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More properties for the translated Whitney numbers of the second kind such as horizontal generating function, explicit formula,
and exponential generating function are proposed. Using the translated Whitney numbers of the second kind, we will define the
translated Dowling polynomials and numbers. Basic properties such as exponential generating functions and explicit formula for
the translated Dowling polynomials and numbers are obtained. Convexity, integral representation, and other interesting identities
are also investigated and presented.We show that the properties obtained are generalizations of some of the known results involving
the classical Bell polynomials and numbers. Lastly, we established the Hankel transform of the translated Dowling numbers.

1. Introduction

In 1996, the classical Whitney numbers of the second kind
𝑊
𝑚
(𝑛, 𝑘) of Dowling Lattices was introduced by Benoumhani

[1].𝑊
𝑚
(𝑛, 𝑘) satisfy the recurrence relation:

𝑊
𝑚
(𝑛, 𝑘) = 𝑊

𝑚
(𝑛 − 1, 𝑘 − 1) + (1 + 𝑚𝑘)𝑊

𝑚
(𝑛 − 1, 𝑘) . (1)

Other fundamental properties of these numbers were already
established by Benoumhani in [1, 2]. The numbers𝑊

𝑚
(𝑛, 𝑘)

can be shown to be a kind of generalization of the famous Stir-
ling numbers of the Second kind 𝑆(𝑛, 𝑘)when the parameter𝑚
equals to 1. That is,

𝑊
1
(𝑛, 𝑘) = 𝑆 (𝑛, 𝑘) . (2)

Recently, a translated version of the Whitney numbers of
the second kind was introduced by Belbachir and Bousbaa
[3] which they named translated Whitney numbers of the
second kind, denoted by 𝑊̃

(𝛼)
(𝑛, 𝑘). 𝑊̃

(𝛼)
(𝑛, 𝑘) actually counts

the number of partitions of a set with 𝑛 elements into 𝑘
subsets such that the elements of each subset can mutate in
𝛼 ways, except the dominant one. To compute the first few
values of these numbers, the following recurrence relation
was obtained in [3]:

𝑊̃
(𝛼)
(𝑛, 𝑘) = 𝑊̃

(𝛼)
(𝑛 − 1, 𝑘 − 1) + 𝑘𝛼𝑊̃

(𝛼)
(𝑛 − 1, 𝑘) . (3)

The classical Stirling numbers of the second kind can also be
obtained from these numbers when 𝛼 = 1. On the otherhand,
the classical Dowling numbers 𝐷

𝑚
(𝑛) are defined to be the

sum of 𝑊
𝑚
(𝑛, 𝑘). That is,

𝐷
𝑚
(𝑛) =

𝑛

∑

𝑘=0

𝑊
𝑚
(𝑛, 𝑘) (4)

and can be computed using the explicit formula:

𝐷
𝑚
(𝑛) =

1

𝑒1/𝑚
∑

𝑘≥0

(𝑚𝑘 + 1)
𝑛

𝑚𝑘𝑘!
. (5)

𝐷
𝑚
(𝑛) is known to be a generalization of the classical Bell

numbers which is the sum of the Stirling numbers of the
second kind 𝑆(𝑛, 𝑘). In this paper, wewill define the translated
Dowling numbers as the sum of 𝑊̃

(𝛼)
(𝑛, 𝑘).The content of this

paper is summarized as follows. In Section 2, we will intro-
duce some basic properties for the numbers 𝑊̃

(𝛼)
(𝑛, 𝑘). In

Section 3, we will define the translated Dowling polynomials
and numbers and derive some of their basic properties. In
Section 4, we investigate convexity and integral representa-
tion of the translated Dowling polynomials and numbers. In
Section 5,more properties of translatedDowling polynomials
and numbers are presented, and in Section 6, we obtain the
Hankel transform of the translated Dowling numbers.
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2. Some Properties of 𝑊̃
(𝛼)
(𝑛, 𝑘)

Interesting properties of 𝑊̃
(𝛼)
(𝑛, 𝑘) can also be obtained par-

allel to those done in [1]. For instance, by induction on 𝑛,
the following horizontal generating function can easily be
obtained through the aid of the recurrence relation in (3).

Proposition 1. The translated Whitney numbers of the second
kind satisfy the following horizontal generating function:

𝑡
𝑛

=

𝑛

∑

𝑘=0

𝑊̃
(𝛼)
(𝑛, 𝑘) (𝑡 | 𝛼)

𝑘
, (6)

where (𝑡 | 𝛼)
𝑘
= ∏
𝑘−1

𝑖=0
(𝑡 − 𝑖𝛼) is the generalized factorial of 𝑡 of

increment 𝛼.

Also, note that (6) can be written as

𝑡
𝑛

=

𝑛

∑

𝑘=0

𝑊̃
(𝛼)
(𝑛, 𝑘) 𝛼

𝑘

(
𝑡

𝛼
)
𝑘

, (7)

where (𝑡/𝛼)
𝑘
is the falling factorial of 𝑡/𝛼 of order 𝑘. By

replacing 𝑡 with 𝑘𝛼, we have

(𝛼𝑘)
𝑛

=

𝑛

∑

𝑗=0

𝑊̃
(𝛼)
(𝑛, 𝑗) 𝛼

𝑗

(𝑘)
𝑗
,

=

𝑛

∑

𝑗=0

(
𝑘

𝑗
){

𝑊̃
(𝛼)
(𝑛, 𝑗) 𝛼

𝑗

(𝑘)
𝑗

(
𝑘

𝑗
)

} .

(8)

Finally, applying the binomial inversion formula (see [4])

𝑓
𝑘
=

𝑘

∑

𝑗=0

(
𝑘

𝑗
)𝑔
𝑗
⇐⇒ 𝑔

𝑘
=

𝑘

∑

𝑗=0

(−1)
𝑘−𝑗

(
𝑘

𝑗
)𝑓
𝑗

(9)

gives us the following explicit formula.

