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The combined effect of viscous heating and convective cooling on Couette flow and heat transfer characteristics of water base
nanofluids containing Copper Oxide (CuO) and Alumina (Al

2
O
3
) as nanoparticles is investigated. It is assumed that the nanofluid

flows in a channel between two parallel plates with the channel’s upper plate accelerating and exchange heat with the ambient
surrounding following the Newton’s law of cooling, while the lower plate is stationary and maintained at a constant temperature.
Using appropriate similarity transformation, the governingNavier-Stokes and the energy equations are reduced to a set of nonlinear
ordinary differential equations. These equations are solved analytically by regular perturbation method with series improvement
technique andnumerically by an efficient Runge-Kutta-Fehlberg integration technique coupledwith shootingmethod.The effects of
the governing parameters on the dimensionless velocity, temperature, skin friction, pressure drop andNusselt number are presented
graphically, and discussed quantitatively.

1. Introduction

Studies related to laminar flow and heat transfer of a viscous
fluid in the space between two parallel plates, one of which
is moving relative to the other, have received the attention
of several researchers due to their numerous industrial and
engineering applications. This type of flow is named in
honour of Maurice Marie Alfred Couette, a professor of
physics at the French University of Angers in the late 19th
century [1]. Couette flow has been used to estimate the
drag force in many wall driven applications such as lubri-
cation engineering, power generators and pumps, polymer
technology, petroleum industry, and purification of crude
oil. Literature survey indicates that interest in the Couette
flows has grown during the past decades. Jana and Datta [2]
examined the effects of Coriolis force on the Couette flow
and heat transfer between two parallel plates in a rotating
system. Singh [3] studied unsteady free convection flow of
an incompressible viscous fluid between two vertical parallel
plates, in which one is fixed and the other is impulsively

started in its own plane. Kearsley [4] investigated the problem
of steady state Couette flow with viscous heating. Jha [5]
numerically examined the effects ofmagnetic field onCouette
flow between two vertical parallel plates. The combined
effects of variable viscosity and thermal conductivity on
generalized Couette flow and heat transfer in the presence
of transversely imposed magnetic field have been studied
numerically by Makinde and Onyejekwe [6]. Seth et al. [7]
presented a closed form solution for hydromagnetic unsteady
Couette flow of a viscous incompressible electrically con-
ducting fluid between two parallel porous plates. Deka and
Bhattacharya [8] obtained an exact solution of unsteady free
convective Couette flow of a viscous incompressible heat gen-
erating/absorbing fluid confined between two vertical plates
in a porous medium. Meanwhile, the enhancement of heat
transfer in a Couette flow of fluid subjected to a temperature
gradient is an important issue that is expected to improve
the efficient operation of several engineering and tribological
devices. Other relevant applications can be found in engine
cooling, solar water heating, cooling of electronics, cooling
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of transformer oil, improving diesel generator efficiency,
cooling of heat exchanging devices, improving heat trans-
fer efficiency of chillers, domestic refrigerator-freezers, and
cooling in machining and in nuclear reactor. The common
heat transfer fluids such as water, ethylene glycol, and engine
oil have limited heat transfer capabilities owing to their
low thermal conductivity whereas metals have much higher
thermal conductivities than these fluids. With the recent
improvements in nanotechnology, the production of particles
with sizes on the order of nanometers can be achieved.
Consequently, the idea of dispersing these nanoparticles in
a base liquid for improving thermal conductivity has been
proposed [9]. Such suspension of nanoparticles in a base fluid
is called a nanofluid. Due to their small size, nanoparticles
fluidize easily inside the base fluid, and as a consequence,
clogging of channels and erosion in channel walls are no
longer a problem. It is even possible to use nanofluids in
microchannels [10]. Niu et al. [11] theoretically studied the
slip-flow and heat transfer of a non-Newtonian nanofluid
in a microtube by means of theoretical method. In their
research, the power-law rheology was adopted to describe
the non-Newtonian characteristics of the flow, in which the
fluid consistency coefficient and the flow behaviour index
depend on the nanoparticle volume fraction. Motsumi and
Makinde [12] reported a numerical solution for the effects of
thermal radiation and viscous dissipation on boundary layer
flow of nanofluids over a permeable moving flat plate. Choi
et al. [13] studied the Couette flow of nanofluids composed of
negatively charged nanoparticles dispersed in aqueous NaCl
solutions. They found that the velocity profile of nanofluids
containing charged nanoparticles deviates significantly from
the classical linear velocity profile of Couette flow.

