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We prove two identities for Ramanujan’s cubic continued fraction and a continued fraction of Ramanujan, which are analogues of
Ramanujan’s identities for the Rogers-Ramanujan continued fraction. We further derive Eisenstein series identities associated with
Ramanujan’s cubic continued fraction and Ramanujan’s continued fraction of order six.

1. Introduction

Throughout this paper, we assume that |g| < 1 and for each
positive integer 1, we use the standard product notation

(a; Q)o =1 (a; q)n =

s

(a:9), = (1 —aqj).

—~
Il
(=]

Srinivasa Ramanujan made some significant contributions
to the theory of continued fraction expansions. The most
beautiful continued fraction expansions can be found in
Chapters 12 and 16 of his second notebook [1].

The celebrated Rogers-Ramanujan continued fraction is
defined by [2]

R(q)—gslC271) _ q”
fead-) 1o —1
7O
3
1+ |

where

00
f (a’ b) _ Z an(n+1)/2bn(n—1)/2,

n=—00

=1+ Ozo:(ab)"(nfl)/Z (an " bn) i (3)

n=1

lab| < 1,

is Ramanujan’s general theta function.

Ramanujan eventually found several generalizations and
ramifications of R(q) which can be found in his notebooks [1]
and “lost notebook” [3]. Recently, Liu [4] and Chan et al. [5]
have established several new identities associated with the
Rogers-Ramanujan continued fraction R(g) including Eisen-
stein series identities involving R(qg).

The beautiful Ramanujan’s cubic continued fraction G(g),
first introduced by Srinivasa Ramanujan in his second letter
to Hardy [2, page xxvii], is defined by

1/3 f (_q’ _qs)
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Adiga et al. [6], Bhargava et al. [7], Chan [8], and Vasuki
et al. [9] have proved several elegant theorems for G(g), many
of which are analogues of well-known properties satisfied by
the Rogers-Ramanujan continued fraction.

Recently, Vasuki et al. [10] have studied the following
continued fraction of order six:

/4 f(_q’ _qs)
X(a) =4 f(-4*-9"
q1/4 (1 _ q—z) (5)

(q1/4 _ q71/4) (q77/4 _ q7/4) :
(1-q22)(1+4°)+

The continued fraction (5) is a special case of a fascinating
continued fraction identity recorded by Ramanujan in his
second notebook [1], [11, page 24]. Furthermore, they have
established modular relations between the continued frac-
tions X(gq) and X(q") forn =2,3,5,7, and 11.

In Section 3 of this paper, we establish two new identities
associated with the continued fractions G(q) and X(g),
using the quintuple product identity. In Section 4, we derive
Eisenstein series identities associated with G(q) and X(q).

(1-q7) +

2. Definitions and Preliminary Results

In this section, we present some basic definitions and pre-
liminary results. One of the most interesting special cases of
f(a,b) is [11, Entry 22]

(o)

Z (_1)nqn(3n—1)/2 _ (q,q)oo (6)

n=-—00

f(-q)=f(-2-9") =

Note that the Dedekind eta function #(r) = q"**f(-g),
where ¢ = ¢, Im 7 > 0. We need the following three
lemmas to prove our main results.

Lemma 1 (see [11, Entry 30, page 46]). One has

f(ab)+ f(-a,-b) = 2f (a’b,ab’). )

Lemma 2 (see [11, page 80]). One has

f(B T3 ) B f<B3,B3q5)

f (_Bz’ _qz/Bz)
f (Bg,4/B)

Lemma 3 (see [12, Lemma 2(ii)]). Let m = [s/(s — )], ] =
m(s—r)—r,k = —m(s—r)+s, and h = mr—(m(m-1)(s-r))/2,
0 < r < s. Here [x] denotes the largest integer less than or equal
to x. Then

() fq".q)=q9"fq.9";
(ii) f(-q " —q") = ~1)"q " f(~4', ~q").