Proposition 2. The translatedWhitney numbers of the second
kind can be expressed as

𝑊̃
(𝛼)
(𝑛, 𝑘) =

1

𝛼𝑘𝑘!

𝑘

∑

𝑗=0

(−1)
𝑘−𝑗

(
𝑘

𝑗
) (𝛼𝑗)

𝑛

. (10)

Note that when 𝛼 = 1 in (10), we have

𝑊̃
(1)
(𝑛, 𝑘) =

1

𝑘!

𝑘

∑

𝑗=0

(−1)
𝑘−𝑗

(
𝑘

𝑗
) 𝑗
𝑛

= 𝑆 (𝑛, 𝑘) ,

(11)

which is the known explicit formula of the Stirling numbers
of the second kind. Furthermore, we have the following expo-
nential generating function.

Proposition 3. The numbers 𝑊̃
(𝛼)
(𝑛, 𝑘) satisfy

∑

𝑛≥𝑘

𝑊̃
(𝛼)
(𝑛, 𝑘)

𝑧
𝑛

𝑛!
=
1

𝑘!
(
𝑒
𝛼𝑘

− 1

𝛼
)

𝑘

. (12)

Proof. Multiplying both sides of (8) by 𝑧𝑛/𝑛! and summing
over 𝑛, gives us

∑

𝑛≥0

(𝛼𝑡)
𝑛
𝑧
𝑛

𝑛!
= ∑

𝑛≥0

𝑛

∑

𝑘=0

𝑊̃
(𝛼)
(𝑛, 𝑘) 𝛼

𝑘

(𝑡)
𝑘

𝑧
𝑛

𝑛!

= ∑

𝑘≥0

{𝛼
𝑘

∑

𝑛≥𝑘

𝑊̃
(𝛼)
(𝑛, 𝑘)

𝑧
𝑛

𝑛!
} (𝑡)
𝑘
.

(13)

Now, note that

∑

𝑛≥0

(𝛼𝑡)
𝑛
𝑧
𝑛

𝑛!
= (1 + 𝑒

𝛼𝑧

− 1)
𝑡

=

𝑡

∑

𝑘=0

(
𝑡

𝑘
) (𝑒
𝛼𝑧

− 1)
𝑘

=

𝑡

∑

𝑘=0

(𝑒
𝛼𝑧

− 1)
𝑘

𝑘!
(𝑡)
𝑘
.

(14)

The proof is completed by comparing the coefficients of (𝑡)
𝑘

in (13) and (14).

In 2010, Mező [5], introduced the 𝑟-Whitney numbers of
the second kind𝑊

𝑚,𝑟
(𝑛, 𝑘) as coefficients in the expansion of

(𝑚𝑥 + 𝑟)
𝑛

=

𝑛

∑

𝑘=0

𝑚
𝑘

𝑊
𝑚,𝑟
(𝑛, 𝑘) (𝑥)

𝑘
. (15)

These numbers actually are equivalent to the (𝑟, 𝛽)-Stirling
numbers ⟨ 𝑛

𝑘
⟩
𝑟,𝛽

defined by Corcino et al. [6]. That is,

𝑊
𝛽,𝑟
(𝑛, 𝑘) = ⟨

𝑛

𝑘
⟩

𝑟,𝛽

. (16)

Moreover, we have

𝑊
1,0
(𝑛, 𝑘) = 𝑆 (𝑛, 𝑘) ,

𝑊
1,𝑟
(𝑛, 𝑘) = {

𝑛 + 𝑟

𝑘 + 𝑟
}

𝑟

,

𝑊
𝑚,0
(𝑛, 𝑘) = 𝑊

𝑚
(𝑛, 𝑘) ,

𝑊
𝛼,0
(𝑛, 𝑘) = 𝑊̃

(𝛼)
(𝑛, 𝑘) ,

(17)

where {𝑛 + 𝑟
𝑘 + 𝑟

}

𝑟

is the 𝑟-Stirling numbers of the second kind

by Broder [7]. This means that the identities (6), (10), and
(12) for the numbers 𝑊̃

(𝛼)
(𝑛, 𝑘) appear to be special cases of

𝑊
𝑚,𝑟
(𝑛, 𝑘) (see [5, 8]).

3. Translated Dowling Polynomials
and Numbers

Thewell-known Bell polynomials 𝐵
𝑛
(𝑥) is defined by the sum

𝐵
𝑛
(𝑥) =

𝑛

∑

𝑘=0

𝑆 (𝑛, 𝑘) 𝑥
𝑘 (18)
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which consequently yields the Bell numbers 𝐵
𝑛
when 𝑥 = 1.

In line with this, we may define the translated Dowling
polynomials as follows.

Definition 4. For nonnegative integers 𝑛, 𝑘, and 𝛼, the trans-
lated Dowling polynomials are defined as

𝐷
(𝛼)
(𝑛; 𝑥) =

𝑛

∑

𝑘=0

𝑊̃
(𝛼)
(𝑛, 𝑘) 𝑥

𝑘

. (19)

When 𝑥 = 1,

𝐷
(𝛼)
(𝑛; 1) = 𝐷

(𝛼)
(𝑛) =

𝑛

∑

𝑘=0

𝑊̃
(𝛼)
(𝑛, 𝑘) (20)

and is called the translated Dowling numbers.

Now, from (19) and (12),

∑

𝑛≥0

𝐷
(𝛼)
(𝑛; 𝑥)

𝑧
𝑛

𝑛!
= ∑

𝑛≥0

𝑛

∑

𝑘=0

𝑊̃
(𝛼)
(𝑛, 𝑘)

𝑧
𝑛

𝑛!
𝑥
𝑘

= ∑

𝑘≥0

(𝑒
𝛼𝑧

− 1)
𝑘

𝑘!𝛼𝑘
𝑥
𝑘

= 𝑒
𝑥((𝑒
𝛼𝑧

−1)/𝛼)

.

(21)

Hence, we have the following theorem.