In the studies mentioned above, the combined effects
of viscous heating and convective cooling on Couette flow
of nanofluids have not been discussed while such flows are
very important in lubrication technology and tribological
problems. Therefore, the objective of the present paper is to
analyze the effects of viscous heating and convective cooling
on the Couette flow of water base nanofluids containing
Copper Oxide (CuO) and Alumina (Al

2
O
3
) as nanoparticles.

In Sections 2–4, the model nonlinear governing equations
together with the analytical and numerical solution are
obtained. Pertinent results are presented graphically and
discussed quantitatively in Section 5while the conclusions are
drawn in Section 6.

2. Problem Formulation

We consider a two-dimensional steady Couette flow of vis-
cous incompressible water base nanofluids containing Cop-
per Oxide (CuO) and Alumina (Al

2
O
3
) as nanoparticles

in which an accelerating upper plate drags adjacent fluid
along with it and thereby imparts a motion to the rest of
the fluid. The lower plate is fixed and kept at a constant
temperature𝑇

0
while the upper accelerating plate is subjected

to a convective heat exchange with the ambient surrounding
following Newton’s law of cooling. We choose a Cartesian
coordinates system in such away that the𝑥-axis is taken along
the channel and the𝑦-axis is normal to it as shown in Figure 1.

u(x, y), T(x, y)

Nanofluid

v(x, a) = 0, −kf
𝜕T

𝜕y
(x, a) = h(T − Ta), u(x, a) = xE

y = 0

y = a

v(x, 0) = 0, T(x, 0) = T0, u(x, 0) = 0

Figure 1: Schematic diagram of the physical system.

The governing equations which are those of conservation
of mass, momentum, and energy are [1, 4, 13]

𝜕𝑢

𝜕𝑥
+
𝜕V
𝜕𝑦
= 0, (1)

𝜌nf (𝑢
𝜕𝑢
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+ V
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𝜕𝑦
) = −
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+ 𝜇nf (

𝜕
2
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𝜕𝑦2
+
𝜕
2
𝑢

𝜕𝑥2
) , (2)
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𝜕V
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+ V
𝜕V
𝜕𝑦
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+ 𝜇nf (

𝜕
2V
𝜕𝑦2

+
𝜕
2V
𝜕𝑥2

) , (3)

𝑢
𝜕𝑇

𝜕𝑥
+ V
𝜕𝑇

𝜕𝑦
=

𝑘nf

(𝜌𝑐
𝑝
)
nf

(
𝜕
2
𝑇

𝜕𝑥2
+
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𝑝
)
nf

[(
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕V
𝜕𝑦
)

2

]

+
𝜇nf

(𝜌𝑐
𝑝
)
nf

(
𝜕V
𝜕𝑥
+
𝜕𝑢

𝜕𝑦
)

2

,

(4)

where (𝑢, V) are the velocity components of the nanofluid
in the (𝑥, 𝑦) directions, respectively, 𝐸 is the upper plate
acceleration parameter, 𝑎 is the channel width, 𝑃 is the
pressure, 𝑇 is the nanofluid temperature, 𝜇nf is the Maxwell-
Garnetts [14] approximation for effective dynamic viscosity of
the nanofluid, 𝑘nf is the effective thermal conductivity of the
nanofluid given byBrinkman [15],𝜌nf is the nanofluid density,
and (𝜌𝑐

𝑝
)nf is the heat capacitance of the nanofluid which are

given by [16, 17]

𝜇nf =
𝜇
𝑓

(1 − 𝜑)
2.5
, 𝜌nf = (1 − 𝜑) 𝜌𝑓 + 𝜑𝜌𝑠,

𝛼nf =
𝑘nf

(𝜌𝑐
𝑝
)
nf

,

𝑘nf
𝑘
𝑓

=

(𝑘
𝑠
+ 2𝑘
𝑓
) − 2𝜑 (𝑘

𝑓
− 𝑘
𝑠
)

(𝑘
𝑠
+ 2𝑘
𝑓
) + 𝜑 (𝑘

𝑓
− 𝑘
𝑠
)

,

(𝜌𝑐
𝑝
)
nf
= (1 − 𝜑) (𝜌𝑐

𝑝
)
𝑓
+ 𝜑 (𝜌𝑐

𝑝
)
𝑠
.

