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The nonlinear propagation of electrostatic perturbation modes in an unmagnetized, collisionless, relativistic, degenerate plasma
(containing both nonrelativistic and ultrarelativistic degenerate electrons, nonrelativistic degenerate ions, and arbitrarily charged
static heavy ions) has been investigated theoretically. The Korteweg-de Vries (K-dV) equation has been derived by employing
the reductive perturbation method. Their solitary wave solution is obtained and numerically analyzed in case of both planar
and nonplanar (cylindrical and spherical) geometry. It has been observed that the ion-acoustic (IA) and modified ion-acoustic
(mIA) solitary waves have been significantly changed due to the effects of degenerate plasma pressure and number densities of
the arbitrarily charged heavy ions. It has been also found that properties of planar K-dV solitons are quite different from those of
nonplanar K-dV solitons. There are numerous variations in case of mIA solitary waves due to the polarity of heavy ions. The basic
features and the underlying physics of IA and mIA solitary waves, which are relevant to some astrophysical compact objects, are
briefly discussed.

1. Introduction

A large fraction of matter in the universe is in the plasma
state. Significant attention has been devoted to the study
of ion-acoustic (IA) waves in plasmas not only from an
academic point of view, but also from the view of its vital
role in understanding the nonlinear features of localized
electrostatic disturbances in laboratory and space environ-
ments [1–6]. The basic features of solitary waves associated
with IA waves, in which electron thermal pressure gives
rise to a restoring force and ion mass provides the inertia,
were first theoretically predicted by Washimi and Tanuiti
by assuming an ideal plasma containing cold ions and
isothermal electrons.These basic features [7] were verified by
a novel laboratory experiment of Ikezi et al. [6].

Presently, relativistic degeneracy of plasmas has received
great attention because of its vital role in different astrophys-
ical environments [8, 9], where particle velocities become
comparable to the speed of light. Astrophysical compact
objects such as white dwarfs, neutron stars, quasars, black
holes, and pulsars are examples where relativistic degenerate
plasmas are dominant and interesting new phenomena are

investigated by several nonlinear effects in such plasmas.The
basic constituents of white dwarfs aremainly oxygen, carbon,
and helium with an envelope of hydrogen gas. In some
relatively massive white dwarfs, one can think of the presence
of heavier element like iron within the stars. The existence of
heavy elements is found to form in a prestellar stage of the
evolution of the universe, when all matter was compressed
to extremely high densities and possessed correspondingly
high temperatures [10]. In case of such a compact object
the degenerate electron number density is so high (in white
dwarfs it can be of the order of 1030 cm−3, even more [8]).

Chandrasekhar [11, 12] presented a general expression
for the relativistic ion and electron pressures in his classical
papers. The pressure for ion fluid can be given by the
following equation:
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for the nonrelativistic limit (where Λ
𝑐
= 𝜋ℏ/𝑚𝑐 = 1.2 ×

10
−10 cm and ℏ is the Planck constant divided by 2𝜋), while

for the electron fluid,

𝑃
𝑒
= 𝐾
𝑒
𝑛
𝛾

𝑒
, (3)

where

𝛾 = 𝛼; 𝐾
𝑒
= 𝐾
𝑖

for nonrelativistic limit,

𝛾 =
4

3
; 𝐾

𝑒
=
3

4
(
𝜋
2

9
)

1/3

ℏ𝑐 ≃
3

4
ℏ𝑐,

(4)

in the ultrarelativistic limit [11–14].
We note that we have considered both electron and ion

degeneracy, but light electrons are assumed to be relativistic
(nonrelativistic and ultrarelativistic) and ions (which are
heavier than electrons) are assumed to be nonrelativistic.
Equations (1) and (3) represent the equations of state of ion
and electron pressure in high density regime.