Theorem 5. The following exponential generating functions
hold:

∑

𝑛≥0

𝐷
(𝛼)
(𝑛; 𝑥)

𝑧
𝑛

𝑛!
= exp{

𝑥 (𝑒
𝑧𝛼

− 1)

𝛼
} ; (22)

∑

𝑛≥0

𝐷
(𝛼)
(𝑛)

𝑧
𝑛

𝑛!
= exp{𝑒

𝑧𝛼

− 1

𝛼
} . (23)

Remark 6. When 𝛼 = 1 in (22) and (23), we have

∑

𝑛≥0

𝐷
(1)
(𝑛; 𝑥)

𝑧
𝑛

𝑛!
= 𝑒
𝑥(𝑒
𝑧

−1)

;

∑

𝑛≥0

𝐷
(1)
(𝑛)

𝑧
𝑛

𝑛!
= 𝑒
𝑒
𝑧

−1

,

(24)

which are the exponential generating functions of the classi-
cal Bell polynomials and numbers, respectively.

Since 𝑊̃
(𝛼)
(𝑛, 𝑘) represents the number of partitions of

a set with 𝑛 elements into 𝑘 subsets such that the elements
of each subset can mutate in 𝛼 ways, except the dominant
one, then 𝐷

(𝛼)
(𝑛) is the number of partitions of a set with 𝑛

elements such that the elements of each subset can mutate
in 𝛼 ways, except the dominant one. The following theorem
contains an explicit form for the polynomials 𝐷

(𝛼)
(𝑛; 𝑥) and

numbers𝐷
(𝛼)
(𝑛).

Theorem 7. The following explicit formula holds:

𝐷
(𝛼)
(𝑛; 𝑥) = (

1

𝑒
)

𝑥/𝛼

∑

𝑖≥0

(𝑖𝛼)
𝑛

𝑖!
(
𝑥

𝛼
)

𝑖

; (25)

𝐷
(𝛼)
(𝑛) = (

1

𝑒
)

1/𝛼

∑

𝑖≥0

(𝑖𝛼)
𝑛

𝑖!𝛼𝑖
. (26)

Proof. Combining the explicit formula in (10) with (19) yields

𝐷
(𝛼)
(𝑛; 𝑥) = ∑

𝑗≥0

∑

𝑘≥𝑗

(−1)
𝑗

(
𝑘

𝑗
) (𝑘 − 𝑗)

𝑛

𝑘!
𝛼
𝑛−𝑘

𝑥
𝑘

. (27)

Reindexing the sums and by further simplification,

𝐷
(𝛼)
(𝑛; 𝑥) = (∑

𝑗≥0

(−𝑥)
𝑗

𝛼𝑗𝑗!
)(∑

𝑖≥0

𝑖
𝑛

𝑥
𝑖

𝛼𝑖𝑖!
) 𝛼
𝑛

= 𝑒
−𝑥/𝛼

∑

𝑖≥0

(𝑖𝛼)
𝑛

𝑖!
(
𝑥

𝛼
)

𝑖

.

(28)

Equation (26) is obtained by letting 𝑥 = 1.

Remark 8. When 𝛼 = 1 in (25) and (26), we have

𝐷
(1)
(𝑛; 𝑥) =

1

𝑒𝑥
∑

𝑖≥0

𝑖
𝑛

𝑖!
𝑥
𝑖

= 𝐵
𝑛
(𝑥) ;

𝐷
(1)
(𝑛) =

1

𝑒𝑥
∑

𝑖≥0

𝑖
𝑛

𝑖!
= 𝐵
𝑛
,

(29)

which are the known Dobinski identities.

To close this section, we will cite the 𝑟-Dowling polyno-
mials𝐷

𝑚,𝑟
(𝑛, 𝑥) of Cheon and Jung [8] defined by

𝐷
𝑚,𝑟
(𝑛, 𝑥) =

𝑛

∑

𝑘=0

𝑊
𝑚,𝑟
(𝑛, 𝑘) 𝑥

𝑘

. (30)

Properties of 𝐷
𝑚,𝑟
(𝑛, 𝑥) were already established in [8] and

were further studied by Rahmani [9]. We note that the poly-
nomials 𝐷

𝑚,𝑟
(𝑛, 𝑥) coincide with the (𝑟, 𝛽)-Bell polynomials

𝐺
𝑛,𝛽,𝑟

(𝑥) of R. B. Corcino and C. B. Corcino [10]. That is,
𝐷
𝛽,𝑟
(𝑛, 𝑥) = 𝐺

𝑛,𝛽,𝑟
(𝑥). Moreover,

𝐷
1,0
(𝑛, 𝑥) = 𝐵

𝑛
(𝑥) , 𝐷

1,𝑟
(𝑛, 𝑥) = 𝐵

𝑛,𝑟
(𝑥) ,

𝐷
𝛼,0
(𝑥) = 𝐷

(𝛼)
(𝑛; 𝑥) ,

(31)

where 𝐵
𝑛,𝑟
(𝑥) is the 𝑟-Bell polynomials in [11].

4. Convexity and Integral Representation

A real sequence V
𝑘
, 𝑘 = 0, 1, 2, . . . is called convex [4] on

an interval [𝑎, 𝑏], where [𝑎, 𝑏] contains at least 3 consecutive
integers, if

V
𝑘
≤
1

2
(V
𝑘−1

+ V
𝑘+1
) , 𝑘 ∈ [𝑎 + 1, 𝑏 − 1] . (32)
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We will refer to (32) as convexity property. Convexity, among
others, is an example of interesting global behaviours of com-
binatorial sequences of integers. The following theorem
shows that the polynomials 𝐷

(𝛼)
(𝑛, 𝑥) obey the convexity

property.

Theorem 9. Let 𝑥 > 0 and 𝛼 ≥ 0. Then

𝐷
(𝛼)
(𝑛 + 1; 𝑥) ≤

1

2
[𝐷
(𝛼)
(𝑛; 𝑥) + 𝐷

(𝛼)
(𝑛 + 2; 𝑥)] (33)

for 𝑛 = 1, 2, 3, . . ..

