contribution from this work is presented by a
theoretical result in the way of a theorem on existence and
uniqueness of the solution for plates stochastic bending
problem. This result uses the Lax-Milgram lemma [10].
This study subsidizes and gives consistency to the Galerkin
solution scheme developed herein, avoiding the flaws of some
formulations mentioned earlier [16–18]. From this point,
one uses Galerkin method to get the approximate solutions
(numerical) for the displacement stochastic process.The ten-
sioning product between spaces of finite dimension generates
the space of approximate solutions. From the isomorphism
and density properties assures that the approximate solutions
spaces is dense in the theoretical solutions space. A subspace
of the Askey-Wiener’s scheme [19, 29] is used to represent
the stochastic behavior of the solution. Performance of the
Galerkin solution developed herein is evaluated by com-
paring first and second order moments of random beam
displacement responses with the same statistics evaluated
via Monte Carlo simulation. One compare still the estimates
for the accrued probability function, and from Monte Carlo
stimulation.

2. Kirchhoff Plates Stochastic
Bending Problem

In this section, are presented the strong and weak formula-
tions of the problem of stochastic bending of Kirchhoff plates.
At the end of this section, the Lax-Milgram lemma is used to
present a proof of existence and uniqueness of the solution.
Let (Ω,F, 𝑃) be a probability space, where Ω is a sample
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space,F is an 𝜎-algebra, and 𝑃 is a probability measure. The
strong form of the Kirchhoff ’s plates bending problem is

Δ (𝛼 (x, 𝜔) ⋅ Δ𝑢) = 𝑞, ∀ (x, 𝜔) ∈ 𝐷 × Ω, a.e.;

𝑢 (x, 𝜔) = 0,

Δ𝑢 (x, 𝜔) = 0, ∀ (x, 𝜔) ∈ Γ × Ω,

(1)

where 𝑢 is stochastic processes of the transversal plate
displacement and 𝑞 is a load term.The term 𝛼(⋅, ⋅) is the plate
flexural rigidity coefficient, which is given by

𝛼 (x, 𝜔) = ( 𝐸 ⋅ 𝑡
3

12 ⋅ (1 − ]2)
) (x, 𝜔) , (2)

where 𝐸 is Young’s modulus, 𝑡 is plate thickness, and ] is
Poisson’s coefficient.

For the analysis of existence and uniqueness of the
response, the following hypotheses are considered:

(H1) ∃𝛼, 𝛼 ∈ R+ \ {0} : 𝑃 (𝜔 ∈ Ω : 𝛼 (x, 𝜔) ∈ [𝛼, 𝛼] ,

∀x ∈ 𝐷) = 1;

(H2) 𝛼 ∈ 𝐿2 (Ω,F, 𝑃;𝐻2
(𝐷)) ;

(H3) 𝑞 ∈ 𝐿2 (Ω,F, 𝑃; 𝐿2 (𝐷)) .

(3)

Hypothesis (H1) ensures that the plate flexural rigidity
coefficient is positively defined and uniformly limited in
probability [10], whereas the hypothesis (H2) is that the
strong form is well-defined. Hypothesis (H3) ensures that the
stochastic load process has finite variance. These hypotheses
are necessary for the application of the Lax-Milgram lemma,
which is used in the sequence to demonstrate the existence
and uniqueness of the solution.

2.1. Existence and Uniqueness of the Solution. In this section,
a brief theoretical study of existence and uniqueness of the
solution for Kirchhoff ’s plate bending stochastic problem
with uncertainty on the bending rigidity is discussed. Results
presented in this section are based on classical results from
functional analysis and from theory of Sobolev spaces [10, 30,
31].The study requires definition of stochastic Sobolev spaces,
tensor product, and density between distribution spaces and
𝐿
𝑝 spaces. In order to study existence and uniqueness, the

abstract variational problem associated with the strong form
(see (1)) needs to be defined. The stochastic Sobolev space,
where the solution to the stochastic beam bending problem
is constructed, is 𝑉 = 𝐿2(Ω,F, 𝑃; 𝑄). For fixed 𝜔 ∈ Ω, one
has
𝑄 = {𝑢 (⋅, 𝜔) ∈ 𝐻

2
(𝐷) | 𝑢 (x, 𝜔) = 0 ∧ Δ𝑢 (x, 𝜔) = 0,

∀ (x, 𝜔) ∈ Γ} ;
(4a)

hence

𝑉 ={𝑢 : 𝐷 × Ω → R | 𝑢 is mensurable and

∫
Ω

‖𝑢 (𝜔)‖
2

𝐻
2
(𝐷)
𝑑𝑃 (𝜔) < +∞} ,

(4b)

where ‖ ⋅ ‖
𝐻
2
(𝐷)

is the𝐻2(𝐷)norm. Equation (4b)means that,
for fixed 𝜔 ∈ Ω, 𝑢(⋅, 𝜔) ∈ 𝑄. On the other hand, for fixed
x ∈ Γ, 𝑢(x, ⋅) ∈ 𝐿2(Ω,F, 𝑃) is a random variable. Defining
the tensor product between 𝑔 ∈ 𝐿2(Ω,F, 𝑃) and 𝑤 ∈ 𝑄 as
𝑢 := 𝑤 ⋅ 𝑔 [32, 33], one notes that, for fixed 𝜔 ∈ Ω,

𝑢 (⋅, 𝜔) = 𝑤 (⋅) ⋅ 𝑔 (𝜔) ∈ 𝑄, (5)

whereas for a fixed x ∈ 𝐷,

𝑢 (𝑥, ⋅) = 𝑤 (𝑥) ⋅ 𝑔 (⋅) ∈ 𝐿
2
(Ω,F, 𝑃) . (6)

In order to obtain the isomorphism between 𝑉 and
𝐿
2(Ω,F, 𝑃) ⊗ 𝑄, it is necessary to redefine the differential

operator Δ
𝜔
: 𝐿2(Ω,F, 𝑃) ⊗𝑄 → 𝐿2(Ω,F, 𝑃) ⊗ 𝐿2(𝐷). This

operator acts over an element𝑢 ∈ 𝑉 in the followingway [34]:

Δ
𝜔
𝑢 = (Δ𝑤) (𝑥) ⋅ 𝑔 (𝜔) , (7)

where 𝛼 ∈ N and 𝛼 ≤ 2. From the definitions presented in
(5) to (6), the isomorphism between 𝑉 and 𝐿2(Ω,F, 𝑃) ⊗ 𝑄
is obtained:

𝑉 = 𝐿
2
(Ω,F, 𝑃; 𝑄)

𝐿
2
(Ω,F, 𝑃; 𝑄) ≃ 𝐿

2
(Ω,F, 𝑃) ⊗ 𝑄

⇓

𝑉 ≃ 𝐿
2
(Ω,F, 𝑃) ⊗ 𝑄.