Recently, several authors have used the pressure laws
to observe the linear and nonlinear properties of electro-
static [15–19] and electromagnetic [20, 21] waves by using
only nonrelativistic or both nonrelativistic and ultrarela-
tivistic quantum hydrodynamics (QHD) [22] and quantum-
magnetohydrodynamics (QMHD)models [23, 24].The solu-
tion of the Dirac equation for electrostatic and electro-
magnetic waves in a relativistic quantum plasmas has been
discussed by Mendonca and Serbeto [25]. Masood and
Eliasson considered an unmagnetized quantum plasma with
relativistically degenerate electrons and cold fluid ions and
they studied the basic features of the solitary structures
[26]. Later on, Shukla et al. [27] theoretically investigated
the nonlinear propagation of electrostatic waves in degen-
erate quantum plasma. They considered strongly coupled
nondegenerate ions and degenerate electron fluids in an
unmagnetized dense plasma and studied the basic properties
of solitary and shock structures. Zeba et al. [28] con-
sidered a warm collisionless electron-positron-ion plasma
with ultrarelativistic degenerate electrons and positrons and
investigated theoretically the existence regions for ion solitary
pulses. Since the dense astrophysical quantum plasmas can
be confined by stationary heavy ions, therefore the effect of
the heavy ions has to be taken into account, especially for
astrophysical observations (such as white dwarfs, neutron
stars, and black holes) where the degenerate plasma pressure
and heavy ions play an important role in the formation
and stability of the existing waves. Recently, Zobaer et al.
[9, 15, 16, 29] also considered nonrelativistic ion fluids
and both nonrelativistic and ultrarelativistic electron fluids
and theoretically investigated the basic features of solitary,
shock, and double layer structures. All of these investigations
are mainly based on planar geometry and they did not
consider the effect of heavy ions, whichmay not be a realistic
situation in space environments. Since the waves observed
in astrophysical compact objects are certainly not infinite in
one dimension (1D) and there is a great possibility of having
both positively and negatively charged heavy ions, there are
several cases of practical importance where planar geometry
does not work and one would have to consider a nonplanar

geometry. The notable examples where nonplanar geometry
plays a vital role are white dwarfs, neutron stars, black
holes, circumstellar disks, dark molecular clouds, cometary
tails, and so forth. Till now, no theoretical investigation has
been made to study the extreme conditions of matter for
both nonrelativistic and ultrarelativistic limits and arbitrarily
(both positively and negatively) charged heavy ions on a
planar and nonplanar (cylindrical and spherical) geometry.
Therefore, in our present work, we attempt to study the basic
features of planar and nonplanar IA and mIA solitary waves
by deriving theKorteweg-deVries equation in a dense plasma
containing degenerate electron and ion fluids and arbitrarily
charged static heavy ions.

The paper is organized as follows. The governing equa-
tions are provided in Section 2.The K-dV equation is derived
in Section 3. The profiles of K-dV solitons are presented in
Section 4 and numerically analyzed in order. Finally, a brief
discussion is given in Section 5.

2. Governing Equations

We consider a nonplanar (cylindrical and spherical) geome-
try and nonlinear propagation of mIA waves (consisting of
arbitrarily charged static heavy ions, nonrelativistic degen-
erate cold ions, and both nonrelativistic and ultrarelativistic
degenerate electron fluids) in an unmagnetized, collisionless
dense plasma.Hence, at equilibrium,we have𝑍
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+𝑗𝑍
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ℎ
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number of ions residing onto the heavy ion surface, and 𝑒 is
the magnitude of charge of an electron and 𝑗 = +1 (𝑗 = −1)

for positively (negatively) charged heavy ions. The nonlinear
dynamics of the electrostatic waves propagating in such a
degenerate dense plasma system is governed by the following
normalized equations:
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where ] = 0 for one-dimensional planar geometry and
] = 1(2) for nonplanar cylindrical (spherical) geometry; 𝑛

𝑖

(𝑛
𝑒
) is the ion (electron) number densities normalized by its
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(ion) rest mass, 𝑐 is the speed of light in vacuum, and 𝜙 is
the electrostatic wave potential normalized by 𝑚
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).
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When 𝜇 = 0 the situation acts as normal electron-ion
plasma system. The polarity of the heavy ions depends on
the parameter 𝑗. When 𝑗 = +1(−1) the heavy ions act as
positively (negatively) charged in this plasma system. The
time variable (𝑡) is normalized by 𝜔

𝑝𝑖
= (4𝜋𝑛

0
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2
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𝑖
)
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3. Derivation of K-dV Equation

Nowwederive theK-dV equation by employing the reductive
perturbation technique to examine the electrostatic perturba-
tions propagating in this dense plasma system and introduce
the stretched coordinates [30] as follows:

𝜉 = −𝜖
1/2
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𝑡) ,
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(6)

where 𝑉
𝑝
is the wave phase speed (𝜔/𝑘 with 𝜔 being the

angular frequency and 𝑘 being the wave number of the
perturbationmode) and 𝜖 is a smallness parametermeasuring
the weakness of the dispersion (0 < 𝜖 < 1). We then expand
the parameters 𝑛

𝑖
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Now, expressing (5) (using (6)) in terms of 𝜉 and 𝜏 and
substituting (7) into (5), one can easily develop different sets
of equations in various powers of 𝜖. To the lowest order in
𝜖, we have 𝑢(1)
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represents the dispersion relation as well as the phase velocity
for themIA-type electrostaticwaves in this degenerate plasma
under consideration.