Proof. Since 𝛼𝑘 ≥ 0, then

0 ≤ [1 − 𝛼𝑘]
2

0 ≤ 1 − 2 (𝛼𝑘) + (𝛼𝑘)
2

2𝛼𝑘 ≤ 1 + (𝛼𝑘)
2

2 (𝛼𝑘)
𝑛+1

≤ (𝛼𝑘)
𝑛

+ (𝛼𝑘)
𝑛+2

(𝛼𝑘)
𝑛+1

≤
1

2
[(𝛼𝑘)
𝑛

+ (𝛼𝑘)
𝑛+2

] .

(34)

Multiplying both sides by (𝑥/𝛼)𝑘(1/𝑘!) and summing over 𝑖
yields

∑

𝑖≥0

(𝛼𝑘)
𝑛+1

𝑖!
(
𝑥

𝛼
)

𝑖

≤
1

2
[∑

𝑖≥0

(𝛼𝑘)
𝑛

𝑖!
(
𝑥

𝛼
)

𝑖

+∑

𝑖≥0

(𝛼𝑘)
𝑛+2

𝑖!
(
𝑥

𝛼
)

𝑖

] .

(35)

Finally, multiplying both sides by 𝑒−𝑥/𝛼 and using (25) com-
pletes the proof.

The following beautiful integral representation of the Bell
numbers 𝐵

𝑛
was first obtained by Cesàro [12]:

𝐵
𝑛
=
2𝑛!

𝜋𝑒
Im∫

𝜋

0

𝑒
𝑒
𝑒
𝑖𝜃

sin (𝑛𝜃) 𝑑𝜃. (36)

This expression was generalized by Mező [11] using a kind
of generalization of the classical Bell numbers called 𝑟-Bell
numbers 𝐵

𝑛,𝑟
. Equation (36) and Mező’s identity appears to

be special cases of the integral representation of the (𝑟, 𝛽)-
Bell polynomials𝐺

𝑛,𝛽,𝑟
(𝑥) by R. B. Corcino and C. B. Corcino

[10]. That is 𝐺
𝑛,1,𝑟

(1) = 𝐵
𝑛,𝑟

and 𝐺
𝑛,1,0

(1) = 𝐵
𝑛
, respectively.

The next theorem gives an integral representation for the
translated Dowling polynomials.

Theorem 10. The translated Dowling polynomials have the
following integral representation:

𝐷
(𝛼)
(𝑛; 𝑥) =

2𝑛!

𝜋𝑒𝑥/𝛼
Im∫

𝜋

0

exp(𝑥
𝛼
𝑒
𝛼𝑒
𝑖𝜃

) sin (𝑛𝜃) 𝑑𝜃, (37)

where 𝑖 = √−1.

Proof. From [13], we have the following integral identity:

Im∫

𝜋

0

𝑒
𝑗𝑒
𝑖𝜃

sin (𝑛𝜃) 𝑑𝜃 = 𝜋
2

𝑗
𝑛

𝑛!
. (38)

Hence, combining this with the explicit formula in (10) yields
𝜋

2

1

𝑛!
𝑊̃
(𝛼)
(𝑛, 𝑘)

=
1

𝛼𝑘𝑘!

𝑘

∑

𝑗=0

(−1)
𝑘−𝑗

(
𝑘

𝑗
)
𝜋

2

(𝛼𝑗)
𝑛

𝑛!

=
1

𝛼𝑘𝑘!

𝑘

∑

𝑗=0

(−1)
𝑘−𝑗

(
𝑘

𝑗
)

× Im∫

𝜋

0

𝑒
(𝛼𝑗)𝑒
𝑖𝜃

sin (𝑛𝜃) 𝑑𝜃

=
1

𝛼𝑘𝑘!

× Im∫

𝜋

0

[

[

𝑘

∑

𝑗=0

(−1)
𝑘−𝑗

(
𝑘

𝑗
) (𝑒
𝛼𝑒
𝑖𝜃

)

𝑗

]

]

sin (𝑛𝜃) 𝑑𝜃

= Im∫

𝜋

0

(𝑒
𝛼𝑒
𝑖𝜃

− 1)

𝑘

𝛼𝑘𝑘!
sin (𝑛𝜃) 𝑑𝜃.

(39)

Furthermore, we have

∑

𝑘≥0

𝑊̃
(𝛼)
(𝑛, 𝑘) 𝑥

𝑘

=
2𝑛!

𝜋
Im∫

𝜋

0

[
[

[

∑

𝑘≥0

(𝑒
𝛼𝑒
𝑖𝜃

− 1)

𝑘

𝑘!
(
𝑥

𝛼
)

𝑘

]
]

]

sin (𝑛𝜃) 𝑑𝜃

=
2𝑛!

𝜋𝑒𝑥/𝛼
Im∫

𝜋

0

exp (𝑥
𝛼
𝑒
𝛼𝑒
𝑖𝜃

) sin (𝑛𝜃) 𝑑𝜃,

(40)

which is the desired result.

Clearly, the integral representation in (37) boils down to
Cesàro’s in (36) when 𝛼 = 1 and 𝑥 = 1. Now, applying the
explicit formula in (25) gives us the following.

Corollary 11. The following identity holds:

∑

𝑗≥0

(𝑗𝛼)
𝑛

𝑗!
(
𝑥

𝛼
)

𝑗

=
2𝑛!

𝜋
Im∫

𝜋

0

exp(𝑥
𝛼
𝑒
𝛼𝑒
𝑖𝜃

) sin (𝑛𝜃) 𝑑𝜃.