= f(-9°)
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3. Main Results

The Jacobi triple product identity states that

n _n(n— 1)/2 n . . g
n:Z (-1)"q (q,q)oo(z,q)oo<z,q>00, z#0.
)

In Ramanujan’s notation, the Jacobi triple product identity
takes the form

f (a,b) = (—a;ab),(-b; ab) , (ab; ab),. (10)

The Jacobi triple product identity was first proved by Gauss
[13]. Using (3), we have

[ee]
f (—ezw, —qeiZ’Z) = 21'e’zZ(—l)wrlq"(wrl)/2 sin(2n+ 1) z.
n=0
(11)
Putting a = —* and b = —ge”** in (10), we obtain

) oo (@ Doo
(12)

¥ (_eZiz’_qe—Ziz) _ (1 B eZiz) (quiz;q)oo(qe

Putting z = 77/6 and z = 27/6, respectively, in (12), we obtain

f (_ein/3) _qe—ir[/3)

. . . (13)
= (1-€"7) (3™ @)oo (@€ ™ Do (@ Do
f (_ei27r/3 _qe—iZn/3)
. . 4 (14)
— (1 _ 6127'[/3) (qe12ﬂ/3; q)m(qe—12ﬂ/3; q)oo(q; q)oo

Multiplying (13) and (14) together and using the identities
(1-¢™)(1-e") = -iV3,
(1-x) (1-x%) (1= xe7%) (1 - x*¢)  (15)
x (1-xe ) (1-xe"°) = (1-x°),

in the resulting equation and then after some simplifications,
we obtain the following identity:

f (_ein/S) _qe—irt/S) f (_ei2n/3’ _qe—i2n/3)
P RTRGLIG)) 1o
n(27)
Theorem 4. Let |q| < 1, « = -1, and 3 = 1. Then
= 1 1
‘il +vagegr) E(l + g + q")
, (17)
= 4417 n(t)n” (37)
CT e e D I T R
nH1+ocq”’2+q) H(1+ﬁq”’2+q) )
18

_ g /24 n(t)n (21) 1 (67) X
4 n () 3t/2) + #? (r/2) n (37) (a)-
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Proof. We may rewrite (13) and (14) as follows Therefore,
in/3 —im/3 0
f (—e ,—qe ) Z(_l)np ) q(2n+1)2/
[ee]
_ (1 B eir:/3) q—1/24’1 ) 1—[ (1 fag'+ an) ’ . .
m 2 m 2
poil ) -5 {_Zoq(u LRI Zoq(u +5)2/8 (28)
f (_61271/3) _qe—12n/3) m= m=
N (12m+7)*/8 © (12m+9)2/8}
. o +)q ->q .
= (1 —e’2"/3)q_1/2417 (T)H(l +Bq" +q2"), m=0 mzz:o
-1
In the right-hand side of the above equation, changing m to
N he right-hand side of the ab q hanging
where m— 1 in the first two summations and also changing m to —m
- o in the last two summations, we obtain
a=-2cos — = -1, B=-2cos— =1. (20)
. > S 2n+1)*/8
Then, ¥ (-1)"P (n) g
0 , 1/24 f ( 171/3 -g 171/3) I (29)
1+ad" +a™" , 21 _ (12m-7)*/8 _ (12m-9)*
R R T e 2] 2 8 e
) 1/24 1271/3 _ o ,—i2m/3 . iy . .
5 f ( qe ) Now, using the definition of f(a,b) in the right-hand side of
[1(1+8q" +q") =1 22)  theab tion, we find that
11 7 (1) (1 —e2n/3) e above equation, we find tha
Z (~1)"P (n) q(2n+1)2/8
(30)

Multiplying the above two equations together and then using
n=0

(16), in resulting identity, we find that
RGUACLZN = 2" {f(q.q") -2 f(d.47)}-

1vaq"+q")(1+Bq" +q") =
(1+aq"+q")(1+Bd" +q") =q preR
In the quintuple product identity (8), replacing g by q° and

then setting B = g, we find that

—1s

I
—_

n

Subtracting (22) from (21), we obtain

(1 +aq"+ qZ”) - H (1 +Bq" +q2")

f(dq7)-af(q.q4") = Fla f)(j;s(;;))_q ). o

—1s

n=1 n=1
_ /3 _ _ —in/3 _i2m/3 _ _ -i2m/3
_ ‘11/24 f( € »qe )_ f( R ) Combining (25), (30), and (31), we find that
11(1-) (1 _ ein/3) (1 _ ei2n/3)
24 = n o\ T n,
(24) H(1+(xq +q2)—H(1+/3q +q2)

Using (11) in (24), we deduce that n=1 n=1 (32)
- 2 - 2 — _2q25/24 f(_qIZ)f(_qz)_qm)
[T(1+aq"+q")-TT(1+Bq" +q") () fg*q) '
n=1 n=1 (25)