(8)

𝑉 is a Hilbert space, with inner product (⋅, ⋅)
𝑉
: 𝑉 × 𝑉 → R,

defined as

(𝑢, V)
𝑉
= ∫

Ω

∫
𝐷

(Δ
𝜔
𝑢 ⋅ Δ

𝜔
V) (x, 𝜔) dx 𝑑𝑃 (𝜔) . (9)

The inner product defined in (9) induces the 𝑉 norm ‖𝑢‖
𝑉
=

(𝑢, 𝑢)
1/2

𝑉
, following Kinderlehrer and Stampacchia [35]. The

bilinear form 𝑎 : 𝑉 × 𝑉 → R is defined as

𝑎 (𝑢, V) = ∫
Ω

∫
𝐷

(𝛼 ⋅ Δ
𝜔
𝑢 ⋅ Δ

𝜔
V) (x, 𝜔) dx 𝑑𝑃 (𝜔) . (10)

The bilinear form 𝑎(⋅, ⋅) is obtained by multiplying (1) by
V ∈ 𝑉 and integrating in 𝐷 × Ω, using the product rule for
differentiation and the definition of space 𝑉 given in (4b).
In order to preserve the equality, the right-hand side of (1)
becomes

𝑓 (V) = ∫
Ω

∫
𝐷

(𝑞 ⋅ V) (x, 𝜔) dx 𝑑𝑃 (𝜔) . (11)

It is easy to see that (11) defines a linear functional 𝑓 : 𝑉 →
R. Using the Cauchy-Schwartz inequality, it can be shown
that this functional is well-defined; hence 𝑓 ∈ 𝑉, where
𝑉 is the dual of 𝑉. Hence, the abstract variational problem
associated with (1) can be written as

Find 𝑢 ∈ 𝑉 such that

𝑎 (𝑢, V) = 𝑓 (V) , ∀V ∈ 𝑉.
(12)
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Theorem 1 (existence and uniqueness). Let 𝛼 and 𝑞 be such
that (H1)–(H3) ((2) and (3)) are satisfied. Then, a solution to
the problem defined in (12) exists, and it is unique in 𝑉.

Proof. The proof of existence and uniqueness uses the Lax-
Milgram lemma [10, 36]. It is necessary to show that the bilin-
ear form (10) of the problem defined in (12) is continuous and
coercive. In order to do that, onemakes use of hypothesis (H1)
of limited probability (3) of the Cauchy-Schwartz inequality
[30]:

(a) continuity

|𝑎 (𝑢, V)| ≤ 𝛼[∫
Ω

∫
𝐷

(Δ
𝜔
𝑢)
2

(x, 𝜔) dx 𝑑𝑃 (𝜔)]
1/2

× [∫
Ω

∫
𝐷

(Δ
𝜔
V)2 (x, 𝜔) dx 𝑑𝑃 (𝜔)]

1/2

≤ 𝐶‖𝑢‖𝑉‖V‖𝑉,

(13)

where 𝐶 = 𝛼;
(b) coercivity

𝑎 (𝑢, 𝑢) ≥ 𝛼∫
Ω

∫
𝐷

(Δ
𝜔
𝑢)
2

(x, 𝜔) dx 𝑑𝑃 (𝜔) ≥ 𝑐‖𝑢‖2
𝑉
, (14)

where 𝑐 = 𝛼.

Following (11), the functional 𝑓 : 𝑉 → R is linear and
well-defined; hence, in view of the Lax-Milgram lemma, it
is guaranteed that the problem defined in (12) has unique
solution and continuous dependency on the data [10, 36].

Theoretical solutions to the abstract variational problem
in (1), associated with the problem in (12), are found in 𝑉 ≃
𝐿
2(Ω,F, 𝑃) ⊗ 𝑄. Numerical solutions are obtained in less

abstract spaces: continuous functions of class𝐶2, sequentially
dense in 𝑄, and a family of generalized chaos polynomials,
belonging to the Askey-Wiener scheme, are used.

3. Uncertainty Representation

In most engineering problems, complete statistical informa-
tion about uncertainties is not available. Sometimes, the first
and second moments are the only information available. The
probability distribution function is defined based on expe-
rience or heuristically. In order to apply Galerkin’s method,
an explicit representation of the uncertainty is necessary.
Given the incomplete information about the probability
distribution of a given parameter, a hypothesis of finite
dimensional noise is assumed, following, for example, [37–
39]. This implies that the uncertainty over a given input
parameter 𝜗 : 𝐷 × Ω → R+ will be represented in terms
of a finite set of random variables:

𝜗 (x, 𝜔) = 𝜗 (x, 𝜉 (𝜔)) = 𝜗 (𝑥, 𝜉
1
(𝜔) , . . . , 𝜉

𝑁
(𝜔)) . (15)

From this hypothesis, the uncertainty in beam and foun-
dation stiffness coefficients are modeled via parameterized

stochastic processes. These are defined from a linear combi-
nation of deterministic functions and random variables [28]:

𝜗 (x, 𝜔) = 𝜇
𝜗
(x) +

𝑁

∑
𝑖=1

𝜑
𝑖
(x) 𝜉

𝑖
(𝜔) = 𝜇

𝜗
(x) + Φ𝑡 (x) 𝜉 (𝜔) ,

(16)

where 𝜇
𝜗
(⋅) is the expected value of randomprocess 𝜗(⋅, ⋅) and

Φ : 𝐷 → R𝑁 is a vector-valued function with terms 𝜑
𝑖
∈

𝐶
0
(𝐷) ∩ 𝐶

2
(𝐷), ∀𝑖 ∈ {1, . . . , 𝑁}. 𝜉(𝜔) = {𝜉

𝑖
(𝜔)}

𝑁

𝑖=1
is a vector

of independent random variables, such that

E [𝜉
𝑖
] = 0, ∀𝑖 ∈ {1, . . . , 𝑁} ;

𝑃 (𝜔 ∈ Ω : 𝜉
𝑖
(𝜔) ∈ Γ

𝑖
) = 1, ∀𝑖 ∈ {1, . . . , 𝑁} ,

(17)

where E[⋅] is the expected value operator. In (17), Γ
𝑖
is the

image of random variable 𝜉
𝑖
; that is, Γ

𝑖
= 𝜉

𝑖
(Ω), with Γ

𝑖
=

[𝑎
𝑖
, 𝑏
𝑖
] ⊂ R, |Γ

𝑖
| = |𝑏

𝑖
− 𝑎

𝑖
| < ∞, ∀𝑖 ∈ {1, . . . , 𝑁}, limited.

In this form, the image of random vector 𝜉 : Ω → Γ, with
Γ ⊂ R𝑁 and in terms of {Γ

𝑖
}
𝑁

𝑖=1
, is given by Γ = ∏𝑁

𝑖=1
Γ
𝑖
. Since

the random variables are independent, the joint probability
density is given by

𝜌 (𝜉 (𝜔)) =
𝑁

∏
𝑖=1

𝜌
𝑖
(𝜉
𝑖
) , (18)

where 𝜌
𝑖
(⋅) is the marginal probability density function of

random variable 𝜉
𝑖
. Hence, the probability measure 𝑑𝑃(⋅) is

defined as

𝑑𝑃 (𝜉 (𝜔)) =
𝑁

∏
𝑖=1

𝜌
𝑖
(𝜉
𝑖
) 𝑑𝜉

𝑖
. (19)

From the measure and integration theory [40], one knows
that the probability measure defined in (19) is the product
measure obtained from the product between probability
measure spaces associated with the random variables 𝜉(𝜔) =
{𝜉
𝑖
(𝜔)}

𝑁

𝑖=1
, with 𝜉

𝑖
: Ω → Γ

𝑖
.

From the Doob-Dynkin lemma [41], the transversal
displacement random process will be a function of random
variables 𝜉(𝜔) = {𝜉

𝑖
(𝜔)}

𝑁

𝑖=1
; hence

𝑢 (x, 𝜔) = 𝑢 (x, 𝜉 (𝜔)) = 𝑢 (x, 𝜉
1
(𝜔) , . . . , 𝜉

𝑁
(𝜔)) . (20)

In this paper, polynomials of the Askey-Wiener scheme are
used to construct the problems solution space.