(5)

In (5), 𝜑 is the nanoparticles solid volume fraction, 𝜌
𝑓
is

the reference density of the fluid fraction, 𝜌
𝑠
is the reference
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density of the solid fraction, 𝜇
𝑓
is the viscosity of the fluid

fraction, 𝑘
𝑓
is the thermal conductivity of the fluid fraction, 𝑐

𝑝

is the specific heat at constant pressure, and 𝑘
𝑠
is the thermal

conductivity of the solid volume fraction. The boundary
conditions at the channel walls may be written as

𝑢 (𝑥, 0) = 0, 𝑇 = 𝑇
0
, V (𝑥, 0) = 0,

𝑢 (𝑥, 𝑎) = 𝐸𝑥, V (𝑥, 𝑎) = 0,

−𝑘nf
𝜕𝑇

𝜕𝑦
𝑇 (𝑥, 𝑎) = ℎ [𝑇 (𝑥, 𝑎) − 𝑇

𝑎
] ,

(6)

where𝑇
𝑎
is the ambient surrounding temperature and ℎ is the

coefficient of heat transfer. Introducing the stream function𝜓
and vorticityΩ into the governing equations (1)–(4) we have
the following:

𝑢 =
𝜕𝜓

𝜕𝑦
, V = −

𝜕𝜓

𝜕𝑥
,

Ω =
𝜕𝑢

𝜕𝑦
−
𝜕V
𝜕𝑥
=
𝜕
2
𝜓

𝜕𝑦2
+
𝜕
2
𝜓

𝜕𝑥2
.

(7)

After eliminating the pressure 𝑃 from (2) and (3), we obtain

𝜌nf (
𝜕𝜓

𝜕𝑦

𝜕Ω

𝜕𝑥
−
𝜕𝜓

𝜕𝑥

𝜕Ω

𝜕𝑦
) = 𝜇nf (

𝜕
2
Ω

𝜕𝑦2
+
𝜕
2
Ω

𝜕𝑥2
) , (8)

(
𝜕𝜓

𝜕𝑦

𝜕𝑇

𝜕𝑥
−
𝜕𝜓

𝜕𝑥

𝜕𝑇

𝜕𝑦
)

=
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(𝜌𝑐
𝑝
)
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𝜕
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𝑇

𝜕𝑦2
+
𝜕
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𝑇
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𝑝
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𝜕
2
𝜓

𝜕𝑥𝜕𝑦
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2
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𝜇nf

(𝜌𝑐
𝑝
)
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(−
𝜕
2
𝜓

𝜕𝑥2
+
𝜕
2
𝜓

𝜕𝑦2
)

2

.

(9)

The following dimensionless variables and parameters are
introduced into (8) and (9) together with their corresponding
boundary conditions,

𝜂 =
𝑦

𝑎
, 𝜓 =

𝜓

𝐸𝑎2
, Ω =

Ω

𝐸
,

Φ =
𝑇 − 𝑇
0

𝑇
𝑎
− 𝑇
0

, 𝑅 =
𝐸𝑎
2

𝜐
𝑓

, 𝑋 =
𝑥

𝑎
,

𝜐
𝑓
=

𝜇
𝑓

𝜌
𝑓

, Pr =
𝜇
𝑓
𝑐
𝑝

𝑘
𝑓

,

𝑚
1
= (1 − 𝜑 +

𝜑𝜌
𝑠

𝜌
𝑓

) (1 − 𝜑)
2.5

, 𝜆 =

𝜇
𝑓

𝛽𝑎
,

𝑃 =
𝑃

𝐸𝜇
𝑓

, 𝑚
2
= 𝑚
4
(1 − 𝜑 +

𝜑 (𝜌𝑐
𝑝
)
𝑠

(𝜌𝑐
𝑝
)
𝑓

) ,

Bi = ℎ𝑎
𝑘
𝑓

, Ec = 𝐸
2
𝑎
2

𝑐
𝑝
(𝑇
𝑎
− 𝑇
0
)
,

𝑚
3
=

𝑚
4

(1 − 𝜑)
2.5
, 𝑚

4
=

(𝑘
𝑠
+ 2𝑘
𝑓
) + 𝜑 (𝑘

𝑓
− 𝑘
𝑠
)

(𝑘
𝑠
+ 2𝑘
𝑓
) − 2𝜑 (𝑘

𝑓
− 𝑘
𝑠
)

,

(10)

and we obtain

𝑚
1
𝑅(

𝜕𝜓

𝜕𝜂

𝜕Ω

𝜕𝑋
−
𝜕𝜓

𝜕𝑋

𝜕Ω

𝜕𝜂
) = (

𝜕
2
Ω

𝜕𝜂2
+
𝜕
2
Ω

𝜕𝑋2
) ,

𝑚
2
𝑅Pr(

𝜕𝜓

𝜕𝜂

𝜕Φ

𝜕𝑋
−
𝜕𝜓

𝜕𝑋

𝜕Φ

𝜕𝜂
)