To the next higher order in 𝜖, we obtain a set of equations:
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Now, combining (8) we deduce a Korteweg-de Vries (K-dV)
equation:
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4. Numerical Analysis and Results

Generally, IA waves are low frequency electrostatic waves in
which inertia is provided by ion mass and restoring force
comes from electron thermal pressure. The modified ion-
acoustic (mIA) waves are nothing but IA-type waves in the
presence of static heavy ions. It is important to note that if
we neglect the heavy ions then we get the usual IA waves.
In order to analyze the IA and mIA solitary waves, we turn
to (9) with the term ]𝜙(1)/2𝜏, which is due to the effects of
the nonplanar (cylindrical and spherical) geometry. An exact
analytic solution of (9) is not possible. However, for clear
understanding, we first briefly discuss the stationary solitary
wave solution for (9)with ] = 0, though the solution is similar
for both IA and mIA waves. We should note that for large
value of 𝜏, the term ]𝜙(1)/2𝜏 is negligible. So, in our numerical
analysis, we start with a large value of 𝜏 (namely, 𝜏 = −14),
and at this large (negative) value of 𝜏, we choose the stationary
solitary wave solution of (9) (without the term ]𝜙(1)/2𝜏) as
our initial pulse. For a moving framemoving with a speed 𝑢

0
,

the stationary solitary wave solution of (9) is given by
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The profiles of solitary waves caused by the balance
between nonlinearity and dispersion are shown in Figures 3
to 14, which show how the effects of cylindrical (] = 1) and
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spherical (] = 2) geometry modify the time-dependent IA
and mIA solitary structures and how it differs from planar
(] = 0) ones.

The conditions for the existence of cylindrical and spher-
ical solitary structures and their basic features are found to
be significantly modified in the presence of nonrelativistic
ions, both nonrelativistic and ultrarelativistic electrons and
arbitrarily charged static heavy ions. The IA and mIA waves
are modified when ion is nonrelativistic degenerate (𝛼 = 5/3)

and electron is ultrarelativistic degenerate (𝛾 = 4/3) than
both electron and ion being nonrelativistic degenerate (𝛼 =

𝛾 = 5/3). The ranges (𝑢
0
= 0.01–1 and 𝜇 = 0.2–0.6) [13–

15] of plasma parameters used in this numerical analysis are
very wide and correspond to space and laboratory plasma
situations.

The nonlinearity has an important role as the solitary
waves are caused by the balance between nonlinearity and
dispersion. This is a unique phenomenon that the degree of
nonlinearity is proportional to the potential of the plasma sys-
tem as a highly nonlinear medium causes high electrostatic
potential.We have found that the phase speed with negatively
(positively) charged heavy ions for ultrarelativistic case is
higher (lower) than that for nonrelativistic case (it is expected
from the expression of 𝑉

𝑝
). We have also found that as time

decreases the amplitude of the solitary waves in cylindrical
and spherical geometry increases. It is also examined that,
in spherical geometries, the amplitude is always distinctly
higher than cylindrical geometries for K-dV solitons, which
indicates that the density compression can bemore effectively
obtained in a spherical geometry. It is observed that the
amplitude of the K-dV solitons is always distinctly higher
for nonrelativistic case than for ultrarelativistic one. It is
due to the effects of relativistic factors; that is, 𝛼 > 𝛾 for
ultrarelativistic case and 𝛼 = 𝛾 for nonrelativistic case.
We also found that the amplitude of the K-dV solitons is
lower for positively charged heavy ions than for negatively
charged heavy ions. Actually, this happens due to the reason
that it decreases the value of the nonlinearity coefficient 𝐴.
It is obvious from (12) that the height of the amplitude of
the solitary structures is directly proportional to the solitary
speed moving with speed 𝑢

0
and inversely proportional to𝐴.

On the other hand, (12) also implies that the width of these
solitary structures is directly proportional to the square root
of the constant 𝐵 and inversely proportional to the solitary
speed moving with speed 𝑢

0
.