3.1. The Askey-Wiener Scheme. The Askey-Wiener scheme is
a generalization of chaos polynomials, also known asWiener-
chaos. Chaos polynomials were proposed by Wiener [42] to
study statistical mechanics of gases. Xiu and Karniadakis [19]
have shown the close relationship between results presented
by Wiener [42] and Askey and Wilson [43] for the represen-
tation of stochastic processes by orthogonal polynomials. Xiu
and Karniadakis [19] extended the studies of Ghanem and
Spanos [9] and Ogura [44] for polynomials belonging to the
Askey-Wiener scheme.
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The Cameron-Martin theorem [29] shows that Wiener-
Askey polynomials form a base for a dense subspace of second
order random variables 𝐿2(Ω,F, 𝑃). LetH ⊆ 𝐿2(Ω,F, 𝑃) be
a separable Gaussian Hilbert space and letH = span⟨{𝜉

𝑖
}
∞

𝑖=1
⟩

be an orthonormal base of Gaussian random variables. The
Wiener-Askey scheme allows a representation of any second
order random variable 𝑢 ∈ 𝐿2(Ω, Σ(H), 𝑃), where Σ(H) is
the 𝜎-algebra generated byH [45]. LetP

𝑛
(H) be the vector

space spanned by all polynomials of order less than 𝑛:

P
𝑛
(H)={Γ ({𝜉

𝑖
}
𝑁

𝑖=1
) : Γ is the polynomial of degree ≤ 𝑛;

𝜉
𝑖
∈H, ∀𝑖 = 1, . . . , 𝑁;𝑁 < ∞} ,

(21)

with

H
:0:
= P

0
(H) , H

:𝑛:
= P

𝑛
(H) ∩P

𝑛−1
(H)

⊥
, (22)

where P
𝑛
is the closure of P

𝑛
in 𝐿2(Ω,F, 𝑃). As shown

by Janson [46], for 𝐿2(Ω, Σ(H), 𝑃), the following orthogonal
decomposition is admitted:

𝐿
2
(Ω, Σ (H) , 𝑃) =

∞

⨁
𝑛=0

H
:𝑛:
. (23)

Equation (23) is an orthogonal decomposition of𝐿2(Ω,F, 𝑃),
known as Wiener-chaos decomposition or simply chaos
decomposition. One application of this decomposition is the
representation of an element 𝑋 ∈ 𝐿

2(Ω,F, 𝑃) in terms of
elements𝑋

𝑛
∈ 𝐻:𝑛::

𝑋 =

∞

∑
𝑛=0

𝑋
𝑛
. (24)

Equation (24) represents an important result for the approx-
imation theory applied to stochastic systems. Solution of a
stochastic system is expressed as a nonlinear function in
terms Gaussian random variables. This function is expanded
in terms of chaos polynomials as

𝑢
𝑖
(𝜔) = ∑

𝑝≥0

∑
𝑛
1
+⋅⋅⋅+𝑛

𝑟
=𝑝

∑
𝑖
1
,...,𝑖
𝑟

𝑢
𝑗
1
⋅⋅⋅𝑗
𝑟

𝑖
1
⋅⋅⋅𝑖
𝑟

𝜓
𝑝
(𝜉
𝑖
1
(𝜔) , . . . , 𝜉

𝑖
𝑟
(𝜔)) ,

(25)

where 𝜓
𝑝
is the chaos polynomial of order “𝑝” and 𝑢𝑗1⋅⋅⋅𝑗𝑟

𝑖
1
⋅⋅⋅𝑖
𝑟

are the polynomial coefficients. The superindex refers to
the number of occurrences of 𝜉

𝑖
𝑘

(𝜔). Chaos polynomials of
order “𝑝” are formed by a Hermite polynomial, in standard
Gaussian variables 𝜉(𝜔) = {𝜉

𝑖
𝑘

(𝜔)}
𝑟

𝑘=1
of order less than

“𝑝.” Introducing a mapping in the sets of indexes {𝑖
𝑘
}
𝑟

𝑘=1
and

{𝑗
𝑘
}
𝑟

𝑘=1
, (25) can be rewritten as

𝑢 (𝜔) = ∑
𝜆∈Λ

𝑢
𝜆
𝜓
𝜆
(𝜉 (𝜔)) , (26)

where 𝜆 is a multi-index, Λ ⊂ N is a set of natural num-
bers with compact support, {𝜓

𝜆
}
𝜆∈Λ

are chaos polynomials,

{𝑢
𝜆
}
𝜆∈Λ

are coefficients of the linear combination, and 𝜉 :
Ω → R𝑁 is a vector of random variables. In this paper, chaos
polynomials are multidimensional Hermite polynomials:

𝜓
𝜆
(𝜉 (𝜔)) =

∞

∏
𝑚=1

ℎ
𝜆
𝑚

(𝜉
𝑚
(𝜔)) , (27)

where ℎ
𝜆
𝑚

(⋅) is a Hermite polynomial defined in random
variable 𝜉

𝑚
. The inner product between polynomials 𝜓

𝑖
and

𝜓
𝑗
in 𝐿2(Ω,F, 𝑃) is defined as

(𝜓
𝑖
, 𝜓

𝑗
)
𝐿
2
(Ω,F,𝑃)

= ∫
Ω

(𝜓
𝑖
⋅ 𝜓

𝑗
) (𝜉 (𝜔)) 𝑑𝑃 (𝜔) , (28)

where 𝑑𝑃 is a probability measure.These polynomials form a
complete orthonormal system with respect to the probability
measure, with the following properties:

𝜓
0
= 1, (𝜓

𝑖
, 𝜓

𝑗
)
𝐿
2
(Ω,F,𝑃)

= 𝛿
𝑖𝑗
, ∀𝑖, 𝑗 ∈ N. (29)

It is important to observe that in (28) the polynomials are
orthogonal with respect to the standard Gaussian density
function of vector 𝜉. The convergence rate is exponential for
the case where the random variable is Gaussian. For other
random variables the convergence rate is smaller.

The proposal of the Wiener-Askey scheme is to extend
the result presented in (25) to other types of polynomials. In
analogy to (21), taking P

𝑛
(H) = span⟨{𝜓

𝑖
}
𝑁

𝑖=1
⟩, with H a

separable Hilbert space of finite variance random variables,
one has thatP = ⋃

𝑛∈N P𝑛
(H) is a family of polynomials of

theWiener-Askey scheme, generating a complete orthogonal
system in 𝐿2(Ω,F, 𝑃). The Askey-Wiener scheme represents
a family of subspaces generated by orthogonal polynomials
obtained from ordinary differential equations [19]. Among
them, the Hermite, Laguerre, Jacobi, and Legendre poly-
nomials can be cited. Every subspace generated by these
polynomials is a complete system in 𝐿2(Ω,F, 𝑃).The orthog-
onality between the polynomials is defined with respect to a
weight function, which is identical to the probability density
function of a certain random variable. For example, the
Gaussian density function is used asweight function to obtain
the orthogonality between Hermite polynomials. Table 1
shows the correspondence between subsets of polynomials of
the Askey-Wiener scheme and the corresponding probability
density functions.

4. Galerkin Method

The Galerkin method is used in this paper to solve the
stochastic beam bending problem with uncertainty in the
beam and foundation stiffness coefficients. In order to
develop numerical solutions which are compatible with the
conditions for existence and uniqueness of the theoretical
solution, results presented by Besold [32] and Ryan [47]
are used. An element from a space isomorph to the space
obtained via tensor product, 𝑉 ≃ 𝐿

2(Ω,F, 𝑃) ⊗ 𝑄, can
be represented from elements of separable spaces, dense in
spaces 𝐿2(Ω,F, 𝑃), and 𝑄. Hence, the strategy to construct
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Table 1: Correspondence between some random variables and polynomials of the Askey-Wiener scheme.

