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Abstract. 
We discuss a logarithmic
regularity condition in a neighborhood of the origin and infinity on the
exponent functions 
	
		
			
				𝑞
				(
				𝑥
				)
				≥
				𝑝
				(
				𝑥
				)
			

		
	
 and 
	
		
			
				𝛽
				(
				𝑥
				)
			

		
	
 for the variable exponent
Hardy inequality 
	
		
			
				‖
				𝑥
			

			
				𝛽
				(
				⋅
				)
				−
				1
			

			

				∫
			

			
				𝑥
				0
			

			
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
				‖
			

			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				𝑙
				)
			

			
				≤
				𝐶
				‖
				𝑥
			

			
				𝛽
				(
				⋅
				)
			

			
				𝑓
				‖
			

			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				𝑙
				)
			

		
	
 to hold.


1. Introduction
There are several papers devoted to the variable exponent Hardy inequality:
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				‖
				‖
				‖
				𝑣
			

			
				1
				/
				𝑞
				(
				⋅
				)
			

			

				
			

			
				𝑥
				0
			

			
				‖
				‖
				‖
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
			

			

				𝐿
			

			
				𝑞
				(
				⋅
				)
			

			
				(
				0
				,
				∞
				)
			

			
				≤
				‖
				‖
				𝜔
			

			
				1
				/
				𝑝
				(
				⋅
				)
			

			
				𝑓
				‖
				‖
				(
				⋅
				)
			

			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				∞
				)
			

			

				.
			

		
	

Let 
	
		
			
				𝑣
				,
				𝑤
				∶
				ℝ
				→
				[
				0
				,
				∞
				)
			

		
	
 be positive measurable functions and 
	
		
			

				𝑝
			

			

				−
			

			
				=
				i
				n
				f
				{
				𝑝
				(
				𝑥
				)
				∶
				𝑥
				∈
				ℝ
				}
				>
				1
			

		
	
, 
	
		
			

				𝑝
			

			

				+
			

			
				=
				s
				u
				p
				{
				𝑝
				(
				𝑥
				)
				∶
				𝑥
				∈
				ℝ
				}
				<
				∞
			

		
	
; then inequality (1) and (2) hold under certain conditions on the weight functions 
	
		
			

				𝑣
			

		
	
, 
	
		
			

				𝜔
			

		
	
 and the exponents 
	
		
			
				𝑝
				(
				⋅
				)
			

		
	
, 
	
		
			
				𝑞
				(
				⋅
				)
			

		
	
. Two types of conditions arise here: a balance condition on the weights and a regularity condition on the exponents (see below). Necessary and sufficient conditions for the validity of general inequality (1) were found in [1] for the case of 
	
		
			
				𝑝
				(
				𝑥
				)
				≤
				𝑞
				(
				𝑥
				)
			

		
	
, in [2] for cases 
	
		
			
				𝑞
				(
				0
				)
				≥
				𝑝
				(
				0
				)
			

		
	
 and 
	
		
			
				𝑞
				(
				∞
				)
				≥
				𝑝
				(
				∞
				)
			

		
	
, in [3] for cases 
	
		
			
				𝑞
				(
				0
				)
				<
				𝑝
				(
				0
				)
			

		
	
 and 
	
		
			
				𝑞
				(
				∞
				)
				<
				𝑝
				(
				∞
				)
			

		
	
, and in [4] for mixed cases 
	
		
			
				𝑞
				(
				0
				)
				≥
				𝑝
				(
				0
				)
			

		
	
 and 
	
		
			
				𝑞
				(
				∞
				)
				<
				𝑝
				(
				∞
				)
			

		
	
  (
	
		
			
				𝑞
				(
				0
				)
				<
				𝑝
				(
				0
				)
			

		
	
 and 
	
		
			
				𝑞
				(
				∞
				)
				≥
				𝑝
				(
				∞
				)
			

		
	
). Some special cases of (1) are studied in [5–10] too.
So, the inequality 
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝛽
				(
				⋅
				)
				−
				1
			

			
				‖
				‖
				𝐻
				𝑓
				(
				⋅
				)
			

			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				∞
				)
			

			
				‖
				‖
				𝑥
				≤
				𝐶
			

			
				𝛽
				(
				⋅
				)
			

			
				‖
				‖
				𝑓
				(
				⋅
				)
			

			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				∞
				)
			

		
	

					is a particular case of (1) when 
	
		
			
				𝑝
				(
				𝑥
				)
				=
				𝑞
				(
				𝑥
				)
			

		
	
, 
	
		
			
				𝑣
				(
				𝑥
				)
				=
				𝑥
			

			
				𝛽
				(
				𝑥
				)
				−
				1
			

		
	
 and 
	
		
			
				𝑤
				(
				𝑥
				)
				=
				𝑥
			

			
				𝛽
				(
				𝑥
				)
			

		
	
, where 
	
		
			
				∫
				𝐻
				𝑓
				(
				𝑥
				)
				=
			

			
				𝑥
				0
			

			
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
			

		
	
 is the Hardy operator. For the constant exponents 
	
		
			

				𝑝
			

		
	
, 
	
		
			

				𝛽
			

		
	
 this inequality holds if 
	
		
			
				𝛽
				<
				1
				−
				(
				1
				/
				𝑝
				)
			

		
	
, 
	
		
			
				𝑝
				>
				1
			

		
	
 (see, e.g., [11]). Necessary and sufficient conditions on the 
	
		
			
				𝛽
				(
				⋅
				)
			

		
	
, 
	
		
			
				𝑝
				(
				⋅
				)
			

		
	
 for inequality (2) to hold are 
	
		
			
				𝛽
				(
				0
				)
				<
				1
				−
				(
				1
				/
				𝑝
				(
				0
				)
				)
			

		
	
 and 
	
		
			
				𝛽
				(
				∞
				)
				<
				1
				−
				(
				1
				/
				𝑝
				(
				∞
				)
				)
			

		
	
 if the exponents 
	
		
			

				𝑝
			

		
	
, 
	
		
			

				𝑞
			

		
	
 are continuous near the origin and infinity such that the conditions 
	
		
			
				𝑝
				,
				𝛽
				∈
				Λ
			

			

				0
			

			
				∩
				Λ
			

			

				∞
			

		
	
 are satisfied (see, e.g., [5–7, 9]). In [8] (see also [10]) it was proved that the condition 
	
		
			
				𝑝
				,
				𝛽
				∈
				Λ
			

			

				1
			

		
	
 is necessary for inequality (2) to hold if one of these exponents is a constant. Also, it was proved in [10] that the condition 
	
		
			

				Λ
			

			

				1
			

		
	
 is sufficient for inequality (2) to hold on bounded interval 
	
		
			
				(
				0
				,
				𝑙
				)
			

		
	
 if a constant 
	
		
			

				𝐴
			

			