= (
𝜕
2
Φ

𝜕𝜂2
+
𝜕
2
Φ

𝜕𝑋2
) + 4𝑚

3
Ec Pr(

𝜕
2
𝜓

𝜕𝑋𝜕𝜂
)

2

+ 𝑚
3
Ec Pr(−

𝜕
2
𝜓

𝜕𝑋2
+
𝜕
2
𝜓

𝜕𝜂2
)

2

(11)

with

𝜕𝜓

𝜕𝜂
(𝑋, 0) = 0, Φ (𝑋, 0) = 0,

𝜕𝜓

𝜕𝑋
(𝑋, 0) = 0,

𝜕𝜓

𝜕𝜂
(𝑋, 1) = 𝑋,

𝜕𝜓

𝜕𝑋
(𝑋, 1) = 0,

𝜕Φ

𝜕𝜂
(𝑋, 1) = −𝑚

4
Bi [Φ (𝑋, 1) − 1] ,

(12)

where 𝑅 is the Reynolds number, Ec is the Eckert number,
Bi is the Biot number, Pr is the base fluid Prandtl number,
and 𝑚

1
, 𝑚
2
, 𝑚
3
, and 𝑚

4
can be easily determined from

the thermophysical properties of the base fluid and the
nanoparticles. We seek a similarity form of solution of the
form:

𝜓 (𝑋, 𝜂) = 𝑋𝐹 (𝜂) , 𝑊 (𝑋, 𝜂) = 𝑋
𝑑𝐹

𝑑𝜂
,

𝑉 (𝜂) = −𝐹 (𝜂) , Φ (𝑋, 𝜂) = 𝐻 (𝜂) + 𝑋
2
𝜃 (𝜂) .

(13)

Substituting (13) into (11)-(12), we obtain

𝑑
4
𝐹

𝑑𝜂4
= 𝑚
1
𝑅(

𝑑𝐹

𝑑𝜂

𝑑
2
𝐹

𝑑𝜂2
− 𝐹

𝑑
3
𝐹

𝑑𝜂3
) , (14)

𝑑
2
𝜃

𝑑𝜂2
= −𝑚
3
Ec Pr(𝑑

2
𝐹

𝑑𝜂2
)

2

+ 𝑚
2
𝑅Pr(2𝜃𝑑𝐹

𝑑𝜂
− 𝐹

𝑑𝜃

𝑑𝜂
) ,

(15)

𝑑
2
𝐻

𝑑𝜂2
= −2𝜃 − 4𝑚

3
Ec Pr(𝑑𝐹

𝑑𝜂
)

2

− 𝑚
2
𝑅Pr𝐹𝑑𝐻

𝑑𝜂
, (16)

𝑑𝐹

𝑑𝜂
(0) = 0, 𝜃 (0) = 0, 𝐻 (0) = 0,

𝐹 (0) = 0,

(17)
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𝑑𝐹

𝑑𝜂
(1) = 1, 𝐹 (1) = 0,

𝑑𝜃

𝑑𝜂
(1) = −𝑚

4
Bi 𝜃 (1) ,

𝑑𝐻

𝑑𝜂
(1) = −𝑚

4
Bi [𝐻 (1) − 1] .

(18)

The dimensionless fluid axial pressure gradient is given as

−
𝜕𝑃

𝜕𝑋
= 𝑋𝐴, (19)

where

(1 − 𝜑)
2.5

𝐴 =
𝑑
3
𝐹

𝑑𝜂3
− 𝑚
1
𝑅[(

𝑑𝐹

𝑑𝜂
)

2

− 𝐹
𝑑
2
𝐹

𝑑𝜂2
] . (20)

Other quantities of practical interest in this study are the local
skin friction coefficient 𝐶

𝑓
and the local Nusselt number Nu,

which are defined as

𝐶
𝑓
=
𝜏
𝑤

𝜇
𝑓
𝐸
, Nu =

𝑎𝑞
𝑤

𝑘
𝑓
𝑇
𝑤

, (21)

where 𝜏
𝑤
is the skin friction and 𝑞

𝑤
is the heat flux at the

channel upper accelerating wall which are given by

𝜏
𝑤
= 𝜇nf

𝜕𝑢

𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑎

, 𝑞
𝑤
= −𝑘nf

𝜕𝑇

𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑎

. (22)

Using (10) and (13), we substitute (22) into (21) and obtain

𝐶
𝑓
=

𝑋

(1 − 𝜑)
2.5

𝑑
2
𝐹

𝑑𝜂2
(1) ,

Nu = −𝑘nf
𝑘
𝑓

[
𝑑𝐻

𝑑𝜂
(1) + 𝑋

2 𝑑𝜃

𝑑𝜂
(1)] .