Random variable Polynomial Weight function Support

Gaussian Hermite 𝑒
−|𝜉|
2
/2 R

Gama Laguerre 1

Γ (𝛼 + 1)
𝜉𝛼𝑒−𝜉 [0, +∞)

Beta Jacobi
2−(𝛼+𝛽+1)Γ (𝛼 + 𝛽 + 2)

Γ (𝛼 + 1) Γ (𝛽 + 1)
(1 − 𝜉)

𝛼
(1 + 𝜉)

𝛽
𝑒−𝜉 [𝑎, 𝑏]

Uniform Legendre 1

𝑏 − 𝑎
[𝑎, 𝑏]

approximated, numerical solutions and to use Galerkin’s
method is to use bases of finite dimensions, but dense in
𝐿
2(Ω,F, 𝑃) and 𝑄. Due to the simplicity of the spatial

domain for the present problem, no spatial discretizations
are employed. Hence, functions employed in construction of
the responses are defined in the whole problem domain. For
more complex spatial domains, special techniques like finite
element, boundary element, or finite differences would have
to be employed.

It is proposed that approximated solutions to the stochas-
tic displacement response of the beam have the following
form:

𝑢 (x, 𝜉 (𝜔)) =
∞

∑
𝑖=1

𝑢
𝑖
𝛿
𝑖
(x, 𝜉 (𝜔)) , (30)

where 𝑢
𝑖
∈ R and ∀𝑖 ∈ N are coefficients to be determined

and 𝛿
𝑖
∈ 𝑉 are the test functions. Numerical solutions

to the variational problem defined in (12) will be obtained.
Hence, it becomes necessary to define spaces less abstract
than those defined earlier, but without compromising the
existence and uniqueness of the solution. Consider two
complete orthogonal systems Φ = span⟨{𝜙

𝑖
∈ 𝐶2(𝐷,R) |

𝜙
𝑖
(x) = 0 ∧ Δ𝜙

𝑖
(x) = 0, in x ∈ Γ and ∀𝑖 ∈ N}⟩ and Ψ =

span⟨{𝜓
𝑖
}
∞

𝑖=1
⟩, such that Φ𝑄 = 𝑄, Ψ𝐿

2
(Ω,F,𝑃)

= 𝐿2(Ω,F, 𝑃),
[29], and define the tensor product between Φ and S as

(𝜙 ⊗ 𝜓)
𝑖
(x, 𝜉 (𝜔)) = 𝜙

𝑗
(x) ⋅ 𝜓

𝑘
(𝜉 (𝜔)) ,

with (𝑗, 𝑘) ∈ N × N.
(31)

To simplify the notation, we will use 𝛿
𝑖
= (𝜙 ⊗ 𝜓)

𝑖
.

Since approximated numerical solutions are derived in this
paper, the solution space has finite dimensions. This implies
truncation of the complete orthogonal systems Φ and Ψ.
Hence one has

Φ
𝑚
= span ⟨{𝜙

𝑖
∈ 𝐶

2
(𝐷,R) | 𝜙

𝑖
(x) = 0 ∧ Δ𝜙

𝑖
(x) = 0,

in x ∈ Γ, ∀𝑖 ∈ {1, . . . , 𝑚} }⟩ ,
(32)

and Ψ
𝑛
= span⟨{𝜓

𝑖
}
𝑛

𝑖=1
⟩, which results in 𝑉

𝑀
= Φ

𝑚
⊗ Ψ

𝑛
. The

dimension of Ψ
𝑛
(𝑛 = dim⟨Ψ

𝑛
⟩) depends on the dimension

of the random variable vector 𝜉(𝜔) and on the order of chaos
polynomials. Let “𝑠” be the dimension of random vector 𝜉(𝜔)

and “𝑝” the order of chaos polynomials; then the dimension
of Ψ

𝑛
is given by

𝑛 =
(𝑠 + 𝑝)!

𝑠! ⋅ 𝑝!
. (33)

Since dim⟨Φ
𝑛
⟩ < ∞ and dim⟨Ψ

𝑛
⟩ < ∞ (following [47]),

one has that the dimension of the approximation space, 𝑉
𝑀
,

is given by

𝑀 = dim (𝑉
𝑀
) = dim (Φ

𝑚
⊗ Ψ

𝑛
) = dim (Φ

𝑚
) ⋅ dim (Ψ

𝑛
)

= 𝑚 ⋅ 𝑛.

(34)

With the above definitions and results (31), it is proposed
that numerical solutions are obtained from truncation of the
series expressed in (30) at the𝑀th term:

𝑢
𝑀
(x, 𝜉 (𝜔)) =

𝑀

∑
𝑖=1

𝑢
𝑖
𝛿
𝑖
(x, 𝜉 (𝜔)) =

𝑀

∑
𝑖=1

𝑢
𝑖
(𝜙 ⊗ 𝜓)

𝑖
(x, 𝜉 (𝜔)) .

(35)

Substituting (35) in (12), one arrives at the approximated
variational problem:

Find {𝑢
𝑖
}
𝑀

𝑖=1
∈ R

𝑀 such that,

𝑀

∑
𝑖=1

𝑎 (𝛿
𝑖
, 𝛿
𝑗
) 𝑢

𝑖
= 𝑓 (𝛿

𝑗
) , ∀𝛿

𝑗
∈ 𝑉

𝑀
,

(36)

where

𝑎 (𝛿
𝑖
, 𝛿
𝑗
) = ∫

Ω

∫
𝐷

(𝛼 ⋅ Δ
𝜔
𝛿
𝑖
⋅ Δ

𝜔
𝛿
𝑖
) (x, 𝜔) dx 𝑑𝑃 (𝜔) ;

𝑓 (𝛿
𝑗
) = ∫

Ω

∫
𝐷

(𝑞 ⋅ 𝛿
𝑗
) (x, 𝜔) dx 𝑑𝑃 (𝜔) .

(37)

The approximated variational problem (36) consists in find-
ing the coefficients of the linear combination expressed in
(35). Using a vector-matrix representation, the system of
linear algebraic equations defined in (36) can be written as

KU = F, (38)
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where K ∈ M
𝑀
(R) is the stiffness matrix, U = {𝑢

𝑖
}
𝑀

𝑖=1
is the

displacement vector, and F = {𝑓
𝑖
}
𝑀

𝑖=1
is the loading vector.

Elements of the stiffness matrix are defined as

K = [𝑘
𝑖𝑗
]
𝑀×𝑀

,

𝑘
𝑖𝑗
= ∫

Ω

∫
𝐷

(𝛼 ⋅ Δ
𝜔
𝛿
𝑖
⋅ Δ

𝜔
𝛿
𝑗
) (x, 𝜔) dx 𝑑𝑃 (𝜔) .

(39)

The load vector is given by

F = {𝑓
𝑗
}
𝑀

𝑗=1
, 𝑓

𝑗
= ∫

Ω

∫
𝐷

(𝑞 ⋅ 𝛿
𝑗
) (x, 𝜔) dx 𝑑𝑃 (𝜔) .

(40)

The sparseness of the stiffness matrixes for Example 1 (to be
presented) is shown in Figure 1.

Remember that “𝑝” is the degree of the chaos polynomial.
The stiffness matrix corresponding to Figure 1(a) has dimen-
sion 10 and 𝑛𝑧 = 42 (number of nonzero elements), whereas
the matrix corresponding to Figure 1(b) has dimensions 70
and 𝑛𝑧 = 1344.The conditioning number (𝑛

𝐶
) corresponding

to these twomatrixes is 𝑛
𝐶
= 19.70 and 𝑛

𝐶
=25.79, respectively.