				1
			

		
	
 in the condition 
	
		
			

				Λ
			

			

				1
			

		
	
 for the 
	
		
			

				𝑝
			

		
	
 satisfies 
	
		
			

				𝐴
			

			

				1
			

			
				<
				𝑝
				(
				0
				)
				(
				𝑝
				(
				0
				)
				−
				1
				)
			

		
	
 and the 
	
		
			

				𝛽
			

		
	
 is zero. The condition 
	
		
			

				Λ
			

			

				1
			

		
	
 is weaker then 
	
		
			

				Λ
			

			

				0
			

		
	
. Also the function 
	
		
			
				√
				𝑝
				(
				𝑥
				)
				=
				𝐶
				/
			

			
				
			
			
				l
				n
				(
				1
				/
				𝑥
				)
			

		
	
 satisfies the condition 
	
		
			

				Λ
			

			

				1
			

		
	
 but does not satisfy 
	
		
			

				Λ
			

			

				0
			

		
	
.
In this note, we will focus on the results of sufficiency and necessity of regularity conditions 
	
		
			

				Λ
			

			

				0
			

		
	
, 
	
		
			

				Λ
			

			

				∞
			

		
	
, and 
	
		
			

				Λ
			

			

				1
			

		
	
 below for inequality (2) to hold.
The space of functions 
	
		
			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				∞
				)
			

		
	
 is introduced as the class of measurable functions 
	
		
			
				𝑓
				(
				𝑥
				)
			

		
	
 in 
	
		
			
				(
				0
				,
				∞
				)
			

		
	
, which have a finite 
	
		
			

				𝐼
			

			

				𝑝
			

			
				∫
				(
				𝑓
				)
				∶
				=
			

			
				∞
				0
			

			
				|
				𝑓
				(
				𝑥
				)
				|
			

			
				𝑝
				(
				𝑥
				)
			

			
				𝑑
				𝑥
			

		
	
 modular. A norm in 
	
		
			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				∞
				)
			

		
	
 is given in the form
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				‖
				𝑓
				‖
			

			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				∞
				)
			

			
				
				=
				i
				n
				f
				𝜆
				>
				0
				,
				𝐼
			

			

				𝑝
			

			
				
				𝑓
			

			
				
			
			
				𝜆
				
				
				.
				≤
				1
			

		
	

					As to the basic properties of spaces 
	
		
			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

		
	
, we refer to [12].
2. Main Results
We will state some sufficiency and necessity assertions concerning inequality (2). Along the way, it will be given a proof for two elementary estimates that we had used.
Let us introduce the following classes of measurable functions. We say, 
	
		
			
				𝑠
				(
				𝑥
				)
				∶
				(
				0
				,
				∞
				)
				→
				ℝ
			

		
	
 is in the class 
	
		
			

				Λ
			

			

				0
			

		
	
 if 
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			

				Λ
			

			

				0
			

			
				∶
				=
				l
				i
				m
				s
				u
				p
			

			
				𝑥
				→
				0
			

			
				|
				|
				|
				|
				1
				𝑠
				(
				𝑥
				)
				−
				𝑠
				(
				0
				)
				l
				n
			

			
				
			
			
				|
				𝑥
				|
				<
				∞
				,
			

		
	

					is in the class 
	
		
			

				Λ
			

			

				∞
			

		
	
 if 
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				Λ
			

			

				∞
			

			
				∶
				=
				l
				i
				m
				s
				u
				p
			

			
				𝑥
				→
				∞
			

			
				|
				|
				|
				|
				𝑠
				(
				𝑥
				)
				−
				𝑠
				(
				∞
				)
				l
				n
				|
				𝑥
				|
				<
				∞
				,
			

		
	

					and is in the class 
	
		
			

				Λ
			

			

				1
			

		
	
 if 
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				Λ
			

			

				1
			

			
				∶
				=
				l
				i
				m
				s
				u
				p
			

			
				𝑥
				→
				0
			

			
				|
				|
				|
				
				𝑥
				𝑠
				(
				𝑥
				)
				−
				𝑠
			

			
				
			
			
				2
				
				|
				|
				|
				1
				l
				n
			

			
				
			
			
				|
				𝑥
				|
				<
				∞
				.
			

		
	

Theorem 1 (see [8]).  Suppose 
	
		
			
				𝛽
				∈
				ℝ
			

		
	
 and 
	
		
			
				𝑝
				∶
				(
				0
				,
				𝑙
				)
				→
				[
				1
				,
				∞
				)
			

		
	
 is an increasing function on 
	
		
			
				(
				0
				,
				𝜖
				)
			

		
	
 such that 
	
		
			
				𝑝
				(
				𝑥
				)
			

		
	
 is continuous at 
	
		
			
				𝑥
				=
				0
			

		
	
 and 
	
		
			
				𝛽
				<
				1
				−
				(
				1
				/
				𝑝
				(
				0
				)
				)
			

		
	
, 
	
		
			

				𝑝
			

			

				−
			

			
				>
				1
			

		
	
; then for the inequality 
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝛽
				(
				𝑥
				)
				−
				1
			

			
				‖
				‖
				𝐻
				𝑓
			

			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				𝑙
				)
			

			
				‖
				‖
				𝑥
				≤
				𝐶
			

			
				𝛽
				(
				𝑥
				)
			

			
				𝑓
				‖
				‖
			

			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				𝑙
				)
			

		
	

						to hold it is necessary that 
	
		
			
				𝑝
				(
				⋅
				)
				∈
				Λ
			

			

				1
			

		
	
.
Theorem 2 (see [8]).  Suppose 
	
		
			
				𝑝
				∈
				ℝ
			

		
	
 and 
	
		
			
				𝛽
				∶
				(
				0
				,
				𝑙
				)
				→
				ℝ
			

		
	
 is a decreasing function on 
	
		
			
				(
				0
				,
				𝜖
				)
			

		
	
 such that 
	
		
			
				𝛽
				(
				𝑥
				)
			

		
	
 is continuous at 
	
		
			
				𝑥
				=
				0
			

		
	
 and 
	
		
			
				𝛽
				(
				0
				)
				<
				1
				−
				(
				1
				/
				𝑝
				)
			

		
	
, 
	
		
			

				𝑝
			

			

				−
			

			
				>
				1
			

		
	
; then for the inequality
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝛽
				(
				⋅
				)
				−
				1
			

			
				‖
				‖
				𝐻
				𝑓
			

			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				𝑙
				)
			

			
				‖
				‖
				𝑥
				≤
				𝐶
			

			
				𝛽
				(
				⋅
				)
			

			
				𝑓
				‖
				‖
			

			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				𝑙
				)
			

		
	

						to hold it is necessary that 
	
		
			
				𝛽
				(
				⋅
				)
				∈
				Λ
			

			

				1
			

		
	
.
Theorem 3.  Suppose 
	
		
			