We have first graphically represented the effects of 𝜇 on
the phase speed of mIA waves as shown in Figures 1 and
2. From the figures, for negatively charged static heavy ions
(𝑗 = −1), we observe that the upper (dashed orange) line rep-
resents the ultrarelativistic case and the lower (dashed blue)
line represents the nonrelativistic case. On the other hand,
for positively charged static heavy ions (𝑗 = +1), the upper
(dashed red) line represents the nonrelativistic case and the
lower (dashed green) line represents the ultrarelativistic case.
The profiles of IA andmIAwaves for 1D planar (] = 0) system
comparing the nonrelativistic and ultrarelativistic limits are
shown in Figures 3 and 4.

The effects of degenerate electron and ion fluids and
arbitrarily charged static heavy ions significantly modify

0.40 0.45 0.50 0.55 0.60 0.65 0.70

1.00

1.05

1.10

1.15

1.20

V
p

j = −1; 𝛼 = 5/3; 𝛾 = 4/3

j = −1; 𝛼 = 𝛾 = 5/3

𝜇𝜇

Figure 1: Showing the effects of 𝜇 on the phase speed of mIA
K-dV solitons for negatively charged static heavy ions. The upper
(dashed orange) line represents the ultrarelativistic case and the
lower (dashed blue) line the nonrelativistic case.
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the basic properties (speed, amplitude, and width) of the IA
andmIA K-dV solitons. When we compare the ] = 0 case for
IA wave (Figure 3), we observe that the red line represents
the nonrelativistic case and the purple line represents the
ultrarelativistic case. But in case of mIA wave, for negatively
charged heavy ions (𝑗 = −1), we found that the upper orange
line represents the ultrarelativistic case and the lower blue line
represents the nonrelativistic case (Figure 4). On the other
hand, for positively charged heavy ions (𝑗 = +1), the upper
green line represents the nonrelativistic case and the lower
pink line represents the ultrarelativistic case (Figure 4). After
that, we observe the ] = 1 and ] = 2 case for both IA
(Figures 13-14) and mIA waves (Figures 5–12) comparing the
nonrelativistic and ultrarelativistic limits. Finally, the results
that we have found in this investigation can be summarized
as follows.
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Figure 6: Effects of cylindrical geometry on mIA K-dV solitons
in the presence of negatively charged static heavy ions when both
electron and ion are nonrelativistic degenerate (] = 1; 𝑗 = −1;
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Figure 7: Effects of spherical geometry onmIAK-dV solitons in the
presence of positively charged static heavy ions when both electron
and ion are nonrelativistic degenerate (] = 2; 𝑗 = +1; 𝜇 = 0.5; 𝑛

𝑒0
=

1.1 × 10
30; 𝑢
0
= 0.01; 𝛼 = 𝛾 = 5/3).

(1) The plasma system under consideration supports
finite amplitude K-dV solitons, whose basic prop-
erties (polarity, amplitude, width, etc.) depend on
the degenerate electrons and the arbitrarily charged
stationary heavy ions number densities.

(2) For negatively (positively) charged heavy ions, the
phase speed increases (decreases) with the increase
of 𝜇 (Figures 1 and 2). The phase speed is always
higher (lower) for negatively (positively) charged
static heavy ions for ultrarelativistic case than for
nonrelativistic case.

(3) We can compare the IA and mIA solitary structures
in case of planar geometry as shown in Figures 3 and
4. In these profiles, we observe that the amplitude
is higher (lower) for negatively (positively) charged



6 Journal of Astrophysics

0
0.01

0.02
0.03

−12

−10

−8

−6

−14

𝜏

20

0
10

−20
−10

𝜉

𝜙
(1
)

Figure 8: Effects of spherical geometry onmIAK-dV solitons in the
presence of negatively charged static heavy ions when both electron
and ion are nonrelativistic degenerate (] = 2; 𝑗 = −1; 𝜇 = 0.5; 𝑛

𝑒0
=

1.1 × 10
30; 𝑢
0
= 0.01; 𝛼 = 𝛾 = 5/3).

0

0.005

0.01

0

10

−10

𝜉

𝜙
(1
)

−12

−10

−8

−6

−14

𝜏

Figure 9: Effects of cylindrical geometry on mIA K-dV solitons
in the presence of positively charged static heavy ions when ion is
nonrelativistic degenerate and electron is ultrarelativistic degenerate
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mIA waves than for the IA ones. It is also valid for
cylindrical and spherical IA (Figures 13-14) and mIA
(Figures 5–12) solitary structures.