(23)

In the following section, the boundary value problems in
(14)–(18) were solved analytically using regular perturba-
tion method and numerically by the Runge-Kutta-Fehlberg
method with shooting technique [18]. The results are utilised
to compute the fluid pressure gradient, local skin friction, and
local Nusselt number as highlighted in (20) and (23).

3. Perturbation Method

The governing model equations (14)–(18) are nonlinear and
this makes its exact solution very intractable. However,
approximate solution can be easily obtained by forming
a power series expansion in the parameter 𝑅. It is worth
noting that an exact solution may exist for this problem
under certain assumptions. The existence of exact solution
provides remarkable and more accurate results. Assume a
series solution of the form:

𝐹 (𝜂) =

∞

∑

𝑖=0

𝐹
𝑖
𝑅
𝑖
, 𝜃 (𝜂) =

∞

∑

𝑖=0

𝜃
𝑖
𝑅
𝑖
. (24)

Substituting the solution series in (24) into (14)–(18) and
collecting the coefficients of like powers of 𝑅, we obtain the
following.

Zeroth Order. Consider

𝑑
4
𝐹
0

𝑑𝜂4
= 0,

𝑑
2
𝜃
0

𝑑𝜂2
= −𝑚
3
Ec Pr(

𝑑
2
𝐹
0

𝑑𝜂2
)

2

,

𝑑
2
𝐻
0

𝑑𝜂2
= −2𝜃

0
− 4𝑚
3
Ec Pr(

𝑑𝐹
0

𝑑𝜂
)

2

,

(25)

with

𝑑𝐹
0

𝑑𝜂
(0) = 0, 𝜃

0
(0) = 0, 𝐻

0
(0) = 0,

𝐹
0
(0) = 0,

𝑑𝐹
0

𝑑𝜂
(1) = 1, 𝐹

0
(1) = 0,

𝑑𝜃
0

𝑑𝜂
(1) = −𝑚

4
Bi 𝜃
0
(1) ,

𝑑𝐻
0

𝑑𝜂
(1) = −𝑚

4
Bi [𝐻
0
(1) − 1] .

(26)

Higher Order (𝑛 ≥ 1). Consider

𝑑
4
𝐹
𝑛

𝑑𝜂4
= 𝑚
1
𝑅

𝑛−1

∑

𝑖=0

(
𝑑𝐹
𝑖

𝑑𝜂

𝑑
2
𝐹
𝑛−𝑖−1

𝑑𝜂2
− 𝐹
𝑖

𝑑
3
𝐹
𝑛−𝑖−1

𝑑𝜂3
) ,

𝑑
2
𝜃
𝑛

𝑑𝜂2
= − 𝑚

3
Ec Pr

𝑛

∑

𝑖=0

(
𝑑
2
𝐹
𝑖

𝑑𝜂2

𝑑
2
𝐹
𝑛−𝑖

𝑑𝜂2
)

+ 𝑚
2
𝑅Pr
𝑛−1

∑

𝑖=0

(2𝜃
𝑖

𝑑𝐹
𝑛−𝑖−1

𝑑𝜂
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(27)

with

𝑑𝐹
𝑛

𝑑𝜂
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𝑛
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(28)
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The equations are solved iteratively and the series solutions
for the velocity and temperature fields are given as

𝐹 (𝜂) = 𝜂
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𝐺
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4
Bi)2

+ 𝑂 (𝑅) ,

(29)

where the expressions for 𝐺
𝑖
, 𝑖 = 1, 2, 3, are given in the

appendix. Using a computer symbolic algebra package
(MAPLE), several terms of the above solution series in (29)
are obtained. From (29) together with (20) and (23), we
obtained the series solutions for the skin friction, Nusselt
number, and axial pressure gradient as
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(30)

The expressions for𝑁 and𝑀 are given in the appendix.These
power series solutions are valid for very small parameter

values of 𝑅, however, using Padé approximation technique
[19] that is based on the series summation and improvement
method; the usability of the solution series is extended
beyond small parameter values of 𝑅.

4. Numerical Procedure

Here, we employed Runge-Kutta-Fehlberg method with
shooting technique [18] to numerically solve the coupled
nonlinear ordinary differential equations (14)–(16) subject
to the boundary conditions (17)-(18) for different set of
parameter values. The procedure involves transforming the
nonlinear boundary value problem (BVP) into an initial value
problem (IVP) as follows: let

𝑧
1
= 𝐹, 𝑧

2
=
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𝑑𝜂
.