				𝑝
				,
				𝛽
				∶
				(
				0
				,
				∞
				)
				→
				ℝ
			

		
	
 is measurable functions such that 
	
		
			
				1
				<
				𝛽
			

			

				−
			

		
	
, 
	
		
			

				𝛽
			

			

				+
			

			
				<
				∞
			

		
	
, 
	
		
			
				1
				<
				𝑝
			

			

				−
			

		
	
, 
	
		
			

				𝑝
			

			

				+
			

			
				<
				∞
			

		
	
; then for the inequality 
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝛽
				(
				⋅
				)
				−
				1
			

			
				‖
				‖
				𝐻
				𝑓
				(
				⋅
				)
			

			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				∞
				)
			

			
				‖
				‖
				𝑥
				≤
				𝐶
			

			
				𝛽
				(
				⋅
				)
			

			
				‖
				‖
				𝑓
				(
				⋅
				)
			

			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				∞
				)
			

		
	

						to hold it is sufficient that 
	
		
			
				𝛽
				,
				𝑝
				∈
				Λ
			

			

				0
			

			
				∩
				Λ
			

			

				∞
			

		
	
, whenever 
	
		
			
				𝛽
				(
				0
				)
				<
				1
				−
				(
				1
				/
				𝑝
				(
				0
				)
				)
			

		
	
 and 
	
		
			
				𝛽
				(
				∞
				)
				<
				1
				−
				(
				1
				/
				𝑝
				(
				∞
				)
				)
			

		
	
.
Theorem 4.  Let 
	
		
			
				𝛽
				∈
				ℝ
			

		
	
, 
	
		
			
				𝑝
				∶
				(
				0
				,
				∞
				)
				→
				[
				1
				,
				∞
				)
			

		
	
 and let 
	
		
			

				𝑝
			

			

				−
			

			
				>
				1
			

		
	
. There exists a sequence 
	
		
			

				𝑓
			

			

				𝑛
			

		
	
 and a function 
	
		
			

				𝑝
			

		
	
, satisfying the conditions 
	
		
			
				𝛽
				<
				1
				−
				(
				1
				/
				𝑝
				(
				0
				)
				)
			

		
	
, 
	
		
			
				𝛽
				<
				1
				−
				(
				1
				/
				𝑝
				(
				∞
				)
				)
			

		
	
 and 
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				|
				|
				𝑝
				
				𝛿
			

			

				𝑛
			

			
				
				|
				|
				1
				−
				𝑝
				(
				0
				)
				l
				n
			

			
				
			
			

				𝛿
			

			

				𝑛
			

			
				=
				∞
				∶
				𝛿
			

			

				𝑛
			

			
				=
				4
			

			
				−
				𝑛
			

		
	

						or
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				|
				|
				𝛽
				
				𝜇
			

			

				𝑛
			

			
				
				−
				𝛽
			

			

				∞
			

			
				|
				|
				l
				n
				𝜇
			

			

				𝑛
			

			
				=
				∞
				∶
				𝜇
			

			

				𝑛
			

			
				=
				4
			

			

				𝑛
			

		
	

						violating inequality (2).
Theorem 5.  Let 
	
		
			
				𝑝
				∈
				ℝ
			

		
	
, 
	
		
			
				𝛽
				∶
				(
				0
				,
				∞
				)
				→
				ℝ
			

		
	
 and let 
	
		
			
				𝑝
				>
				1
			

		
	
. Then there exists a sequence 
	
		
			

				𝑓
			

			

				𝑛
			

		
	
 and a function 
	
		
			

				𝛽
			

		
	
 satisfying the conditions 
	
		
			

				𝛽
			

			

				0
			

			
				<
				1
				−
				(
				1
				/
				𝑝
				)
			

		
	
, 
	
		
			

				𝛽
			

			

				∞
			

			
				<
				1
				−
				(
				1
				/
				𝑝
				)
			

		
	
, and 
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				|
				|
				𝛽
				
				𝛿
			

			

				𝑛
			

			
				
				−
				𝛽
			

			

				0
			

			
				|
				|
				1
				l
				n
			

			
				
			
			

				𝛿
			

			

				𝑛
			

			
				=
				∞
				∶
				𝛿
			

			

				𝑛
			

			
				=
				4
			

			
				−
				𝑛
			

		
	

						or
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				|
				|
				𝛽
				
				𝜇
			

			

				𝑛
			

			
				
				−
				𝛽
			

			

				∞
			

			
				|
				|
				l
				n
				𝜇
			

			

				𝑛
			

			
				=
				∞
				∶
				𝜇
			

			

				𝑛
			

			
				=
				4
			

			

				𝑛
			

		
	

						violating inequality (2).
3. Proof of Main Results
For the proof of Theorems 1 and 2 we refer to [8]. Other proofs of these theorems are given in [10]. The proof of Theorem 3 also is given in [8]. Here we derive an alternative proof of that theorem using the general results of [2, 4].
In the proof of main results we use the following elementary Lemma.
Lemma 6.  Suppose 
	
		
			
				𝑠
				∶
				ℝ
				→
				(
				0
				,
				∞
				)
			

		
	
 is a measurable function such that 
	
		
			
				𝑠
				∈
				Λ
			

			

				0
			

			
				∩
				Λ
			

			

				∞
			

		
	
 and 
	
		
			
				0
				<
				𝑠
			

			

				−
			

		
	
, 
	
		
			

				𝑠
			

			

				+
			

			
				<
				∞
			

		
	
; then it holds the estimate 
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				𝐶
			

			
				1
				−
				1
			

			

				𝑥
			

			
				𝑠
				(
				0
				)
			

			
				≤
				𝑥
			

			
				𝑠
				(
				𝑥
				)
			

			
				≤
				𝐶
			

			

				1
			

			

				𝑥
			

			
				𝑠
				(
				0
				)
			

			

				,
			

		
	

						for 
	
		
			
				0
				<
				𝑥
				<
				1
			

		
	
 and the estimate 
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				𝐶
			

			
				2
				−
				1
			

			

				𝑥
			

			
				𝑠
				(
				∞
				)
			

			
				≤
				𝑥
			

			
				𝑠
				(
				∞
				)
			

			
				≤
				𝐶
			

			

				2
			

			

				𝑥
			

			
				𝑠
				(
				∞
				)
			

		
	

						for 
	
		
			
				𝑥
				≥
				2
			

		
	
.
Proof of Theorem 3. To prove Theorem 3 we apply the results of [2, 4], where it was proved that the following conditions 
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				s
				u
				p
			

			
				𝑥
				∈
				(
				0
				,
				1
				)
			

			
				𝑉
				(
				𝑥
				)
			

			
				1
				/
				𝑞
				(
				0
				)
			

			
				𝑊
				(
				𝑥
				)
			

			
				(
				(
				𝑝
				(
				0
				)
				−
				1
				)
				/
				𝑝
				(
				0
				)
				)
			