-1/12 o Dividing both sides of (32) by [, (1+aq"+q"")(1+B4"+q"")
and then using (23), we obtain

Z( 1) P( ) (2n+1)? /8

ﬁ(l +aq’ + qz”)_1 - ﬁ(l +pq" + qz”)_1
n=1 n=1
f (_qu) f (_qZ) _qu) }

_ 2q29/24 n(21)
1 (t) 7 (67) f(@.q)
(33)

where
2sin(2n+ 1) (r/6) 2sin(2n+ 1) (271/6)
P(n) = il (1— en3) | jeiznlo (1 _ gi2nl3) - (26)

Now, by direct computations, we find that
Replacing a by g and b by ¢” in (7), we find that

P@6m+0)=0, P(6m+1)=
Pm+2) =2  P(6m+3)=-2, 7)
P(6m+5) = f(ad’)+ f(-a-0) =2f(q"q). (34)

Pem+4)=-



Now, using the above equation in the right-hand side of

(33) and then changing g to q'/? throughout, we obtain (17).
Equation (18) follows from the following identity:

2 6
G(q) = TED1ED oy

35
n* (37) G2
This completes the proof of Theorem 4. O

4. Fisenstein Series Identities Associated
with G(g) and X(q)

In this section, we present four Eisenstein series identities
associated with G(q) and X(q).

Theorem 5. Let |q| < 1. Then

io: qn _q3n +q5n ~ io: qn _ q3n +q5n
n=1 1- q6n n=1 1- q6n
n=1(mod 3) n=2(mod 3) (36)
3
n (18T) 1 3
= — -1-G
160 L@ o)

Proof. Changingn to —n in the second summation, of the left-
hand side of Theorem 5, we have

io: qn _q3n + an ~ io: qn _q3n +q5n
n=1 1-g% n=1 1-g%
n=1(mod 3) n=2(mod 3)
_ i qn _q3n +q5n
n=1 1- q6n
n=1(mod 3)
~ —Zl: q—n _q—3n +q—5n
n=—00 1- qién
n=1(mod 3)
_ i 3n+1 - i q9n+3 . OZO: q15n+5
n:—ool _ q18n+6 n:—ool _ q18n+6 n:—ool _ q18n+6
(37)

Using a corollary of Ramanujan’s ; ¥, summation formula [11,
Entry 17, page 32]

i 2" (az,q/az,q,q;9),,

_ , <lz] <1, (38)
L Tar - @amsaima.
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and Lemma 3 in (37), we find that

i qn_q3n+q5n -

ozo: qn _q3n +q5n
1-— qén

n=1 1- an

n=1
n=1(mod 3) n=2(mod 3)

<q9)q9)q18’q18;q18 .

=9
(4,92 ¢, 455 "),

3(q15)q3)q18)q18;q18)00
(4%4". 4" 49",

5(q21’q73,q18,q18;q18)00
(q6,q12,q15, q3; qls)oo
) (qls;qm); { f(_q9,_q9) i 3f(—q3,—q15)
PR ) T O R @y
zf(_qs,_qls)}'

-9

+

(39)

Using (4) in (39) and after some simplifications, we obtain
(36). O

Theorem 6. Let |q| < 1. Then

i qn _q2n_q4n +q5n
1-— an

n=1
n=1(mod 6)

(]

Z qn _q2n _ q4n +q5n
n=1 1- q6n
n=5(mod 6)
_ n(127)n (187) 7 (367)
1 (67)

1 7 (187)
y _ _
X(¢°) n(121)n(367)

(40)

x(q°)

Proof. Using the identity

(41)

IxI, [y <1,

_ n.m _mn _ y
=225 = Y

the left-hand side of Theorem 6 can be written as

-1 5n

2 4
i qn -q n_ g n ~ Z
n=1 1- an n=—00
n=1(mod 6) n=1(mod 6)

_q—2n _q—4n +q—
1-— q—6n

0 o6n+1 00 12n+2 00 24n+4

= Z 1? 36n16 Z 1? 36n+6 Z _ 436n+6 "

neol =4 o1 =4 ne—eol =4
(42)
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Using (38) in (42), we obtain

i qn _q2n _ q4n +q5n
n=1 1- q6n
n=1(mod 6)
- i qn _q2n _q4n +q5n
n=1 1- qén
n=5(mod 6)
(q36; q36)<2>o (43)
(qﬁ)q30;q36)00
{ (q12>424§q36)m B 2(q18,q18;q36)00
(qG’ q30;q36)00 (q12’ q24; q36)00