These numbers show that the conditioning number increases
with the dimension of the approximation space (𝑉

𝑀
=

Φ
𝑚
⊗ Ψ

𝑛
). This can lead to ill-conditioning of the of the

stiffness matrix and hence to the loss of accuracy of the
approximated solution. For Example 2—to be presented—
the sparsity pattern is similar. However, for Example 1, case
(b) presents a different pattern, with 𝑛𝑧 = 100 and 𝑛

𝐶
=

32.82 (for 𝑝 = 2) and 𝑛𝑧 = 4592 and 𝑛
𝐶
= 71.74

(for 𝑝 = 3). In this paper, uncertainties in beam and
foundation stiffness coefficients are modeled using Legendre
polynomials to construct space Ψ

𝑛
, defined in the variables

𝜉(𝜔) = {𝜉
1
(𝜔), 𝜉

2
(𝜔), 𝜉

3
(𝜔), 𝜉

4
(𝜔)} ∈ Γ

1
×Γ

2
×Γ

3
×Γ

4
= [−1, 1]

4.

5. Statistical Moments and Estimates

In this section, the evaluation of first and second order
moments, from the approximated Galerkin solution, is pre-
sented. In an evaluation of the performance of the developed
Galerkin scheme, these moments are compared with the
same moments computed through Monte Carlo simulation.
In order to reduce spurious correlations between the samples,
Latin Hypercube Sampling (LHS) is used in the simulations
[48].

The statistical moment of 𝑘th order of a random vari-
able 𝑢(x, ⋅) ∈ 𝐿2(Ω,F, 𝑃), generated by the displacement
stochastic process (35) by fixing x ∈ 𝐷, taking the 𝑘th power
of this random variable and integrating with respect to its
probability measure,

𝜇
𝑘

𝑢
𝑀

(x) = ∫
Ω

𝑢
𝑘

𝑀
(x, 𝜉 (𝜔)) 𝑑𝑃 (𝜉 (𝜔))

=

𝑘 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∑
𝑖
1

⋅ ⋅ ⋅∑
𝑖
𝑘

𝑢
𝑖
1

× ⋅ ⋅ ⋅ × 𝑢
𝑖
𝑘

(𝜙
𝑖
1

× ⋅ ⋅ ⋅ × 𝜙
𝑖
𝑘

) (x)

× ∫
Ω

(𝜓
𝑖
1

× ⋅ ⋅ ⋅ × 𝜓
𝑖
𝑘

) (𝜉 (𝜔)) 𝑑𝑃 (𝜉 (𝜔)) .

(41)

The integration term 𝑑𝑃(⋅) is a probability measure, defined
in (19). From (41), 𝜇𝑘

𝑢
𝑀

(⋅) is given by

𝜇
𝑘

𝑢
𝑀

(x) =
𝑘 times

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∑
𝑖
1
,𝑗
1

⋅ ⋅ ⋅ ∑
𝑖
𝑘
,𝑗
𝑘

(𝑢
𝑖
1

𝜙
𝑖
1

× ⋅ ⋅ ⋅ × 𝑢
𝑖
𝑘

𝜙
𝑖
𝑘

)

× (x)E [𝜓
𝑖
1

, . . . , 𝜓
𝑖
𝑘

] ,

(42)

with

E [𝜓
𝑖
1

, . . . , 𝜓
𝑖
𝑘

]

= ∫
𝑏
1

𝑎
1

⋅ ⋅ ⋅ ∫
𝑏
𝑁

𝑎
𝑁

(𝜓
𝑗
1

× ⋅ ⋅ ⋅ × 𝜓
𝑗
𝑘

) (𝜉 (𝜔)) 𝜌
1
(𝜉
1
)

× ⋅ ⋅ ⋅ × 𝜌
𝑁
(𝜉
𝑁
) × 𝑑𝜉

1
(𝜔) × ⋅ ⋅ ⋅ × 𝑑𝜉

𝑁
(𝜔) .

(43)

The integrals in (43) are called iterated integrals. The first
order statistical moment, or expected value, of the stochastic
displacement process evaluated at a point x ∈ 𝐷 is

𝜇
𝑢
𝑀
(x) =

𝑚

∑
𝑖=1

𝑢
(𝑖−1)⋅𝑛+1

𝜙
𝑖
(x) . (44)

The variance of this displacement is

𝜎
2

𝑢
𝑀

(x) =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝑚

∑
𝑘=2

𝑢
𝑖𝑘
𝑢
𝑗𝑘
(𝜙
𝑖
⋅ 𝜙
𝑗
) (x) . (45)

In this paper, Monte Carlo simulation is used to estimate
the statisticalmoments of the displacement stochastic process
and of random variables generated. Monte Carlo simulation
consists in generating “𝑁” samples for flexural rigidity
coefficient {𝛼(x, 𝜉

1
(𝜔
𝑗
), . . . , 𝜉

𝑛
(𝜔
𝑗
))}

𝑁

𝑗=1
, and from this point to

undertake the solution of the problem, which defined below

(KU) (𝜉 (𝜔
𝑗
)) = F. (46)

The 𝑗th-realization of the system defined in (46) consists in
getting the vector U(𝜉(𝜔

𝑗
)) = {𝑢

𝑘𝑗
(𝜉(𝜔

𝑗
))}

𝑚

𝑘=1
. To that it is

necessary to evaluate stiffness matrix K : Ω → M
𝑚
(R)

for the 𝑗th sample of 𝛼 = 𝛼(x, 𝜉(𝜔
𝑗
)), evaluated in 𝜉(𝜔

𝑗
) =

{𝜉
𝑖
(𝜔
𝑗
)}
𝑁

𝑖=1
. Rigidity matrix is set by Galerkin method. For the

𝑗th-sample of 𝛼 = 𝛼(x, 𝜉(𝜔
𝑗
)), has its inputs defined by

K (𝜉 (𝜔
𝑗
)) = [𝑘

𝑝𝑞
(𝜉 (𝜔

𝑗
))]

𝑚×𝑚
,

𝑘
𝑝𝑞
(𝜉 (𝜔

𝑗
)) = ∫

𝐷

𝛼 (x, 𝜉 (𝜔
𝑗
)) ⋅ (Δ𝜙

𝑝
⋅ Δ𝜙

𝑞
) (x, 𝜔

𝑗
) dx.

(47)

It is important to mention that rigidity matrix is set by the
Galerkin method in the sense of a deterministic problem for
each sample of the flexural rigidity coefficient. By solving (46)
the 𝑗th-realization of 𝑢(x, 𝜉(𝜔

𝑗
)) is given by

𝑢 (x, 𝜉 (𝜔
𝑗
)) =

𝑚

∑
𝑘=1

𝑢
𝑘𝑗
(𝜉 (𝜔

𝑗
)) 𝜙

𝑘
(x) = U𝑡 (𝜉 (𝜔

𝑗
))Φ (x) ,

(48)
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Figure 1: Sparsity pattern of stiffness matrix of Example 1, (a) for𝑚 = 2, 𝑛 = 5, and 𝑝 = 1; (b) for𝑚 = 2, 𝑛 = 35, and 𝑝 = 3.

where Φ : 𝐷 → R𝑚 is a vector-valued function whose
components {𝜙

𝑘
}
𝑚

𝑘=1
are functions.TheMonteCarlo estimates

for expected value and variance are

_
𝜇
𝑢
(x) = 1

𝑁

𝑁

∑
𝑖=1

𝑢 (x, 𝜉 (𝜔
𝑗
)) ;

_
𝜎
2

𝑢
(x) = 1

𝑁 − 1

𝑁

∑
𝑗=1

[𝑢 (x, 𝜉 (𝜔
𝑗
)) −

_
𝜇
𝑢
(x)]