			
				<
				∞
				,
				s
				u
				p
			

			
				𝑥
				∈
				(
				2
				,
				∞
				)
			

			
				𝑉
				(
				𝑥
				)
			

			
				1
				/
				𝑞
				(
				∞
				)
			

			
				𝑊
				(
				𝑥
				)
			

			
				(
				(
				𝑝
				(
				∞
				)
				−
				1
				)
				/
				𝑝
				(
				∞
				)
				)
			

			
				<
				∞
			

		
	

						are necessary and sufficient for inequality (1) to hold if 
	
		
			
				𝑞
				(
				0
				)
				≥
				𝑝
				(
				0
				)
			

		
	
, 
	
		
			
				𝑞
				(
				∞
				)
				≥
				𝑝
				(
				∞
				)
			

		
	
, and the regularity conditions are satisfied: 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑥
				→
				0
			

			
				[
				]
				1
				𝑝
				(
				𝑥
				)
				−
				𝑝
				(
				0
				)
				l
				n
			

			
				
			
			
				𝑊
				(
				𝑥
				)
				<
				∞
				;
				l
				i
				m
				s
				u
				p
			

			
				𝑥
				→
				∞
			

			
				[
				]
				1
				𝑝
				(
				𝑥
				)
				−
				𝑝
				(
				∞
				)
				l
				n
			

			
				
			
			
				𝑉
				(
				𝑥
				)
				<
				∞
				,
			

		
	

						where 
	
		
			
				∫
				𝑉
				(
				𝑥
				)
				=
			

			
				∞
				𝑥
			

			
				𝑣
				(
				𝑡
				)
				𝑑
				𝑡
			

		
	
, 
	
		
			
				∫
				𝑊
				(
				𝑥
				)
				=
			

			
				𝑥
				0
			

			

				𝜔
			

			
				−
				1
				/
				(
				𝑝
				(
				𝑡
				)
				−
				1
				)
			

			
				𝑑
				𝑡
			

		
	
.In Theorem 3, we have accepted that 
	
		
			
				𝑞
				(
				𝑥
				)
				=
				𝑝
				(
				𝑥
				)
			

		
	
 and 
	
		
			
				𝑉
				(
				𝑥
				)
				∶
				=
				𝑉
			

			

				1
			

			
				∫
				(
				𝑥
				)
				=
			

			
				∞
				𝑥
			

			

				𝑡
			

			
				(
				𝛽
				(
				𝑡
				)
				−
				1
				)
				𝑝
				(
				𝑡
				)
			

			
				𝑑
				𝑡
			

		
	
, 
	
		
			
				𝑊
				(
				𝑥
				)
				∶
				=
				𝑊
			

			

				1
			

			
				∫
				(
				𝑥
				)
				=
			

			
				𝑥
				0
			

			

				𝑡
			

			
				−
				(
				𝛽
				(
				𝑡
				)
				𝑝
				(
				𝑡
				)
				)
				/
				(
				𝑝
				(
				𝑡
				)
				−
				1
				)
			

			
				𝑑
				𝑡
			

		
	
. It is easy to show that the conditions 
	
		
			
				𝑝
				,
				𝛽
				∈
				Λ
			

			

				∞
			

		
	
 imply 
	
		
			
				(
				𝛽
				−
				1
				)
				𝑝
				∈
				Λ
			

			

				∞
			

		
	
. Therefore, it follows from Lemma 6 that 
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝐶
			

			
				3
				−
				1
			

			

				𝑥
			

			
				(
				𝛽
				(
				∞
				)
				−
				1
				)
				𝑝
				(
				∞
				)
			

			
				≤
				𝑥
			

			
				(
				𝛽
				(
				𝑥
				)
				−
				1
				)
				𝑝
				(
				𝑥
				)
			

			
				≤
				𝐶
			

			

				3
			

			

				𝑥
			

			
				(
				𝛽
				(
				∞
				)
				−
				1
				)
				𝑝
				(
				∞
				)
			

		
	

						for 
	
		
			
				𝑥
				≥
				2
			

		
	
 by some 
	
		
			

				𝐶
			

			

				3
			

			
				>
				0
			

		
	
. Also the conditions 
	
		
			
				𝑝
				,
				𝛽
				∈
				Λ
			

			

				0
			

		
	
 imply 
	
		
			
				−
				(
				𝛽
				𝑝
				/
				(
				𝑝
				−
				1
				)
				)
				∈
				𝜆
			

			

				0
			

		
	
. Therefore, it follows from Lemma 6 that 
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				𝐶
			

			
				4
				−
				1
			

			

				𝑥
			

			
				−
				(
				𝛽
				(
				0
				)
				𝑝
				(
				0
				)
				/
				(
				𝑝
				(
				0
				)
				−
				1
				)
				)
			

			
				≤
				𝑥
			

			
				−
				(
				𝛽
				(
				𝑥
				)
				𝑝
				(
				𝑥
				)
				/
				(
				𝑝
				(
				𝑥
				)
				−
				1
				)
				)
			

			
				≤
				𝐶
			

			

				4
			

			

				𝑥
			

			
				−
				(
				𝛽
				(
				0
				)
				𝑝
				(
				0
				)
				/
				(
				𝑝
				(
				0
				)
				−
				1
				)
				)
			

		
	

						for 
	
		
			
				0
				<
				𝑥
				<
				1
			

		
	
 by some 
	
		
			

				𝐶
			

			

				4
			

			
				>
				0
			

		
	
. Integrating these inequalities over the intervals 
	
		
			
				(
				𝑥
				,
				∞
				)
			

		
	
 and 
	
		
			
				(
				0
				,
				𝑥
				)
			

		
	
, respectively, we get 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝐶
			

			
				5
				−
				1
			

			

				𝑥
			

			
				(
				𝛽
				(
				∞
				)
				−
				1
				)
				𝑝
				(
				∞
				)
				+
				1
			

			
				≤
				𝑉
			

			

				1
			

			
				(
				𝑥
				)
				≤
				𝐶
			

			

				5
			

			

				𝑥
			

			
				(
				𝛽
				(
				∞
				)
				−
				1
				)
				𝑝
				(
				∞
				)
				+
				1
			

			
				𝐶
				,
				𝑥
				>
				2
				,
			

			
				6
				−
				1
			

			

				𝑥
			

			
				1
				−
				(
				𝛽
				(
				0
				)
				𝑝
				(
				0
				)
				/
				(
				𝑝
				(
				0
				)
				−
				1
				)
				)
			

			
				≤
				𝑊
			

			

				1
			

			
				(
				𝑥
				)
				≤
				𝐶
			

			

				6
			

			

				𝑥
			

			
				1
				−
				(
				𝛽
				(
				0
				)
				𝑝
				(
				0
				)
				/
				(
				𝑝
				(
				0
				)
				−
				1
				)
				)
			

			
				,
				0
				<
				𝑥
				<
				1
				.
			