(4) The large value of 𝜏 kills the possibility of formation
of nonplanar solitons. It has been found that as the
value of 𝜏 decreases the amplitude of these localized
pulses increases for both IA (Figures 13-14) and mIA
(Figures 5–12) waves. From the observation we can
say that the amplitude of cylindrical (Figures 13 and
14 for IA and Figures 5, 6, 9, and 10 for mIA wave)
K-dV solitons is larger than 1D planar (Figure 3 for
IA and Figure 4 for mIA wave) ones but smaller than
that of the spherical ones (Figures 7, 8, 11, and 12 for
mIA wave).
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Figure 10: Effects of cylindrical geometry on mIA K-dV solitons
in the presence of negatively charged static heavy ions when ion is
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Figure 11: Effects of spherical geometry on mIA K-dV solitons in
the presence of positively charged static heavy ions when ion is
nonrelativistic degenerate and electron is ultrarelativistic degenerate
(] = 2; 𝑗 = +1; 𝑢

0
= 0.01; 𝑛

𝑒0
= 1.1 × 10

30; 𝛼 = 5/3; 𝛾 = 4/3).

(5) From the observation of Figure 3, we can clearly
say that the amplitude is lower for ultrarelativistic
case than for nonrelativistic case and from Figure 4,
the amplitude is higher for ultrarelativistic case than
for nonrelativistic case. It is also valid for all other
cylindrical and spherical graphs of IA (Figures 13-14)
and mIA (Figures 5–12) waves.

(6) The amplitude of the mIA K-dV solitons significantly
differ with the polarity of heavy ions and relativistic
parameters. It is found from Figure 4 that the ampli-
tude of mIA wave in planar case is always higher
(lower) for negatively (positively) charged heavy ions
for both nonrelativistic and ultrarelativistic limits
which is also valid in nonplanar case (Figures 5–12).
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Figure 13: Effects of cylindrical geometry on IAK-dV solitons when
both electron and ion are nonrelativistic degenerate (] = 1; 𝑢

0
=
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5. Discussion

We have studied the nonlinear propagation of IA and mIA
solitarywaves in an unmagnetized, collisionless dense plasma
(containing both nonrelativistic and ultrarelativistic degener-
ate electrons, nonrelativistic degenerate ions, and arbitrarily
charged static heavy ions). The degenerate electron and ion
number densities and arbitrarily charged static heavy ions
significantlymodify the basic properties of the solitary waves.
It is also found that the amplitude of the solitary waves has
been modified by the term 𝜇. In our numerical analysis, we
have tried to give the idea of the variation among nonrel-
ativistic and ultrarelativistic degenerate plasma pressure, IA
and mIA solitary structures in case of planar and nonplanar
geometry which makes our present work significant to
understand the localized electrostatic disturbances in many
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Figure 14: Effects of cylindrical geometry on IA K-dV solitons
when ion is nonrelativistic degenerate and electron is ultrarelativistic
degenerate (] = 1; 𝑢

0
= 0.01; 𝑛

𝑒0
= 1.1 × 10

30; 𝛼 = 5/3; 𝛾 = 4/3).

space and astrophysical plasma environments (namely, white
dwarfs, neutron stars, compact planets like massive Jupiter,
other exotic dense stars, and black holes). The relativistic
effects of the compact objects such as white dwarf stars make
them gravitationally unstable for masses larger than about
1.4 solar masses [31] and formation of neutron stars begins.
This investigation would be useful to study the effects of
degenerate pressure in interstellar and space plasmas [32],
particularly in stellar polytropes [33], hadronic matter and
quark-gluon plasma [34], protoneutron stars [35], dark-
matter halos [36], and so forth. Our present investigation
is a theoretical work which is applicable for matter under
extreme conditions, for example, IA and mIA solitary waves
propagation in the interior of compact objects [1, 2] where
the planar and nonplanar geometry, arbitrarily charged static
heavy ions, inertial ions, and degenerate plasma pressure are
taken into account.This theory could be rigorously important
for global nonlinearmodels of astrophysical compact objects.
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[36] C. Féron and J. Hjorth, “Simulated dark-matter halos as a test of
nonextensive statistical mechanics,” Physical Review E, vol. 77,
Article ID 022106, 2008.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

High Energy Physics
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Fluids
Journal of

 Atomic and  
Molecular Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in  
Condensed Matter Physics

Optics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astronomy
Advances in

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Superconductivity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Statistical Mechanics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gravity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astrophysics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Physics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Solid State Physics
Journal of

 Computational 
 Methods in Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Soft Matter
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Aerodynamics
Journal of

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Photonics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Thermodynamics
Journal of