(41)

5. More Theorems on 𝐷
(𝛼)
(𝑛; 𝑥)

It is known that the 𝑛th exponential moment of a Poisson
random variable 𝑋, denoted by 𝐸

𝜆
[𝑋
𝑛

], is related to the Bell
polynomials 𝐵

𝑛
(𝜆) through the Dobinski’s formula. That is,

𝐸
𝜆
[𝑋
𝑛

] = 𝐵
𝑛
(𝜆) . (42)
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Also, the 𝑛th factorial moment of𝑋with mean 𝜆, denoted by
𝐸
𝜆
[(𝑋)
𝑛
], is given by

𝐸
𝜆
[(𝑋)
𝑛
] = 𝜆
𝑛

. (43)

R. B. Corcino andC. B. Corcino [10] obtained a generalization
of (42) using the (𝑟, 𝛽)-Bell polynomials as

𝐸
𝜆/𝛽
[(𝛽𝑋 + 𝑟)

𝑛

] = 𝐺
𝑛,𝛽,𝑟

(𝑋) (44)

when 𝛽 = 1 and 𝑟 = 0. We note that identities (42), (43), and
(44) can be shown to be particular cases of the generalized
factorial moments by Mangontarum and Corcino [14] given
by

𝐸
𝜆
[(𝛽𝑋 + 𝛾 | 𝛼)

𝑛
] = 𝑒
−𝜆

∑

𝑖≥0

(𝑖𝛽 + 𝛾 | 𝛼)
𝑛

𝑖!
𝜆
𝑖

,

𝐸
𝜆
[(𝛼𝑋 − 𝛾 | 𝛽)

𝑛
] = 𝑒
−𝜆

∑

𝑖≥0

(𝑖𝛼 − 𝛾 | 𝛽)
𝑛

𝑖!
𝜆
𝑖

,

(45)

by suitable assignments of the parameters 𝛼, 𝛽, 𝛾, and 𝜆. The
following lemma is analogous to (42).

Lemma 12. The following identity holds:

𝐸
𝜆
[(𝛼𝑋)

𝑛

] =
1

𝑒𝜆
∑

𝑗≥0

(𝛼𝑗)
𝑛

𝑗!
𝜆
𝑗

, (46)

where𝑋 is a Poisson random variable with mean 𝜆.

Proof. From (8),

(𝛼𝑋)
𝑛

=

𝑛

∑

𝑘=0

𝑊̃
(𝛼)
(𝑛, 𝑘) 𝛼

𝑘

(𝑋)
𝑘
. (47)

Hence by (43),

𝐸
𝜆
[(𝛼𝑋)

𝑛

] = 𝐸
𝜆
[

𝑛

∑

𝑘=0

𝑊̃
(𝛼)
(𝑛, 𝑘) 𝛼

𝑘

(𝑋)
𝑘
]

=

𝑛

∑

𝑘=0

𝑊̃
(𝛼)
(𝑛, 𝑘) 𝛼

𝑘

𝐸
𝜆
[(𝑋)
𝑘
]

=

𝑛

∑

𝑘=0

𝑊̃
(𝛼)
(𝑛, 𝑘) 𝛼

𝑘

𝜆
𝑘

.

(48)

Using the explicit formula in (10) and simplifiying further
completes the proof.

If themean of the Poisson random variable𝑋 is 𝜆/𝛼, then
we have

𝐸
𝜆/𝛼
[(𝛼𝑋)

𝑛

] = 𝐷
(𝛼)
(𝑛; 𝜆) . (49)

Now,
𝐷
(𝛼)
(𝑛; 𝜆) = 𝐸

𝜆/𝛼
[(−1 + 𝛼𝑋 + 1)

𝑛

]

=

𝑛

∑

𝑘=0

(
𝑛

𝑘
) (−1)

𝑛−𝑘

𝐸
𝜆/𝛼
[(𝛼𝑋 + 1)

𝑘

]

=

𝑛

∑

𝑘=0

(
𝑛

𝑘
) (−1)

𝑛−𝑘

𝐺
𝑘,𝛼,1

(𝜆) .

(50)

Using the explicit formula of the (𝑟, 𝛽)-Bell polynomials [10]

𝐺
𝑛,𝛽,𝑟

(𝑥) = (
1

𝑒
)

𝑥/𝛽

∑

𝑘≥0

(𝑥/𝛽)
𝑘

𝑘!
(𝛽𝑘 + 𝑟)

𝑛 (51)

yields

𝐷
(𝛼)
(𝑛; 𝜆) =

𝑛

∑

𝑘=0

(
𝑛

𝑘
) (−1)

𝑛−𝑘

(
1

𝑒
)

𝜆/𝛼

∑

𝑗≥0

(𝜆/𝛼)
𝑗

𝑗!
(𝛼𝑗 + 1)

𝑘

.

(52)

Hence, we have the following.

Theorem 13. The following identities hold:

𝐷
(𝛼)
(𝑛; 𝜆) =

𝑛

∑

𝑘=0

(
𝑛

𝑘
) (−1)

𝑛−𝑘

(
1

𝑒
)

𝜆/𝛼

∑

𝑗≥0

(𝛼𝑗 + 1)
𝑘

𝛼𝑗𝑗!
𝜆
𝑗

;

𝐷
(𝛼)
(𝑛; 1) =

𝑛

∑

𝑘=0

(
𝑛

𝑘
) (−1)

𝑛−𝑘

𝐷
𝛼
(𝑘) ,

(53)

where𝐷
𝛼
(𝑘) is the classical Dowling numbers.

The next theorem is easily deduced from (22) and (46).

Theorem 14. The following exponential generating functions
hold:

∑

𝑛≥0

𝐸
𝜆
[(𝛼𝑋)

𝑛

]
𝑧
𝑛

𝑛!
= 𝑒
(𝑒
𝛼𝑧

−1)𝜆

;

∑

𝑛≥0

𝐸
𝜆/𝛼
[(𝛼𝑋)

𝑛

]
𝑧
𝑛

𝑛!
= ∑

𝑛≥0

𝐷
(𝛼)
(𝑛; 𝑥)

𝑧
𝑛

𝑛!
;

∑

𝑛≥0

𝐸
1/𝛼
[(𝛼𝑥)
𝑛

]
𝑧
𝑛

𝑛!
= ∑

𝑛≥0

𝐷
(𝛼)

𝑧
𝑛

𝑛!
.