		
	
To complete the proof of Theorem 3 it suffices to apply estimates (20) to verify conditions (16) and (17). Now, Theorem 3 follows from the upper refereed results of the works [2, 4].
Proof of Lemma 6. Let 
	
		
			
				0
				<
				𝑥
				≤
				𝛿
			

		
	
 and let 
	
		
			
				𝑠
				(
				𝑥
				)
				≥
				𝑠
				(
				0
				)
			

		
	
; then we have 
	
		
			

				𝑥
			

			
				𝑠
				(
				𝑥
				)
				−
				𝑠
				(
				0
				)
			

			
				≤
				1
				+
				𝛿
			

			

				𝑠
			

			

				+
			

			
				−
				𝑠
				(
				0
				)
			

		
	
, where 
	
		
			

				𝛿
			

		
	
 is a certain number from the interval 
	
		
			
				(
				0
				,
				1
				)
			

		
	
. If 
	
		
			
				0
				<
				𝑥
				≤
				𝛿
			

		
	
 and 
	
		
			
				𝑠
				(
				𝑥
				)
				<
				𝑠
				(
				0
				)
			

		
	
 then by condition 
	
		
			
				𝑠
				∈
				Λ
			

			

				0
			

		
	
 we have 
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝑠
				(
				𝑥
				)
				−
				𝑠
				(
				0
				)
			

			
				=
				
				𝛿
			

			
				
			
			
				𝑥
				
			

			
				𝑠
				(
				0
				)
				−
				𝑠
				(
				𝑥
				)
			

			

				𝛿
			

			
				𝑠
				(
				𝑥
				)
				−
				𝑠
				(
				0
				)
			

			
				≤
				
				𝛿
			

			
				
			
			
				𝑥
				
			

			

				𝑐
			

			

				1
			

			
				/
				l
				n
				(
				1
				/
				𝑥
				)
			

			

				𝛿
			

			
				𝑠
				(
				𝑥
				)
				−
				𝑠
				(
				0
				)
			

			
				=
				𝑒
			

			

				𝑐
			

			

				1
			

			

				𝛿
			

			
				𝑠
				(
				𝑥
				)
				−
				𝑠
				(
				0
				)
				+
				𝑐
			

			

				1
			

			
				/
				l
				n
				(
				1
				/
				𝑥
				)
			

			
				≤
				𝑒
			

			

				𝑐
			

			

				1
			

			
				
				1
				+
				𝛿
			

			

				𝑐
			

			

				1
			

			
				/
				l
				n
				(
				1
				/
				𝛿
				)
			

			
				
				
				
				1
				1
				+
			

			
				
			
			
				𝛿
				
			

			
				𝑠
				(
				0
				)
				−
				𝑠
			

			

				−
			

			
				
				.
			

		
	

						Therefore, for 
	
		
			
				0
				<
				𝑥
				≤
				𝛿
			

		
	
 we have the estimation 
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝑠
				(
				𝑥
				)
				−
				𝑠
				(
				0
				)
			

			
				≤
				𝐶
				,
			

		
	

						where the positive constant 
	
		
			

				𝐶
			

		
	
 depends on 
	
		
			

				𝑠
			

			

				−
			

		
	
, 
	
		
			

				𝑠
			

			

				+
			

		
	
, 
	
		
			
				𝑠
				(
				0
				)
			

		
	
, 
	
		
			

				𝛿
			

		
	
. Same inequality holds for the function 
	
		
			

				𝑥
			

			
				𝑠
				(
				0
				)
				−
				𝑠
				(
				𝑥
				)
			

		
	
. Indeed, for 
	
		
			
				0
				<
				𝑥
				≤
				𝛿
			

		
	
 and 
	
		
			
				𝑠
				(
				𝑥
				)
				≥
				𝑠
				(
				0
				)
			

		
	
 we have 
	
		
			

				𝑥
			

			
				𝑠
				(
				0
				)
				−
				𝑠
				(
				𝑥
				)
			

			
				≤
				1
				+
				𝛿
			

			
				𝑠
				(
				0
				)
				−
				𝑠
			

			

				−
			

		
	
. If 
	
		
			
				0
				<
				𝑥
				≤
				𝛿
			

		
	
 and 
	
		
			
				𝑠
				(
				𝑥
				)
				≥
				𝑠
				(
				0
				)
			

		
	
 by condition 
	
		
			
				𝑠
				∈
				Λ
			

			

				0
			

		
	
 we have 
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝑠
				(
				0
				)
				−
				𝑠
				(
				𝑥
				)
			

			
				=
				
				𝛿
			

			
				
			
			
				𝑥
				
			

			
				𝑠
				(
				𝑥
				)
				−
				𝑠
				(
				0
				)
			

			

				𝛿
			

			
				𝑠
				(
				0
				)
				−
				𝑠
				(
				𝑥
				)
			

			
				≤
				
				𝛿
			

			
				
			
			
				𝑥
				
			

			

				𝑐
			

			

				1
			

			
				/
				l
				n
				(
				1
				/
				𝑥
				)
			

			

				𝛿
			

			
				𝑠
				(
				0
				)
				−
				𝑠
				(
				𝑥
				)
			

			
				=
				𝑒
			

			

				𝑐
			

			

				1
			

			

				𝛿
			

			
				𝑠
				(
				0
				)
				−
				𝑠
				(
				𝑥
				)
				+
				𝑐
			

			

				1
			

			
				l
				n
				(
				1
				/
				𝑥
				)
			

			
				≤
				𝑒
			

			

				𝑐
			

			

				1
			

			
				
				1
				+
				𝛿
			

			

				𝑐
			

			

				1
			

			
				l
				n
				(
				1
				/
				𝑥
				)
			

			
				
				
				
				1
				1
				+
			

			
				
			
			
				𝛿
				
			

			

				𝑠
			

			

				+
			

			
				−
				𝑠
				(
				0
				)
			

			
				
				.
			