2

,

(49)

where 𝑢(x, 𝜉(𝜔
𝑗
)) is the 𝑗th-realization of the displacement

stochastic process 𝑢 = 𝑢(x, 𝜉(𝜔)).
In the paper, in presented examples the estimates of

accrued probability function of a random variable 𝑢(z, 𝜉(𝜔))
generated when fixed in the displacement stochastic process
of z ∈ 𝐷 position are presented. Thus, the estimate for
random variable 𝑢(z, 𝜉(𝜔)) generated through numerical
solutions for the displacement stochastic process is obtained
by fixing z ∈ 𝐷 and generating numerical values for the
vector of random variables 𝜉(𝜔

𝑗
) = {𝜉

1
(𝜔
𝑗
), . . . , 𝜉

𝑛
(𝜔
𝑗
)}

and evaluating for the 𝑗th-sample of this vector, values for
𝑢(z, 𝜉(𝜔

𝑗
)) in (35),

𝑢
𝑀
(z, 𝜉 (𝜔

𝑗
)) =

𝑀

∑
𝑖=1

𝑢
𝑖
𝛿
𝑖
(z, 𝜉 (𝜔

𝑗
))

=

𝑀

∑
𝑖=1

𝑢
𝑖
(𝜙 ⊗ 𝜓)

𝑖
(z, 𝜉 (𝜔

𝑗
)) .

(50)

Samples of random vector {𝜉(𝜔
𝑗
)}
𝑁

𝑗=1
= {𝜉

1
(𝜔
𝑗
), . . . ,

𝜉
𝑛
(𝜔
𝑗
)}
𝑁

𝑗=1
are obtained from direct Monte Carlo simulation,

using Latin Hypercube Sampling [48]. Twenty thousand
samples (𝑁 = 20,000) are used in the solution of each
problem. The estimates for the accrued probability function
of random variables 𝑢(z, 𝜉(𝜔)) and 𝑢

𝑀
(z, 𝜉(𝜔)) generated by

Monte Carlo simulation and by the numerical solutions, (48)
and (50), respectively, are given by

_
𝐹
𝑢
𝑀
(z) = ( 1

𝑁
)

𝑁

∑
𝑖=1

1
𝑢
𝑀

(𝜔
𝑖
) ;

_
𝐹
𝑢
(z) = ( 1

𝑁
)

𝑁

∑
𝑖=1

1
𝑢
(𝜔
𝑖
) ,

(51)

whereas 1
𝑢
𝑀

, 1
𝑢
: Ω → {0, 1} are the characteristic

functions of the random variable generated by (50) and (48),
respectively, and defined as follows:

1
𝑢
(𝜔) = {

1, 𝜔 ∈ B;

0, 𝜔 ∉ B;
∧ 1

𝑢
𝑀
(𝜔) = {

1, 𝜔 ∈ B;

0, 𝜔 ∉ B,
(52)

characteristic function of the set B.

6. Numerical Examples

In this section, two numerical examples for Kirchhoff plates
bending problem with uncertainty in bending rigidity are
presented. Uncertainty is, in the first example, on the thick-
ness of the plate, and in the second the uncertainty is on
Poisson’s module. For all mentioned examples, numerical
solutions for a plate singly supported with the geometric
domain 𝐷 = {(𝑥, 𝑦) ∈ R2 | 0 < 𝑥 < 1 ∧ 0 < 𝑦 < 1} are
obtained, subjected to a load distributed 𝑞(𝑥, 𝑦) = 1 kPa⋅m,
∀(𝑥, 𝑦) ∈ 𝐷. In the examples, the following mean-value
functions are considered for the thickness of the plate and
Poisson’s coefficient:

𝜇
𝑡
(𝑥, 𝑦) =

1

100
𝑚, ∀ (𝑥, 𝑦) ∈ 𝐷;

𝜇] (𝑥, 𝑦) =
1

3
, ∀ (𝑥, 𝑦) ∈ 𝐷.

(53)

The performance of numerical solutions obtained via
Galerkin method will be evaluated in terms of the approx-
imation of the first and second order statistical moments
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(expected value and variance) in relation to its respective
estimates obtained via Monte Carlo simulation. The first
and second order statistical moments of the numerical
solution obtained via Galerkin method are compared with
the same moments evaluated via Monte Carlo simulation.
For the better exposition of the numerical results, in the
statistical moments of the displacement stochastic process is
evaluated for a restriction in the dominium of the problem,
(𝑥, 1/2, 𝜔) ⊂ D × Ω. Comparisons and evaluations made
in face of the Monte Carlo simulation in terms of expected
value and variancewill be carried out in the stochastic process
𝑢(𝑥, 1/2, 𝜔). In order to evaluate the accuracy of the Galerkin
solutions, the functions relative error in mean, 𝜀

𝜇
𝑢

: [0, 1] →

R+, and relative error in variance, 𝜀
𝜎
2

𝑢

: [0, 1] → R+, are
defined as

𝜀
𝜇
𝑢
(𝑥) =

{{{

{{{

{

(100%) ×


(1 −
𝜇
𝑢

_
𝜇
𝑢

)(𝑥,
1

2
)



, ∀𝑥 ∈ (0, 1) ;

0, ∀𝑥 ∈ {0, 1} ;

𝜀
𝜎
2

𝑢

(𝑥) =

{{{

{{{

{

(100%) ×


(1 −
𝜎2
𝑢

_
𝜎
2

𝑢

)(𝑥,
1

2
)



, ∀𝑥 ∈ (0, 1) ;

0, ∀𝑥 ∈ {0, 1} ,

(54)

where 𝜇
𝑢
and 𝜎2

𝑢
are the Galerkin-based expected value

and variance, respectively, and
_
𝜇
𝑢
and

_
𝜎
2

𝑢
are the Monte

Carlo estimates of the same moments. The accuracy of
developed Galerkin solutions, in approximating the expected
value and variance of the displacement response, is evaluated
for numerical solutions using chaos polynomials of order
𝑝 ∈ {1, 2, 3}. Monte Carlo estimates of expected value and
variance (

_
𝜇
𝑢
,
_
𝜎
2

𝑢
) are evaluated from (43) and (44), using

20,000 samples. One still compares the estimates for the
accrued probability function obtained via Galerkin method
and Monte Carlo simulation. Numerical results presented in
this paper were obtained in a HP Pavilion personal computer,
running a MATLAB computational code.

6.1. Example 1: Plate Thickness. In this example, the uncer-
tainty is present in the thickness of plate being modeled
through a parameterized stochastic process 𝑡 : 𝐷×Ω → R+,
defined by,

𝑡 (𝑥, 𝑦, 𝜉 (𝜔))

= 𝜇
𝑡
+ √3 ⋅ 𝜎

𝑡
[𝜉
1
(𝜔) cos(𝑥

𝑙
) + 𝜉

2
(𝜔) sin( 𝑥

2𝑙
)

+ 𝜉
3
(𝜔) cos(

𝑦

3𝑙
) + 𝜉

4
(𝜔) sin(

𝑦

4𝑙
)] ,

(55)

where 𝜇
𝑡
is the expected value, 𝜎

𝑡
is the standard deviation of

plate thickness, and 𝜉(𝜔) = {𝜉
𝑖
(𝜔)}

4

𝑖=1
is a vector of uniform

and independent random variables.

Figures 2(a) and 2(b) show the evolution of the
Monte Carlo estimates for expected value and variance,
(
_
𝜇
𝑢
(z),

_
𝜎
2

𝑢
(z)) as the number of samples, for a random vari-

able 𝑢(z, 𝜔) generated, by fixing the position z = (1/2, 1/2). In
Figures 2(a) and 2(b) it can be observed that for the estimates
expected value and random variable 𝑢(z, 𝜔), present small
variation for𝑁 > 10,000.