(54)

6. The Hankel Transform of 𝐷
(𝛼)
(𝑛)

The Hankel matrix is a matrix whose entries are symmetric
with respect to the main diagonal of the matrix. It had
been previously studied by some mathematicians as well
as its connections in some areas of mathematics, physics,
and computer science. Among these mathematicians were
de Sainte-Catherine and Viennot [15], Garcia-Armas and
Sethuraman [16], Tamm [17], and Vein andDale [18]. Further
theories and applications of this matrix had been established
including the Hankel determinant and Hankel transform.
The determinant of the Hankel matrix is called Hankel
determinant, while the sequence of Hankel determinants is
called Hankel transform as defined by Aigner [19].

The Hankel determinants had been previously studied by
some mathematicians, for instance, Radoux [20] and Ehren-
borg [21]. On the other hand, the Hankel transform was first
introduced in Sloane’s sequence 𝐴055878 [22] and was first
studied by Layman [23]. Aigner [19] established the Hankel
transformof the classical Bell numbers. A similar identity was
obtained by Mező [11] for the Hankel transform of the 𝑟-Bell
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numbers. In a recent paper, Corcino et al. [24] established the
Hankel transform of the noncentral Bell numbers which is
identical to that of the Bell and 𝑟-Bell case. A more general
case of Hankel transform can also be seen in [24], namely,
the Hankel transform of the (𝑟, 𝛽)-Bell numbers. In this
section, we are going to establish the Hankel transform of the
Translated Dowling Numbers by using Aigner’s method.

Let Λ = (𝑎
𝑚,𝑘
) be the infinite lower triangular matrix

defined recursively by

𝑎
𝑚,𝑘

= 𝑎
𝑚−1,𝑘−1

+ (𝛼𝑘 + 1) 𝑎
𝑚−1,𝑘

+ 𝛼 (𝑘 + 1) 𝑎
𝑚−1,𝑘+1

, (55)

where𝑚 ≥ 1, 𝑎
0,0
= 1, 𝑎

0,𝑘
= 0 if 𝑘 > 0, and 𝑎

𝑚,𝑘
= 0 if𝑚 < 𝑘.

Using the reccurence relation in (55), we obtain

∞

∑

𝑚=0

𝑎
𝑚,𝑘

𝑧
𝑚−1

(𝑚 − 1)!

=

∞

∑

𝑚=0

𝑎
𝑚−1,𝑘−1

𝑧
𝑚−1

(𝑚 − 1)!
+ (𝛼𝑘 + 1)

×

∞

∑

𝑚=0

𝑎
𝑚−1,𝑘

𝑧
𝑚−1

(𝑚 − 1)!

+ 𝛼 (𝑘 + 1)

∞

∑

𝑚=0

𝑎
𝑚−1,𝑘+1

𝑧
𝑚−1

(𝑚 − 1)!
.

(56)

This implies that

Ω
󸀠

𝑘
(𝑧) = Ω

𝑘−1
(𝑧) + (𝛼𝑘 + 1)Ω

𝑘
(𝑧)

+ 𝛼 (𝑘 + 1)Ω
𝑘+1
(𝑧) .

(57)

With

Ω
𝑘
(𝑧) = 𝑒

((𝑒
𝛼𝑧

−1)/𝛼)
(𝑒
𝛼𝑧

− 1)
𝑘

𝛼𝑘𝑘!
, (58)

the right-hand side of (57) yields

Ω
𝑘−1
(𝑧) + (𝛼𝑘 + 1)Ω

𝑘
(𝑧) + 𝛼 (𝑘 + 1)Ω

𝑘+1
(𝑧)

= 𝑒
((𝑒
𝛼𝑧

−1)/𝛼)
(𝑒
𝛼𝑧

− 1)
𝑘−1

𝛼𝑘−1 (𝑘 − 1)!

+ (𝛼𝑘 + 1) 𝑒
((𝑒
𝛼𝑧

−1)/𝛼)
(𝑒
𝛼𝑧

− 1)
𝑘

𝛼𝑘𝑘!

+ 𝛼 (𝑘 + 1) 𝑒
((𝑒
𝛼𝑧

−1)/𝛼)
(𝑒
𝛼𝑧

− 1)
𝑘+1

𝛼𝑘+1 (𝑘 + 1)!

= 𝑒
((𝑒
𝛼𝑧

−1)/𝛼)
(𝑒
𝛼𝑧

− 1)
𝑘−1

𝛼𝑘−1 (𝑘 − 1)!

+ 𝑒
((𝑒
𝛼𝑧

−1)/𝛼)
(𝑒
𝛼𝑧

− 1)
𝑘−1

(𝑒
𝛼𝑧

− 1)

𝛼𝑘−1 (𝑘 − 1)!

+ 𝑒
((𝑒
𝛼𝑧

−1)/𝛼)
(𝑒
𝛼𝑧

− 1)
𝑘

𝛼𝑘𝑘!

+ 𝑒
((𝑒
𝛼𝑧

−1)/𝛼)
(𝑒
𝛼𝑧

− 1)
𝑘

(𝑒
𝛼𝑧

− 1)

𝛼𝑘𝑘!

= 𝑒
((𝑒
𝛼𝑧

−1)/𝛼)
(𝑒
𝛼𝑧

− 1)
𝑘−1

𝛼𝑘−1 (𝑘 − 1)!

+ 𝑒
((𝑒
𝛼𝑧

−1)/𝛼)
(𝑒
𝛼𝑧

− 1)
𝑘−1

𝑒
𝛼𝑧

𝛼𝑘−1 (𝑘 − 1)!

− 𝑒
((𝑒
𝛼𝑧

−1)/𝛼)
(𝑒
𝛼𝑧

− 1)
𝑘−1

𝛼𝑘−1 (𝑘 − 1)!

+ 𝑒
((𝑒
𝛼𝑧

−1)/𝛼)
(𝑒
𝛼𝑧

− 1)
𝑘

𝛼𝑘𝑘!
+ 𝑒
((𝑒
𝛼𝑧

−1)/𝛼)
(𝑒
𝛼𝑧

− 1)
𝑘

𝑒
𝛼𝑧

𝛼𝑘𝑘!