		
	

						By using these inequalities and by the representation 
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝑠
				(
				𝑥
				)
			

			
				=
				𝑥
			

			
				𝑠
				(
				0
				)
			

			

				𝑥
			

			
				𝑠
				(
				𝑥
				)
				−
				𝑠
				(
				0
				)
			

		
	

						we have estimate (14).To show estimate (15) note that for 
	
		
			
				𝑥
				≥
				𝑀
			

		
	
 and 
	
		
			
				𝑠
				(
				𝑥
				)
				≤
				𝑠
				(
				∞
				)
			

		
	
 we have 
	
		
			

				𝑥
			

			
				𝑠
				(
				𝑥
				)
				−
				𝑠
				(
				∞
				)
			

			
				≤
				1
				+
				(
				1
				/
				𝑀
				)
			

			
				𝑠
				(
				∞
				)
				−
				𝑠
			

			

				−
			

		
	
, where the 
	
		
			
				𝑀
				≥
				2
			

		
	
 is a certain number. If 
	
		
			
				𝑥
				≥
				𝑀
			

		
	
 and 
	
		
			
				𝑠
				(
				𝑥
				)
				≥
				𝑠
				(
				∞
				)
			

		
	
 then by the condition 
	
		
			
				𝑠
				∈
				Λ
			

			

				∞
			

		
	
 we have
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝑠
				(
				𝑥
				)
				−
				𝑠
				(
				∞
				)
			

			
				=
				
				𝑥
			

			
				
			
			
				𝑀
				
			

			
				𝑠
				(
				𝑥
				)
				−
				𝑠
				(
				∞
				)
			

			

				𝑀
			

			
				𝑠
				(
				𝑥
				)
				−
				𝑠
				(
				∞
				)
			

			
				≤
				
				𝑥
			

			
				
			
			
				𝑀
				
			

			

				𝐶
			

			

				2
			

			
				/
				l
				n
				𝑥
			

			

				𝑀
			

			
				𝑠
				(
				𝑥
				)
				−
				𝑠
				(
				∞
				)
			

			
				=
				𝑒
			

			

				𝐶
			

			

				2
			

			

				𝑀
			

			
				𝑠
				(
				𝑥
				)
				−
				𝑠
				(
				∞
				)
				−
				𝐶
			

			

				2
			

			
				/
				l
				n
				𝑥
			

			
				≤
				𝑒
			

			

				𝐶
			

			

				2
			

			
				
				
				1
				1
				+
			

			
				
			
			
				𝑀
				
			

			

				𝐶
			

			

				2
			

			
				/
				l
				n
				𝑀
			

			
				
				
				1
				+
				𝑀
			

			
				𝑠
				(
				∞
				)
				−
				𝑠
			

			

				+
			

			
				
				.
			

		
	

						Combining the estimates for the functions 
	
		
			

				𝑥
			

			
				𝑠
				(
				𝑥
				)
				−
				𝑠
				(
				∞
				)
			

		
	
, 
	
		
			

				𝑥
			

			
				𝑠
				(
				∞
				)
				−
				𝑠
				(
				𝑥
				)
			

		
	
 for 
	
		
			
				𝑥
				≥
				𝑀
			

		
	
 by the presentation 
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝑠
				(
				𝑥
				)
			

			
				=
				𝑥
			

			
				𝑠
				(
				∞
				)
			

			

				𝑥
			

			
				𝑠
				(
				𝑥
				)
				−
				𝑠
				(
				∞
				)
			

		
	

						we get estimate (15). To complete the proof of Lemma 6, note that the condition 
	
		
			
				𝑠
				∈
				Λ
			

			

				0
			

		
	
 is equivalent to
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				1
				−
				𝐶
				≤
				𝑠
				(
				𝑥
				)
				−
				𝑠
				(
				0
				)
				l
				n
			

			
				
			
			
				𝑥
				≤
				𝐶
			

		
	

						and the 
	
		
			
				𝑠
				∈
				Λ
			

			

				∞
			

		
	
 is equivalent to 
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				−
				𝐶
				≤
				𝑠
				(
				𝑥
				)
				−
				𝑠
				(
				∞
				)
				l
				n
				𝑥
				≤
				𝐶
				,
			

		
	

						respectively.
Proof of Theorem 4. Let us assume that 
	
		
			

				𝑓
			

			

				𝑘
			

			
				(
				𝑥
				)
				=
				𝑥
			

			
				−
				(
				1
				/
				𝛽
				(
				𝑥
				)
				)
				−
				𝛽
			

			

				𝜒
			

			
				(
				𝛿
			

			

				𝑘
			

			
				,
				2
				𝛿
			

			

				𝑘
			

			

				)
			

			
				(
				𝑥
				)
			

		
	
; 
	
		
			
				𝑥
				∈
				(
				0
				,
				∞
				)
			

		
	
. Fix 
	
		
			
				𝑘
				∈
				ℕ
			

		
	
. We define the step function 
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				
				𝑝
				𝑝
				(
				𝑥
				)
				=
			

			

				0
			

			
				+
				𝑎
			

			

				𝑛
			

			
				
				i
				f
				𝑥
				∈
				2
				𝛿
			

			

				𝑛
			

			
				,
				4
				𝛿
			

			

				𝑛
			

			
				
				𝑝
			

			

				0
			

			
				
				𝛿
				i
				f
				𝑥
				∈
			

			

				𝑛
			

			
				,
				2
				𝛿
			

			

				𝑛
			

			
				
				,
				𝑛
				∈
				ℕ
				.
			

		
	

						Here 
	
		
			

				𝛼
			

			

				𝑛
			

		
	
 is a sequence of positive numbers that satisfies the condition 
	
		
			
				𝑛
				𝛼
			

			

				𝑛
			

			
				→
				∞
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
. Then 
	
		
			

				𝑎
			

			

				𝑛
			

			
				⋅
				l
				n
				(
				1
				/
				𝛿
			

			

				𝑛
			

			
				)
				→
				∞
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
 and condition (10) is fulfilled for the function 
	
		
			
				𝑝
				(
				𝑥
				)
			

		
	
. We have
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝑝
				(
				⋅
				)
			

			
				
				𝑥
			

			
				𝛽
				(
				𝑥
				)
			

			
				⋅
				𝑓
			

			

				𝑘
			

			
				
				=
				
				(
				𝑥
				)
			

			
				2
				𝛿
			

			

				𝑛
			

			

				𝛿
			

			

				𝑛
			

			
				
				𝑡
			

			

				𝛽
			

			
				⋅
				𝑡
			

			
				−
				(
				1
				/
				𝑝
			

			

				0
			

			
				)
				−
				𝛽
			

			

				
			

			

				𝑝
			

			

				0
			

			
				𝐼
				𝑑
				𝑡
				=
				l
				n
				2
				<
				∞
				,
			

			
				𝑝
				(
				⋅
				)
			

			
				
				𝑥
			

			
				𝛽
				(
				𝑥
				)
				−
				1
			

			
				⋅
				𝐻
				𝑓
			

			

				𝑘
			

			
				
				≥
				
				(
				𝑥
				)
			

			
				4
				𝛿
			

			

				𝑛
			

			
				2
				𝛿
			

			

				𝑛
			

			
				
				
			

			
				2
				𝛿
			

			

				𝑛
			

			

				𝛿
			

			

				𝑛
			

			

				𝑡
			

			
				−
				(
				1
				/
				𝑝
				(
				𝑡
				)
				)
				−
				𝛽
			

			
				
				𝑑
				𝑡
			

			

				𝑝
			

			

				0
			

			
				+
				𝛼
			

			

				𝑛
			

			
				⋅
				𝑥
			

			
				(
				𝛽
			

			