Figure 3 presents results for the expected value of the dis-
placement stochastic process 𝑢(𝑥, 1/2, 𝜔), obtained through
Monte Carlo simulation, and by means of the Galerkin
solutions of order 𝑝 ∈ {1, 2, 3}. The difference between
the curves is imperceptible, showing that even a Galerkin
solution of order 𝑝 = 1 is already acceptable.

Figure 4 shows the relative error function in expected
value (49a) for the numerical solutions obtained through
Galerkin method using polynomials of order 𝑝 ∈ {1, 2, 3}.
Here it can be observed that, although the error is already
small for 𝑝 = 1, Figure 3, the Galerkin solutions approximate
themselves to estimate for the expected value of 𝑢(𝑥, 1/2, 𝜔),
while increasing polynomial orders.

Figure 5 shows the graphics of variance functions of the
𝑢(𝑥, 1/2, 𝜔) stochastic process, for the estimate obtained by
Monte Carlo simulation and for those obtained from approx-
imated solutions gotten via Galerkin method. The variance
function obtained from the numerical solutions uses (45) for
the approximation of the displacement stochastic process.
One notices that approximations improve their performance
from 𝑝 = 2. In Figure 6 the graphics of the related error
functions in variance for the 𝑢(𝑥, 1/2, 𝜔) stochastic process
based in numerical solutions obtained with polynomials
chaos with 𝑝 ∈ {1, 2, 3} level.

Figure 7 presents the graphics for the accrued probability
function estimate for a random variable 𝑢(z, 𝜔). This random
variable is generated by fixing the position z = (1/2, 1/2) ∈
𝐷. into the displacement stochastic process. The accrued
probability function estimates are obtained from numerical
solutions via Galerkin method and determined through
generation and realization of 20,000 samples of the random
variable vector {𝜉(𝜔

𝑗
)}
𝑁

𝑗=1
= {𝜉

1
(𝜔
𝑗
), 𝜉

2
(𝜔
𝑗
), 𝜉

3
(𝜔
𝑗
), 𝜉

4
(𝜔
𝑗
)}
𝑁

𝑗=1

in the displacement stochastic process in z = (1/2, 1/2).
One may notice in Figure 7 that, from 𝑝 = 2, a suitable

approximation between the estimates of probability distri-
bution functions via Galerkin method and Monte Carlo
simulation.

6.1.1. Summary of Results for Example 1. Table 2 summa-
rizes results of expected value, variance, and corresponding
relative errors for the random variable 𝑢(z, 𝜔), obtained by
fixing z = (1/2, 1/2) in the random process displacement, for
Example 1. Results are presented for approximated solutions
with 𝑝 ∈ {1, 2, 3}. Monte Carlo estimates of expected value
and variance are

_
𝜇
𝑢
(z) = −0.000217520750865259m;

_
𝜎
2

𝑢
(z) = 1.5897011842709 × 10−9m2

.

(56)

Comparing the expected value and variance obtained via
Galerkin solutions with simulation results, one notes that
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Table 2: Summary of numerical results of Example 1: expected value, variance, relative errors in expected value, and variance evaluated at
𝑧 = (

1

2
,
1

2
).

𝑝 𝜇
𝑢
(𝑧) [m] 𝜎 2

𝑢
(𝑧) × 10−9 [m2] 𝜀

𝜇𝑢
(𝑧) [%] 𝜀

𝜎
2
𝑢
(𝑧) [%]

1 −0.000216110689910037 1.42915224414275 0.648242041098541 10.0993156271553
2 −0.000216313424602775 1.56854000498604 0.555039580215695 1.33114194631272
3 −0.000216317483992034 1.57368391783567 0.553173372397411 1.0075646035687
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Figure 2: Convergence of Monte Carlo simulation results for average and variance for a random variable 𝑢(z, 𝜔).
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Figure 3: Expected value function.

the approximated solutions are always smaller than the
corresponding Monte Carlo estimates.

One notes in Table 2 that the expected value of the
random variable 𝑢(z, 𝜔) presents good approximation from
𝑝 = 1. In this case the relative error function in expected
value assumes numerical values under 1%.The same behavior
is not noticed in approximation of the random variable
variance 𝑢(z, 𝜔). For 𝑃 = 1, the relative error function in
variance points to a deviation above 10%between the variance
obtained through numerical solutions and the estimate via

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

p = 1
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p = 3

0.7

0.6

0.5
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0.1

0

𝜀 𝜇
𝑢
(x
,0
.5
)

Figure 4: Relative error function in expected value.

Monte Carlo simulation. In Table 2, one may note that,
from 𝑝 = 1 to 𝑝 = 3, the relative error function in expected
value presented a reduction of 17.2% while the relative error
function in variance presents a reduction of 900.2%. This
proved that, in the approximation of variance, the chaos
polynomials presented a higher convergence rate in relation
to approximation for the expected value.

6.2. Example 2: Poisson’s Coefficient. In this example, the
uncertainty on Poisson’s coefficient for plate bending rigidity
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Figure 5: Variance function.
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Figure 6: Relative error function in variance.

is expressed in (2). Again the parameterized stochastic pro-
cess is used to model the uncertainty for Poisson’s coefficient
] : 𝐷 × Ω → R+ being defined as

] (𝑥, 𝑦, 𝜉 (𝜔))

= 𝜇] + √3 ⋅ 𝜎] [𝜉1 (𝜔) cos(
𝑥

𝑙
) + 𝜉

2
(𝜔) sin( 𝑥

2𝑙
)

+ 𝜉
3
(𝜔) cos(

𝑦

3𝑙
) + 𝜉

4
(𝜔) sin(

𝑦

4𝑙
)] ,

(57)

where 𝜇] is the expected value and 𝜎] is the standard
deviation.

Figure 8 presents the expected value function in the
displacement stochastic process 𝑢(𝑥, 1/2, 𝜔) obtained from
numerical solutions via Galerkin method and Monte Carlo
simulation. The expected value functions obtained from
numerical solutions approximate suitably of the estimate
for the expected value function. One notes that with the
numerical solutions obtained with polynomials chaos with
𝑝 = 1 present already good approximation with its respective
estimate. Comparing Figures 3 and 8, one notes that the
numerical solution present good performance in the approx-
imation of the expected value function.

The graphics of relative error functions in expected value
for the stochastic process 𝑢(𝑥, 1/2, 𝜔). These functions are
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Figure 7: Graphics of accrued probability functions estimates of the
random variable 𝑢(z, 𝜔).
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Figure 8: Expected value function.

evaluated from the estimate for the expected value via Monte
Carlo simulation and with numerical solution obtained
through Galerkin method with 𝑝 ∈ {1, 2, 3}. Values assumed
by the relative error function in expected value reflects the
good approximation of the expected value function obtained
via Galerkin method and the estimate of the expected value
function via Monte Carlo simulation. Comparing Figures 4
and 9, one verifies that approximations for the expected value
through numerical solutions presented better performance
for this example.

The graphics of the variance functions of the stochastic
process obtained from numerical solutions via Galerkin
method is the estimated variance obtained via Monte Carlo
simulation are presented in Figure 10. One notes that the
graphics for the variance functions determined through
numerical solutions present values above the estimate via
Monte Carlo simulation. This behavior is due to the variance
estimate nature.