− 𝑒
((𝑒
𝛼𝑧

−1)/𝛼)
(𝑒
𝛼𝑧

− 1)
𝑘

𝛼𝑘𝑘!

= 𝑒
((𝑒
𝛼𝑧

−1)/𝛼+𝛼𝑧)
(𝑒
𝛼𝑧

− 1)
𝑘−1

𝛼𝑘−1 (𝑘 − 1)!

+ 𝑒
((𝑒
𝛼𝑧

−1)/𝛼+𝛼𝑧)
(𝑒
𝛼𝑧

− 1)
𝑘

𝛼𝑘𝑘!
.

(59)

While the left hand side of (57) yields

Ω
󸀠

𝑘
(𝑧) = 𝑒

((𝑒
𝛼𝑧

−1)/𝛼)
(𝑒
𝛼𝑧

− 1)
𝑘−1

𝛼𝑘𝑘!
(𝑘𝛼𝑒
𝛼𝑧

)

+ 𝑒
((𝑒
𝛼𝑧

−1)/𝛼)
(𝑒
𝛼𝑧

− 1)
𝑘

𝛼𝑘𝑘!
(
1

𝛼
𝛼𝑒
𝛼𝑧

)

= 𝑒
((𝑒
𝛼𝑧

−1)/𝛼+𝛼𝑧)
(𝑒
𝛼𝑧

− 1)
𝑘−1

𝛼𝑘−1 (𝑘 − 1)!

+ 𝑒
((𝑒
𝛼𝑧

−1)/𝛼+𝛼𝑧)
(𝑒
𝛼𝑧

− 1)
𝑘

𝛼𝑘𝑘!
.

(60)

This implies that the function

𝑒
((𝑒
𝛼𝑧

−1)/𝛼)
(𝑒
𝛼𝑧

− 1)
𝑘

𝛼𝑘𝑘!
, (61)

where 𝑘 ≥ 0, is a unique solution to the differential equation
in (57). Hence, the exponential generating function of the 𝑘th
column of Λ is given by

Ω
𝑘
(𝑧) = 𝑒

((𝑒
𝛼𝑧

−1)/𝛼)
(𝑒
𝛼𝑧

− 1)
𝑘

𝛼𝑘𝑘!
. (62)

Hence, we have the following.

Lemma 15. Let Ω
𝑘
(𝑧) be the exponential generating function

of the 𝑘th column of matrix Λ. That is,

Ω
𝑘
(𝑧) =

∞

∑

𝑚=0

𝑎
𝑚,𝑘

𝑧
𝑚

𝑚!
. (63)
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Then

Ω
𝑘
(𝑧) = 𝑒

((𝑒
𝛼𝑧

−1)/𝛼)

⋅
(𝑒
𝛼𝑧

− 1)
𝑘

𝛼𝑘𝑘!
, (64)

where 𝑘 ≥ 0 and Ω
0
(𝑧) = ∑

∞

𝑚=0
𝐷
(𝛼)
(𝑚)(𝑧

𝑚

/𝑚!). That is, the
0-column entries of Λ are the numbers 𝐷

(𝛼)
(𝑚), 𝑚 = 0, 1,

2, 3 . . ..

Remark 16. When 𝑘 = 0 in (64), we have

Ω
0
(𝑧) = exp{𝑒

𝛼𝑧

− 1

𝛼
} (65)

which is the exponential generating function in (23).

The next lemma is useful in establishing an identity for
some matrices whose entries are𝐷

(𝛼)
(𝑚).

Lemma 17. Let 𝑠
𝑚
be the𝑚th row of Λ = (𝑎

𝑚,𝑘
). Define

𝑠
𝑚
∘ 𝑠
𝑛
= ∑

𝑘≥0

𝑎
𝑚,𝑘
𝑎
𝑛,𝑘
𝛼
𝑘

𝑘!. (66)

Then

𝑠
𝑚
∘ 𝑠
𝑛
= 𝑎
𝑚+𝑛,0

= 𝐷
(𝛼)
(𝑚 + 𝑛) , (67)

for all nonnegative integers𝑚 and 𝑛.

Proof. By induction of𝑚, if𝑚 = 0 we have

𝑠
0
∘ 𝑠
𝑛
= ∑

𝑘≥0

𝑎
0,𝑘
𝑎
𝑛,𝑘
𝛼
𝑘

𝑘!. (68)

Since 𝑎
0,𝑘
= 0 ∀𝑘 > 0,

𝑠
0
∘ 𝑠
𝑛
= 𝑎
0,0
𝑎
𝑛,0
𝛼
0

0! = 𝑎
0+𝑛,0

∀𝑛 ≥ 0. (69)

Suppose that 𝑠
𝑙
∘ 𝑠
𝑛
= 𝑎
𝑙+𝑛,0

holds for 𝑙 ≤ 𝑚−1 and all 𝑛. Then
by (55)

𝑠
𝑚
∘ 𝑠
𝑛
= ∑

𝑘≥0

𝑎
𝑚,𝑘
𝑎
𝑛,𝑘
𝛼
𝑘

𝑘!

= ∑

𝑘≥0

[𝑎
𝑚−1,𝑘−1

+ (𝛼𝑘 + 1) 𝑎
𝑚−1,𝑘

+ 𝛼 (𝑘 + 1) 𝑎
𝑚−1,𝑘+1

] 𝑎
𝑛,𝑘
𝛼
𝑘

𝑘!

= ∑

𝑘≥0

𝑎
𝑚−1,𝑘−1

𝑎
𝑛,𝑘
𝛼
𝑘

𝑘! + ∑

𝑘≥0

(𝛼𝑘 + 1) 𝑎
𝑚−1,𝑘

𝑎
𝑛,𝑘
𝛼
𝑘

𝑘!

+ ∑

𝑘≥0

𝛼 (𝑘 + 1) 𝑎
𝑚−1,𝑘+1

𝑎
𝑛,𝑘
𝛼
𝑘

𝑘!.