				0
			

			
				−
				1
				)
				⋅
				(
				𝑝
			

			

				0
			

			
				+
				𝛼
			

			

				𝑛
			

			

				)
			

			
				≥
				
				𝑑
				𝑥
			

			
				4
				𝛿
			

			

				𝑛
			

			
				2
				𝛿
			

			

				𝑛
			

			

				𝛿
			

			
				(
				1
				−
				(
				1
				/
				𝑝
			

			

				0
			

			
				)
				−
				𝛽
				)
				(
				𝑝
			

			

				0
			

			
				+
				𝛼
			

			

				𝑛
			

			
				)
				𝑛
			

			
				⋅
				𝑥
			

			
				(
				𝛽
				−
				1
				)
				⋅
				(
				𝑝
			

			

				0
			

			
				+
				𝛼
			

			

				𝑛
			

			

				)
			

			
				𝑑
				𝑥
				≥
				𝐶
				⋅
				𝛿
			

			
				−
				𝛼
			

			

				𝑛
			

			
				/
				𝑝
			

			

				0
			

			

				𝑛
			

			
				=
				𝐶
				⋅
				𝑒
			

			

				𝛼
			

			

				𝑛
			

			
				/
				𝑝
			

			

				0
			

			
				l
				n
				(
				1
				/
				𝛿
			

			

				𝑛
			

			

				)
			

			
				⟶
				∞
			

		
	

						as 
	
		
			
				𝑛
				→
				∞
			

		
	
. The last relation shows violating of inequality (2) for sufficiently large 
	
		
			

				𝑛
			

		
	
.We define 
	
		
			

				𝑓
			

			

				𝑘
			

			
				(
				𝑥
				)
				=
				𝑥
			

			
				−
				(
				1
				/
				𝑝
				(
				𝑥
				)
				)
				−
				𝛽
			

			

				𝜒
			

			
				(
				𝜇
			

			

				𝑘
			

			
				,
				2
				𝜇
			

			

				𝑘
			

			

				)
			

			
				(
				𝑥
				)
			

		
	
 for 
	
		
			
				𝑥
				∈
				(
				0
				,
				∞
				)
			

		
	
. Fix 
	
		
			
				𝑘
				∈
				ℕ
			

		
	
. We also define the step function 
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				
				𝑝
				𝑝
				(
				𝑥
				)
				=
			

			

				∞
			

			
				−
				𝑎
			

			

				𝑛
			

			
				
				i
				f
				𝑥
				∈
				2
				𝜇
			

			

				𝑛
			

			
				,
				4
				𝜇
			

			

				𝑛
			

			
				
				𝑝
			

			

				∞
			

			
				
				𝜇
				i
				f
				𝑥
				∈
			

			

				𝑛
			

			
				,
				2
				𝜇
			

			

				𝑛
			

			
				
				,
				𝑛
				∈
				ℕ
				,
			

		
	

						where 
	
		
			
				𝑛
				𝛼
			

			

				𝑛
			

			
				→
				∞
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
. We have 
	
		
			

				𝛼
			

			

				𝑛
			

			
				l
				n
				𝜇
			

			

				𝑛
			

			
				→
				∞
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
 and condition (11) holds for the function 
	
		
			
				𝑝
				(
				𝑥
				)
			

		
	
. Furthermore,
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝑝
				(
				⋅
				)
			

			
				
				𝑥
			

			

				𝛽
			

			
				⋅
				𝑓
			

			

				𝑘
			

			
				
				=
				
				(
				𝑥
				)
			

			
				2
				𝜇
			

			

				𝑛
			

			

				𝜇
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝛽
			

			
				⋅
				𝑥
			

			
				−
				(
				1
				/
				𝑝
			

			

				∞
			

			
				)
				−
				𝛽
			

			

				
			

			

				𝑝
			

			

				∞
			

			
				𝐼
				𝑑
				𝑥
				=
				l
				n
				2
				<
				∞
				,
			

			
				𝑝
				(
				⋅
				)
			

			
				
				𝑥
			

			
				𝛽
				−
				1
			

			
				⋅
				𝐻
				𝑓
			

			

				𝑘
			

			
				
				≥
				
				(
				𝑥
				)
			

			
				4
				𝜇
			

			

				𝑛
			

			
				2
				𝜇
			

			

				𝑛
			

			
				
				
			

			
				2
				𝜇
			

			

				𝑛
			

			

				𝜇
			

			

				𝑛
			

			

				𝑡
			

			
				−
				(
				1
				/
				𝑝
				(
				𝑡
				)
				)
				−
				𝛽
			

			
				
				𝑑
				𝑡
			

			
				(
				𝑝
			

			

				∞
			

			
				−
				𝛼
			

			

				𝑛
			

			

				)
			

			
				⋅
				𝑥
			

			
				(
				𝛽
				−
				1
				)
				(
				𝑝
			

			

				∞
			

			
				−
				𝛼
			

			

				𝑛
			

			

				)
			

			
				𝑑
				𝑥
				≥
				𝐶
				𝜇
			

			

				𝛼
			

			

				𝑛
			

			
				/
				𝑝
			

			

				∞
			

			

				𝑛
			

			
				=
				𝐶
				𝑒
			

			
				(
				𝛼
			

			

				𝑛
			

			
				/
				𝑝
			

			

				∞
			

			
				)
				l
				n
				𝜇
			

			

				𝑛
			

			
				⟶
				∞
			

		
	

						as 
	
		
			
				𝑛
				→
				∞
			

		
	
, which contradicts (2) for sufficiently large 
	
		
			

				𝑛
			

		
	
.
Proof of Theorem 5. Let us assume that 
	
		
			

				𝑓
			

			

				𝑘
			

			
				(
				𝑥
				)
				=
				𝑥
			

			
				−
				(
				1
				/
				𝑝
				)
				−
				𝛽
				(
				𝑥
				)
			

			

				𝜒
			

			
				(
				𝛿
			

			

				𝑘
			

			
				,
				2
				𝛿
			

			

				𝑘
			

			

				)
			

			
				(
				𝑥
				)
			

		
	
; 
	
		
			
				𝑥
				∈
				(
				0
				,
				∞
				)
			

		
	
. Fix 
	
		
			
				𝑘
				∈
				ℕ
			

		
	
. We define the step function 
	
		
			

				𝛽
			

		
	
 as 
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				
				𝛽
				𝛽
				(
				𝑥
				)
				=
			

			

				0
			

			
				+
				𝑎
			

			

				𝑛
			

			
				
				𝛿
				i
				f
				𝑥
				∈
			

			

				𝑛
			

			
				,
				2
				𝛿
			

			

				𝑛
			

			
				
				𝛽
			

			

				0
			

			
				
				i
				f
				𝑥
				∈
				2
				𝛿
			

			

				𝑛
			

			
				,
				4
				𝛿
			

			

				𝑛
			

			
				