Figure 11 presents the graphics of the relative error func-
tions in variance of the stochastic process 𝑢(𝑥, 1/2, 𝜔) for the
solutionwith𝑝 ∈ {1, 2, 3}. One notices that the graphics of the
relative error functions in variance are accrued for different
value of “𝑝.” This indicates that suitable approximations for
the variance function are obtained from 𝑝 = 1. Comparing
the graphics of relative error function in variance presented
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Figure 9: Relative error function in expected value.
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Figure 10: Variance function.

in Figures 6 and 11, one verifies that for 𝑝 = 1 and 𝑝 = 2 the
approximation for variance is better for Example 2.

Figure 12 presents the graphics of estimates for the
accrued probability functions for the randomvariable𝑢(z, 𝜔).
An excellent agreement between the estimates of the accrued
probability functions can be observed, showing that the
developed Galerkin solution is accurate not only for the first
and second moments, but also for the whole probability
distribution of the response.

6.2.1. Summary of Results for Example 2. Table 3 summa-
rizes results of expected value, variance, and corresponding
relative errors for the random variable obtained by fixing
z = (1/2, 1/2) in the random process displacement, for
Example 2. Results are presented for approximated solutions
with 𝑝 ∈ {1, 2, 3}. Monte Carlo estimates of expected value
and variance are

_
𝜇
𝑢
(z) = −0.000211203852750318m;

_
𝜎
2

𝑢
(z) = 1.3813208499463 × 10−11m2

.

(58)

Comparing the estimates for variance, equations (56) and
(58), one verifies that greater dispersion in the random
variable (z, 𝜔) was observed for Example 1. Table 3 presents
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Figure 11: Relative error function in variance.
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Figure 12: Graphics for estimates of the accrued probability func-
tions of the random variable 𝑢(z, 𝜔).

the numerical results for expected value, variance, error
function in expected value, and variance for the random
variable 𝑢(z, 𝜔).

One notices, in Table 3, that approximations for the
expected value and variance of the randomvariable presented
good results from 𝑝 = 1. Thus, relative error functions in
expected value and in variance present small variation for
different values for “𝑝.” One verifies that the values for vari-
ance obtained through numerical solutions present higher
values in relation to its respective estimate. By comparing
the values of relative error functions in expected value
presented in Tables 2 and 3, one notices that Example 2
presented the best approximations for expected value, which
the best approximations for variance were seen for Example
1. Differently from what was seen in Example 1, reduction of
numerical values of the relative error functions in expected
value and variance noticed between 𝑝 = 1 and𝑝 = 3was lower.
In this example, for 𝑝 = 1 and 𝑝 = 3, one noticed a reduction
of 7.5% in assumed values for the relative error function
in expected value, while for the relative error function in
variance there is a reduction of 0.05%. By comparing these
results with those presented in Example 1,one verifies that
convergence rates for expected value and variance were lower
for Example 2. Particularly in Example 2, convergence rate for
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Table 3: Summary of numerical results of Example 2: expected value, variance, relative errors in expected value, and variance evaluated at
𝑧 = (

1

2
,
1

2
).

𝑝 𝜇
𝑢
(𝑧) [m] 𝜎

2

𝑢
(𝑧) × 10

−11
[m2
] 𝜀

𝜇𝑢
(𝑧) [%] 𝜀

𝜎
2
𝑢
(𝑧) [%]

1 −0.000211202194750868 1.39814560400783 0.000785023297583971 1.21801926483494
2 −0.000211202310577466 1.39813703070284 0.000730182161605587 1.21739860490758
3 −0.000211202310577466 1.39813702629232 0.000730182158833529 1.21739828560978

the expected value was higher than for variance, a behavior in
opposition to what was noticed for Example 1.

7. Conclusions

In this paper theoretical and numerical results are presented
for the Kirchhoff plate bending problem with uncertainty in
plate bending rigidity. The uncertainty on bending rigidity
and modeled through a parameterized stochastic process. A
theoretical result is presented under the format of a theorem
on the existence and uniqueness of theoretical solutions for
this problem. This result is based on Lax-Milgram theorem.
From this point, one uses Galerkin method to obtain numer-
ical solutions for displacement stochastic process. The space
for approximate solutions is constructed through the tensor
product between the space generated by chaos generalized
polynomials, derived from Askey-Wiener scheme, and a
conventional space of continuous functions immersed in𝑉 =
𝐿
2(Ω,F, 𝑃; 𝑄). Both spaces have finite dimensions, but, due

isomorphism and disunity due to construction via tensor
product, one has that for approximate solutions the space is
sequentially dense in the space of theoretical solutions. The
construction of the approximation space meets the necessary
hypothesis for the existence and uniqueness theorem. The
methodology proposed for obtaining numerical solutions
for the displacement stochastic process is evaluated for the
two examples. In both, uncertainty is on the plate bending
rigidity. In the first example, one considers that uncertainty
is on thickness of the plate, while in the second exam-
ple, uncertainty is on Poisson’s coefficient. In all examples,
the mathematical model used to describe uncertainty is a
parameterized stochastic process. To measure the perfor-
mance of numerical solutions obtained through Galerkin
method in view of the Monte Carlo simulation are defined
relative error function in expected value and variance. These
functions have the estimates for the expected value and
variance of a stochastic process in their definition. One
compares also the estimates obtained from the numerical
solutions and by Monte Carlo simulation for the accrued
probability function for a random variable generated by
the displacement stochastic process. The estimates for the
expected value, variance, and accrued probability function
were obtained through realization of 20,000 samples for the
parameter that presented uncertainty. Generally, one may
verify that the expected value is the better approximated
by the numerical solutions that variance. With 𝑝 = 1 for
gPC’s, good approximations for the expected value have been
obtained already. Additionally, as one increases the level
of chaos generalized polynomials, approximations toward

expected value and variance are improved. Another feature to
be highlighted is uncertainty propagation through Kirchhoff
plates model; observed variances in numerical solution were
lower than those used in uncertainties on the thickness of
plates and Poisson’s coefficient. It is important to mention
that this behavior is intrinsic to Kirchhoff plates model, as it
was seen both in variances obtained fromnumerical solutions
and in estimates determined by Monte Carlo simulation.
Example 1 presented a higher variance; the gPC’s level
increase had greater influence on the approximations for the
expected value and variance. For this example, it was verified
that relative error functions in expected value and variance
assumed numerical values lower than themeasure that would
increase the gPC’s level. The same behavior was noticed in
Example 2, but with lower sensitiveness, that is, relative error
function in expected value and variance decreased in their
numerical values in lower proportion. By comparing the
relative error functions in variance it is verified that Example
2 presented better approximation for variance than Example
1. Reductions of relative error functions in variance related to
the level of polynomials chaos were higher than for Example
2. In both examples, the estimate for the accrued probability
function obtained from numerical solutions presented good
approximation of the estimate obtained by Monte Carlo
simulation. Approximation between estimates improvedwith
the increase of gPC’s level. This paper presented a basic
theoretical result, and yet to be exploited inmany applications
that, for simpler they are, in the sense of deterministic analysis
are still open when uncertainties are considered in themodel.
The (developed) Galerkin solution developed herein, using
polynomials chaos of the Askey-Wiener scheme, was shown
to be an accurate and efficient solution for presented examples
for Kirchhoff plates stochastic bending problem. It was veri-
fied that increase in gPC’s level improved approximations for
the expected value, variance, and the estimate of the density
function of accrued probability. This shows that increase of
approximation space dimension leads to better approxima-
tions for the displacement stochastic process.Therefore, if the
conditions for existence and uniqueness of the solution are
respected a proper family of chaos polynomials is selected,
one may obtain good approximation for the displacement
stochastic process with a suitable dimension. Thus, Galerkin
method becomes an effective alternative tomethods based on
simulation.
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