(70)

Reindexing the summation yields

𝑠
𝑚
∘ 𝑠
𝑛
= ∑

𝑘≥−1

𝑎
𝑚−1,𝑘

𝑎
𝑛,𝑘+1

𝛼
𝑘+1

(𝑘 + 1)!

+ ∑

𝑘≥0

(𝛼𝑘 + 1) 𝑎
𝑚−1,𝑘

𝑎
𝑛,𝑘
𝛼
𝑘

𝑘!

+ ∑

𝑘≥1

𝛼𝑘𝑎
𝑚−1,𝑘

𝑎
𝑛,𝑘−1

𝛼
𝑘−1

(𝑘 − 1)!

= ∑

𝑘≥0

𝑎
𝑚−1,𝑘

𝑎
𝑛,𝑘+1

𝛼
𝑘+1

(𝑘 + 1)!

+ ∑

𝑘≥0

(𝛼𝑘 + 1) 𝑎
𝑚−1,𝑘

𝑎
𝑛,𝑘
𝛼
𝑘

𝑘!

+ ∑

𝑘≥0

𝑎
𝑚−1,𝑘

𝑎
𝑛,𝑘−1

𝛼
𝑘

𝑘!

= ∑

𝑘≥0

[𝑎
𝑛,𝑘−1

+ (𝛼𝑘 + 1) 𝑎
𝑛,𝑘

+ 𝛼 (𝑘 + 1) 𝑎
𝑛,𝑘+1

] 𝑎
𝑚−1,𝑘

𝛼
𝑘

𝑘!.

(71)

By (55),

𝑠
𝑚
∘ 𝑠
𝑛
= ∑

𝑘≥0

𝑎
𝑛+1,𝑘

𝑎
𝑚−1,𝑘

𝛼
𝑘

𝑘!. (72)

From the inductive hypothesis,

𝑠
𝑚
∘ 𝑠
𝑛
= 𝑎
(𝑛+1)+(𝑚−1),0

= 𝑎
𝑛+𝑚,0

= 𝐷
(𝛼)
(𝑚 + 𝑛) , (73)

which is pricisely (67).

We are now ready to state the followingHankel transform
of the translated Dowling numbers.

Theorem 18. The numbers 𝐷
(𝛼)
(𝑚) have the Hankel Trans-

form

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐷
(𝛼)
(0) 𝐷

(𝛼)
(1) 𝐷

(𝛼)
(2) ⋅ ⋅ ⋅ 𝐷

(𝛼)
(𝑚)

𝐷
(𝛼)
(1) 𝐷

(𝛼)
(2) 𝐷

(𝛼)
(3) ⋅ ⋅ ⋅ 𝐷

(𝛼)
(𝑚 + 1)

.

.

.
.
.
.

.

.

. ⋅ ⋅ ⋅
.
.
.

𝐷
(𝛼)
(𝑚) 𝐷

(𝛼)
(𝑚 + 1) 𝐷

(𝛼)
(𝑚 + 2) ⋅ ⋅ ⋅ 𝐷

(𝛼)
(2𝑚)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

𝑚

∏

𝑟=0

𝛼
𝑟

𝑟! = 𝛼
(
𝑚+1

2
)

𝑟!!.

(74)

Proof. Let Λ
𝑚
be the lower triangular submatrix of Λ con-

sisting of the rows and columns numbered 0 to 𝑚. Then Λ
𝑚

is a matrix with diagonal 1. It follows that detΛ
𝑚
= 1. This

implies the determinant of the transpose ofΛ
𝑚
is one; that is,

detΛ𝑇
𝑚
= 1. Let Λ̂

𝑚
= (𝛼
𝑟

𝑟!𝑎
𝑖,𝑟
)
0≤𝑖,𝑟≤𝑚

. Then

det Λ̂
𝑚
=

𝑚

∏

𝑟=0

𝛼
𝑟

𝑟!. (75)

By (67),

Λ̂
𝑚
⋅ Λ
𝑇

𝑚
= (𝑏
𝑖,𝑟
)
0≤𝑖,𝑟≤𝑚

, (76)

where 𝑏
𝑖,𝑟
= ∑
𝑚

𝑘=0
𝑎
𝑖,𝑘
𝑎
𝑟,𝑘
𝛼
𝑟

𝑟! = 𝑎
𝑖+𝑟,0

= 𝐷
(𝛼)
(𝑖 + 𝑟). That is,

Λ̂
𝑚
⋅ Λ
𝑇

𝑚
= (𝐷
(𝛼)
(𝑖 + 𝑟))

0≤𝑖,𝑟≤𝑚

. (77)
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Thus,

det (Λ̂
𝑚
⋅ Λ
𝑇

𝑚
) = (det Λ̂

𝑚
) (detΛ𝑇

𝑚
)

=

𝑚

∏

𝑟=0

𝛼
𝑟

𝑟!.

(78)

This is the desired result.

Remark 19. Note that when 𝛼 = 1, we recover from (74) the
Hankel transform of the classical Bell numbers of Aigner [19],
the Hankel transform of the 𝑟-Bell numbers of Mező [11], and
the Hankel transform of the noncentral Bell numbers in [24].
This makes (74) a generalization of the previously mentioned
Hankel transforms. Also, the Hankel transform of the (𝑟, 𝛽)-
Bell numbers [24] appears to be analogous to the Hankel
transform of the translated Dowling numbers in (74).

Much is yet to be learnt regarding the translated Dowling
polynomials and numbers. It is interesting to establish more
properties for these polynomials and numbers parallel to
the properties of the Bell polynomials and numbers, and
their generalizations. The authors also recommend further
study regarding the translated 𝑟-Whitney numbers [3]. The
results in this papermight be extended to translate 𝑟-Dowling
polynomials and numbers using the translated 𝑟-Whitney
numbers of the second kind. Another interesting topic can be
found in [25] where Corcino et al. obtained the asymptotic
formulas for the 𝑟-Whitney numbers of the second kind as
well as the range of validity of each formula. It would be
compelling to do the same to the translatedWhitney numbers
of the second kind.
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