				,
				𝑛
				∈
				ℕ
				,
			

		
	

						where 
	
		
			

				𝑎
			

			

				𝑛
			

			
				⋅
				l
				n
				(
				1
				/
				𝛿
			

			

				𝑛
			

			
				)
				→
				∞
			

		
	
. Then,
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝑝
				(
				⋅
				)
			

			
				
				𝑥
			

			
				𝛽
				(
				𝑥
				)
			

			
				⋅
				𝑓
			

			

				𝑘
			

			
				
				=
				
				(
				𝑥
				)
			

			
				2
				𝛿
			

			

				𝑛
			

			

				𝛿
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝛽
			

			

				0
			

			
				+
				𝛼
			

			

				𝑛
			

			
				⋅
				𝑥
			

			
				−
				(
				1
				/
				𝑝
				)
				−
				𝛽
			

			

				0
			

			
				−
				𝛼
			

			

				𝑛
			

			

				
			

			

				𝑝
			

			
				𝐼
				𝑑
				𝑥
				=
				l
				n
				2
				<
				∞
				,
			

			
				𝑝
				(
				⋅
				)
			

			
				
				𝑥
			

			
				𝛽
				(
				𝑥
				)
				−
				1
			

			
				
				𝑓
				⋅
				𝐻
			

			

				𝑘
			

			
				≥
				
				(
				𝑥
				)
				
				
			

			
				4
				𝛿
			

			

				𝑛
			

			
				2
				𝛿
			

			

				𝑛
			

			
				
				
			

			
				2
				𝛿
			

			

				𝑛
			

			

				𝛿
			

			

				𝑛
			

			

				𝑡
			

			
				−
				(
				1
				/
				𝑝
				)
				−
				𝛽
			

			

				0
			

			
				−
				𝛼
			

			

				𝑛
			

			
				
				𝑑
				𝑡
			

			

				𝑝
			

			
				⋅
				𝑥
			

			
				(
				𝛽
			

			

				0
			

			
				−
				1
				)
				𝑝
			

			
				𝑑
				𝑥
				=
				𝐶
				⋅
				𝛿
			

			
				−
				𝑝
				𝛼
			

			

				𝑛
			

			

				𝑛
			

			
				=
				𝐶
				⋅
				𝑒
			

			
				𝑝
				𝛼
			

			

				𝑛
			

			
				l
				n
				(
				1
				/
				𝛿
			

			

				𝑛
			

			

				)
			

			
				⟶
				∞
			

		
	

						as 
	
		
			
				𝑛
				→
				∞
			

		
	
. The last relation contradicts the validity of inequality (2).We define 
	
		
			

				𝑓
			

			

				𝑘
			

			
				(
				𝑥
				)
				=
				𝑥
			

			
				−
				(
				1
				/
				𝑥
				)
				−
				𝛽
				(
				𝑥
				)
			

			

				𝜒
			

			
				(
				𝜇
			

			

				𝑘
			

			
				,
				2
				𝜇
			

			

				𝑘
			

			

				)
			

			
				(
				𝑥
				)
			

		
	
; 
	
		
			
				𝑥
				∈
				(
				0
				,
				∞
				)
			

		
	
. Fix 
	
		
			
				𝑘
				∈
				ℕ
			

		
	
, where the function 
	
		
			

				𝛽
			

		
	
 is defined as 
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				
				𝛽
				𝛽
				(
				𝑥
				)
				=
			

			

				∞
			

			
				−
				𝑎
			

			

				𝑛
			

			
				
				𝜇
				i
				f
				𝑥
				∈
			

			

				𝑛
			

			
				,
				2
				𝜇
			

			

				𝑛
			

			
				
				𝛽
			

			

				∞
			

			
				
				i
				f
				𝑥
				∈
				2
				𝜇
			

			

				𝑛
			

			
				,
				4
				𝜇
			

			

				𝑛
			

			
				
				,
				𝑛
				∈
				ℕ
				,
			

		
	

						where 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑎
			

			

				𝑛
			

			
				⋅
				l
				n
				𝜇
			

			

				𝑛
			

			
				=
				∞
			

		
	
. Then,
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝑝
				(
				⋅
				)
			

			
				
				𝑥
			

			
				𝛽
				(
				𝑥
				)
			

			
				⋅
				𝑓
			

			

				𝑘
			

			
				
				=
				
				(
				𝑥
				)
			

			
				2
				𝜇
			

			

				𝑛
			

			

				𝜇
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝛽
			

			

				∞
			

			
				−
				𝛼
			

			

				𝑛
			

			
				⋅
				𝑥
			

			
				−
				(
				1
				/
				𝑝
				)
				−
				𝛽
			

			

				∞
			

			
				+
				𝛼
			

			

				𝑛
			

			

				
			

			

				𝑝
			

			
				𝐼
				𝑑
				𝑥
				=
				l
				n
				2
				<
				∞
				,
			

			
				𝑝
				(
				⋅
				)
			

			
				
				𝑥
			

			
				𝛽
				(
				𝑥
				)
				−
				1
			

			
				
				𝑓
				⋅
				𝐻
			

			

				𝑘
			

			
				≥
				
				(
				𝑥
				)
				
				
			

			
				4
				𝜇
			

			

				𝑛
			

			
				2
				𝜇
			

			

				𝑛
			

			
				
				
			

			
				2
				𝜇
			

			

				𝑛
			

			

				𝜇
			

			

				𝑛
			

			

				𝑡
			

			
				−
				(
				1
				/
				𝑝
				)
				−
				𝛽
			

			

				∞
			

			
				+
				𝛼
			

			

				𝑛
			

			
				
				𝑑
				𝑡
			

			

				𝑝
			

			
				⋅
				𝑥
			

			
				(
				𝛽
			

			

				∞
			

			
				−
				1
				)
				𝑝
			

			
				≥
				
				𝑑
				𝑥
			

			
				3
				𝜇
			

			

				𝑛
			

			
				2
				𝜇
			

			

				𝑛
			

			

				𝜇
			

			
				(
				1
				−
				(
				1
				/
				𝑝
				)
				−
				𝛽
			

			

				∞
			

			
				+
				𝛼
			

			

				𝑛
			

			
				𝑛
				)
				𝑝
			

			
				⋅
				𝑥
			

			
				(
				𝛽
			

			

				∞
			

			
				−
				1
				)
				𝑝
			

			
				𝑑
				𝑥
				≥
				𝐶
				⋅
				𝜇
			

			
				𝑝
				𝛼
			

			

				𝑛
			

			

				𝑛
			

			
				=
				𝐶
				⋅
				𝑒
			

			
				𝑝
				𝛼
			

			

				𝑛
			

			
				l
				n
				𝜇
			

			
				⟶
				∞
			

		
	

						as 
	
		
			
				𝑛
				→
				∞
			

		
	
 which contradicts inequality (2).
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