(31)

Equation (31) is substituted into (14)–(18) and a system of first
order differential equations is obtained:
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(32)

subject to the initial conditions

𝑧
1
(0) = 0, 𝑧

2
(0) = 0, 𝑧

3
(0) = 𝑠

1
,

𝑧
4
(0) = 𝑠

2
, 𝑧

5
(0) = 0, 𝑧

6
(0) = 𝑠

3
,

𝑧
7
(0) = 0, 𝑧

8
(0) = 𝑠

4
.

(33)

To determine the unspecified initial conditions 𝑠
1
, 𝑠
2
, 𝑠
3
, and

𝑠
4
in (33), the initial guesses are supplied and resulting IVP

is solved using Runge-Kutta scheme. The process is repeated
until the solution at 𝜂 = 1 shoots to the boundary conditions
at that point. The best way to achieve this is to supply the
initial condition in to the Runge-Kutta scheme as unknown
and solve the resulting nonlinear algebraic system of equa-
tions iteratively using Newton-Raphson. It is important to
note that the resulting nonlinear system of algebraic equation
may not have unique solution; therefore a carefully chosen
initial guess which is close to the desired solution must be
supplied. The scheme has quadratic convergence with step
size taken as Δ𝜂 = 0.001 and tolerance set to 10−7.
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Table 1: Thermophysical properties of the fluid phase (water) and
nanoparticles [16, 17].

Physical
properties

Fluid phase
(water)

CuO Al2O3

𝑐
𝑝
(J/kgK) 4179 6500 765

𝜌 (kg/m3) 997.1 535.6 3970

𝑘 (W/mK) 0.613 20 40

Table 2: Computation showing the skin friction for 𝑅 = 1,𝑋 = 1.

𝜑

𝐶
𝑓

CuO-water
(series)

𝐶
𝑓

CuO-water
(numerical)

𝐶
𝑓

Al2O3-water
(series)

𝐶
𝑓

Al2O3-water
(numerical)

0.00 4.085563 4.0855627 4.085563 4.0855627
0.01 4.186948 4.1869479 4.189890 4.1898897
0.05 4.630877 4.6308766 4.645589 4.6455887
0.10 5.287037 5.2870375 5.316469 5.3164695
0.15 6.084673 6.0846727 6.128833 6.1288327
0.20 7.065422 7.0654222 7.124319 7.1243186
0.25 8.286944 8.2869436 8.360585 8.3605848
0.30 9.830736 9.8307360 9.919130 9.9191299

5. Results and Discussion

The Couette flow and heat transfer characteristics of water
base nanofluids containing CuO and Al

2
O
3
as nanoparticles

with viscous heating and convective cooling have been
investigated. The nonlinear similarity ordinary differential
equations governing the boundary value problemwere solved
both analytically using the perturbation method coupled
with series improvement technique and numerically using
Runge-Kutta-Fehlberg integration technique coupled with
shooting scheme. Thermophysical properties of base fluid
and nanoparticles are presented in Table 1. For pure water, the
Prandtl number is taken as Pr = 6.2 [12, 16, 17] and momen-
tum diffusivity is dominant within the fluid in comparison
to pure conduction. The nanoparticle volume fraction in the
base fluid is taken as 𝜑 = 0 to 0.3 (i.e., ranging from 0 to 30
percent) while the case of𝜑 = 0 corresponds to the absence of
nanoparticle in the based fluid (water). Numerical solutions
are displayed in Tables 2 and 3 together with Figures 2–17.
In Tables 2 and 3, the numerical values of the skin friction
and the Nusselt number are displayed when 𝑅 = 1 for both
the series solution and the numerical solutionwith increasing
nanoparticle volume fraction. It is noteworthy that perfect
agreement is achieved between the improved series solution
and the numerical solution. Moreover, it is observed that
both the skin friction and the Nusselt number increase with
increasing nanoparticles volume fraction. Interestingly, the
skin friction produced by Al

2
O
3
-water nanofluid is higher

than that of CuO-water nanofluid while Nusselt number
produced by CuO-water nanofluid is higher than that of
Al
2
O
3
-water nanofluid.

Table 3: Computation showing the Nusselt number for Bi = 1, 𝑅 =
1, Ec = 0.1, and𝑋 = 1.