_q4 (q6,q30;q36)00 }
(q12’ q24; q36)00

Using (5) in (43) and after some simplifications, we obtain
(40). O

Differentiating both sides of (12) and then setting z = 0
yield

f(-1,-q) = ~2i(g: @)%, (44)
where f' denotes the partial derivative of f with respect to z.
Now we prove a lemma, which is useful to prove Eisen-

stein series identities associated with G(g) and X(g).

Lemma 7. Consider the following:

00 N 2n 4n 5n

- - +
Z 1°9 qﬁn 1 sin 2nz
n=1 1= q

= (—€2iz ! (—1,—q6) f (_q3) _q3) f (_q’ _qs)
xf (_e4iz’ _qée—4iz))
x (4q2f (_quiz) _qSe—Ziz)
« f(_q—lem‘z’ _q7e—2iz) f(_qzeziz’ _q4e—2iz))’1

1
f (_q—ZeZiz, _qSe—Ziz) :

X

(45)
Proof. For simplicity, we use F(z, q) to denote the logarithmic
derivative of ig'/®e™ f(—e*?, —ge %) with respect to z. To

prove this lemma we need the following identity, which can
be found in [14, Theorem 5], [15, Corollary 2]:

F(z),q) + F(25,9) + F(23,9) = F (2, + 2, + 25,9)
_ (_fr (_1, _q) f (_eZi(zl+zz), _qe—zi(z1+z2))

Xf (_e2i(22+23), _qe—2i(zz+z3)))

x (f (_eZizl’ _qe—Zizl)
x f(_eZizz’ _qe—Ziz2 )f(_eZiz3) —q€_2i23))_1

f (_EZi(z1+z3)’ _qe—Zi(zl+zs))
f (_eZi(z1+zz+z3), —qe_Zi(zl+ZZ+Zs)) .

(46)

As the proof of this lemma is similar to that of Lemma 1 in
[4], we omit the details. O

Using (45), we derive the following Eisenstein series
identity.

Theorem 8. Let |q| < 1. Then

in(qn_an_q4n_+_q5n)
= 1-— an

(47)

6 4
n° (37) 1" (37)n (67) n (27)
= —G = X .

Proof. Dividing both sides of (45) by z and then letting z —
0, we obtain

Oon(qn_an_q4n+q5n>
Z 1- 6n

n=1 q
=((¢54") f (-05-2) F(-4-0))  (ag)
x(q’f(-4"-a") f(-a '.-9)
x f-a%-a")f(-q7%~4)) .

Using Lemma 3 in (48), we complete the proof of Theorem 8.
O

We use (-/p) to denote the Legendre symbol modulo
p. Setting z = m/3 in (45) and noting that sin (2nm/3) =
(v/3/2)(n/3), we find that

ﬁi(ﬁ) qn_an_q4n+q5n

2 5\3 1-g

= (" (-1-4") f (~a"~4")
<f (-0 £ (e, —ge7P))
x (4q? f (~eH(EIP#m0 | _ g -2i(nf)4me))
x (e qse—zi«n/s)—m)))—l
X (1) (f (~eHRm) _ g8 2ilr/)2me)

% f(_62i((rr/3)72n1) , _q6672i((n/3)727n) ))*1 .
(49)



Recall the identity [16, Eq. (3.1)]
f (_62i((n/3)—z) _qe—zi((rr/S)—z))
2i((71/3)+2) —2i((71/3)+2)
x f (—e ,—qe ) (50)
B e_ZiZ (q, q)go f (_e6iz, _q3e—6iz)
- e(—iZn)/3(q3; q3)00 f (_eZiz, _qe—ziz) ’

Using the above identity in (49), we obtain the following
Eisenstein series identity.

Theorem 9. Let |q| < 1. Then

i(ﬁ) qn_an_q4n+q5n
= 3 1_q6n

2
_ 1" B)n(@)n(91)n (187) 51
- ;,]3 (6‘[) G(q) ( )
_n(@)n21)n(97)n(181)
- P (67)

X(q)-
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