𝜑

Nu
CuO-water
(series)

Nu
CuO-water
(numerical)

Nu
Al2O3-water

(series)

Nu
Al2O3-water
(numerical)

0.00 0.315380 0.3153802 0.315380 0.3153802
0.01 0.326419 0.3264199 0.326493 0.3264928
0.05 0.376286 0.3762861 0.376626 0.3766263
0.10 0.452718 0.4527175 0.453179 0.4531794
0.15 0.547443 0.5474432 0.547555 0.5475550
0.20 0.664319 0.6643189 0.663318 0.6633184
0.25 0.808605 0.8086051 0.805338 0.8053384
0.30 0.987501 0.9875014 0.980249 0.9802487
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Figure 2: Nanofluids velocity profiles.

5.1. Velocity Profiles with Parameter Variation. Figures 2–4
illustrate the effects of parameter variation on both the axial
and normal velocity profiles. Generally, flow reversal is
observed in the region near the lower fixed plate as repre-
sented by negative value of the axial velocity (𝑊) while the
fluid near the upper accelerating plate moves faster forward
in the axial direction. Also the normal velocity profiles (𝑉)
are skewed towards the upper plate due to the drag force
exerted on the fluid by the upper plate acceleration. Figure 2
shows that the intensity of flow reversal near the lower fixed
plate and the skewness of the normal velocity towards the
upper moving plate produced by CuO-water are higher than
that of Al

2
O
3
-water under the same parametric conditions.

With CuO-water as the working nanofluid, it is observed
that increasing nanoparticles volume fraction concentration
from 0 to 30% increases the flow reversal near the lower fixed
plate and the skewness of the normal velocity towards the
upper moving plate as shown in Figure 3. With increasing
acceleration of the upper plate (i.e., 𝑅 increasing), a decrease
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Figure 4: Axial velocity profiles with increasing 𝑅.

in the flow reversal near the lower fixed plate and the
skewness of the normal velocity towards the upper plate
is observed as depicted in Figure 4. This decrease in flow
reversal can be attributed to an increase in the drag force
exerted on the fluid by the upper plate. The intersection of
the velocities 𝑊 and 𝑉 at a region near the upper moving
plate as shown in Figures 2, 3, and 4 indicates that both the
axial and the normal velocities of nanofluids at this point
(i.e., between eta = 0.75 and 0.78) are the same. This implies
that the axial acceleration of the upper plate may not have
any noticeable influence on both 𝑊 and 𝑉 velocities at this
intersecting region.

5.2. Temperature Profiles with Parameter Variation. The tem-
perature profiles of the nanofluids with different parameter
variation are displayed in Figures 5–10. Generally, the fluid
temperature increases within the channel and decreases near
the uppermoving plate due to convective heat loss to ambient

Ec = 0.1, Bi = 1
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Figure 5: Nanofluids temperature profiles.
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Figure 6: Temperature profiles with increasing 𝜑.

surrounding. It is noteworthy that the temperature produced
by CuO-water nanofluid is generally higher than that of
Al
2
O
3
-water nanofluid under the same flow condition as

shown in Figure 5.WithCuO-water as theworking nanofluid,
the temperature increases with a rise in nanoparticles volume
fraction from 0 to 30% as illustrated in Figure 6. Similar effect
of an increase in nanofluid temperature is observed in Figures
7 and 8 with an increase in Ec due to viscous dissipation
and axial distance along the channel. This may be attributed
to the fact that as Ec increases, the internal heat generation
within the fluid due velocity gradient increases, leading to a
rise in temperature.The axial increase in temperature may be
justified by the quadratic expression in axial distance for fluid
temperature in (16) (i.e., Φ(𝑋, 𝜂) = 𝐻(𝜂) + 𝑋2𝜃(𝜂)). Figures
9 and 10 show that the nanofluid temperature decreases with
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increasing Biot number (Bi) and upper plate acceleration (𝑅).
This is expected, since an increase in Biot number indicates
a rise in convective cooling due to heat loss to the ambient
surrounding from the upper plate. Moreover, an increase in
the upper plate acceleration also enhanced convective heat
loss; consequently, the nanofluid temperature decreases.

5.3. Skin Friction, Pressure Gradient, and Nusselt Number.
Figures 11 and 12 depict the skin friction profiles for both
CuO-water and Al

2
O
3
-water nanofluids at the upper moving

plate.The skin friction generally increases with an increase in
nanoparticles volume fraction; however, it is noticed that the
skin friction produced by Al

2
O
3
-water is more intense than

the one produced by CuO-water as shown in Figure 11. This
is expected since the axial velocity gradient of Al

2
O
3
-water
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at the upper moving plate is higher than that of CuO-water.
With CuO-water as the working nanofluid, it is observed
that the skin friction increases with an increase in upper
plate acceleration as indicated by increasing values of 𝑅 in
Figure 12. The pressure drop along the channel is illustrated
in Figures 13 and 14. For both CuO-water and Al

2
O
3
-water

nanofluids, it is seen in Figure 13 that the pressure drop
increases with increasing nanoparticles volume fraction and
CuO-water produced higher pressure drop as compared to
Al
2
O
3
-water. With CuO-water as the working nanofluid, an

increase in the upper plate acceleration causes a decrease in
pressure drop as shown in Figure 14. Figures 15–17 illustrate
the effects of parameter variation on the rate of heat transfer
at the moving upper plate. For both nanofluids, the Nusselt
number increases with an increase in nanoparticles volume
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Figure 14: Axial pressure gradient with increasing 𝑅.
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Figure 15: Nusselt number with increasing 𝜑.

fraction and the Nusselt number produced by CuO-water
nanofluid is higher than that of Al

2
O
3
-water nanofluid (see

Figure 15). In Figures 16 and 17, it is observed that the
strength of the upper plate heat transfer rate is enhanced with
increasing axial distance, viscous dissipation, and convective
cooling. This may be attributed to a rise in the temperature
gradient due to convective heat exchange with the ambient
along the upper plate. However, a decrease in the Nusselt
number is observed with increasing upper plate acceleration.
The closeness of the profiles for the Nusselt number values
in Figure 15 with small increase in nanoparticles volume
fraction shows that at very small values of nanoparticles
volume fraction (𝜑 < 0.12) the rate of heat transfer
across the upper moving plate surface for both nanofluids
is the same; however, as the nanoparticles volume fraction
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increases, the CuO-water produces higher heat transfer rate
as compared to Al

2
O
3
-water.

6. Conclusions

We analysed the combined effects of viscous dissipation and
convective cooling on Couette flow and heat transfer of water
base nanofluids containing CuO and Al

2
O
3
as nanoparticles.

The nonlinear boundary value problem is solved using
both perturbation series improvement method and Runge-
Kutta-Fehlberg integration numerical technique coupled
with shooting scheme. The summary of essential features of
physical interest from the above analysis is given below.

The flow reversal near the lower fixed plate and the
skewness of the normal velocity towards the upper moving

plate produced by CuO-water are higher than that of Al
2
O
3
-

water which increases with 𝜑 and decreases with 𝑅. CuO-
water produced higher temperature as compared to Al

2
O
3
-

water. The temperature increases with 𝜑, Ec, and 𝑋 but
decreases with Bi and 𝑅. The coefficient of skin friction
increases with 𝑅 and 𝜑 while Nusselt number increases
with increasing 𝜑, Ec, Bi, and 𝑋 and decreases with 𝑅.
Moreover, Al

2
O
3
-water produced higher skin friction while

CuO-water produced higher Nusselt number. The pressure
drop produced by CuO-water is higher than that of Al

2
O
3
-

water and it is enhanced by 𝜑 but decreases with 𝑅.
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(A.1)

Nomenclature

(𝑢, V): Velocity components
(𝑥, 𝑦): Coordinates
𝑘nf: Nanofluid thermal conductivity
Pr: Prandtl number
Bi: Local Biot number
𝑇
𝑎
: Ambient temperature

𝐹: Dimensionless stream function
𝑇
0
: Lower wall temperature

𝑇: Temperature
𝐻: Dimensionless temperature
𝑅: Reynolds number
𝑐
𝑝
: Specific heat at constant pressure

𝑘
𝑠
: Solid fraction thermal conductivity

𝑘
𝑓
: Base fluid thermal conductivity

𝑊: Dimensionless axial velocity
𝑉: Dimensionless normal velocity
Ec: Eckert number
𝐸: Upper wall acceleration parameter
𝑋: Dimensionless axial coordinate
𝐴: Axial pressure gradient coefficient
𝑎: Channel width
Nu: Nusselt number
𝐶
𝑓
: Skin friction coefficient.

Greek Symbols

𝜓: Stream function
𝜃: Dimensionless temperature
𝜇nf: Nanofluid dynamic viscosity
𝛼nf: Nanofluid thermal diffusivity
𝜂: Dimensionless normal coordinate
𝜌nf: Nanofluid density
𝜌
𝑠
: Solid fraction density

𝜐
𝑓
: Base fluid kinematic viscosity

𝜇
𝑓
: Base fluid dynamic viscosity

𝜑: Solid volume fraction parameter
𝜌
𝑓
: Base fluid density

Ω: Vorticity
𝜓: Dimensionless stream function
Ω: Dimensionless vorticity
Φ: Dimensionless temperature.
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