
Research Article
Radix-2𝛼/4𝛽 Building Blocks for Efficient VLSI’s Higher Radices
Butterflies Implementation

Marwan A. Jaber and Daniel Massicotte

Laboratory of Signals and Systems Integrations, Electrical and Computer Engineering Department,
Université du Québec à Trois-Rivières, QC, Canada G9A 5H7

Correspondence should be addressed to Daniel Massicotte; daniel.massicotte@uqtr.ca

Received 27 December 2013; Revised 12 March 2014; Accepted 26 March 2014; Published 13 May 2014

Academic Editor: Dionysios Reisis

Copyright © 2014 M. A. Jaber and D. Massicotte. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

This paper describes an embedded FFT processor where the higher radices butterfliesmaintain one complexmultiplier in its critical
path. Based on the concept of a radix-r fast Fourier factorization and based on the FFT parallel processing, we introduce a new
concept of a radix-r Fast Fourier Transform in which the concept of the radix-r butterfly computation has been formulated as the
combination of radix-2𝛼/4𝛽 butterflies implemented in parallel. By doing so, the VLSI butterfly implementation for higher radices
would be feasible since itmaintains approximately the same complexity of the radix-2/4 butterflywhich is obtained by block building
of the radix-2/4 modules. The block building process is achieved by duplicating the block circuit diagram of the radix-2/4 module
that is materialized by means of a feed-back network which will reuse the block circuit diagram of the radix-2/4 module.

1. Introduction

For the past decades, the main concern of the researchers
was to develop a fast Fourier transform (FFT) algorithm in
which the number of operations required is minimized. Since
Cooley and Tukey presented their approach showing that the
number of multiplications required to compute the discrete
Fourier transform (DFT) of a sequence may be considerably
reduced by using one of the fast Fourier transform (FFT)
algorithms [1], interest has arisen both in finding applications
for this powerful transform and for considering various FFT
software and hardware implementations.

The DFT computational complexity increases according
to the square of the transform length and thus becomes
expensive for large𝑁. Some algorithms used for efficientDFT
computation, known as fastDFT computation algorithms, are
based on the divide-and-conquer approach. The principle of
this method is that a large problem is divided into smaller
subproblems that are easier to solve. In the FFT case, dividing
the work into subproblemsmeans that the input data 𝑥

[𝑛]
can

be divided into subsets from which the DFT is computed,
and then the DFT of the initial data is reconstructed from
these intermediate results. Some of these methods are known

as the Cooley-Tukey algorithm [1], split-radix algorithm [2],
Winograd Fourier transform algorithm (WFTA) [3], and
others, such as the common factor algorithms [4].

The problem with the computation of an FFT with an
increasing 𝑁 is associated with the straightforward com-
putational structure, the coefficient multiplier memories’
accesses, and the number of multiplications that should be
performed.The overall arithmetic operations deployed in the
computation of an 𝑁-point FFT decreases with increasing
𝑟 as a result; the butterfly complexity increases in terms of
complex arithmetic computation, parallel inputs, connec-
tivity, and number of phases in the butterfly’s critical path
delay. The higher radix butterfly involves a nontrivial VLSI
implementation problem (i.e., increasing butterfly critical
path delay), which explains why the majority of FFT VLSI
implementations are based on radix 2 or 4, due to their low
butterfly complexity. The advantage of using a higher radix is
that the number of multiplications and the number of stages
to execute an FFT decrease [4–6].

The most recent attempts to reduce the complexity of
the higher radices butterfly’s critical path was achieved by
the concept of a radix-𝑟 fast Fourier transform (FFT) [8, 9],
in which the concept of the radix-𝑟 butterfly computation

Hindawi Publishing Corporation
VLSI Design
Volume 2014, Article ID 690594, 13 pages
http://dx.doi.org/10.1155/2014/690594

2 VLSI Design

has been formulated as composed engines with identical
structures and a systematic means of accessing the corre-
sponding multiplier coefficients. This concept enables the
design of butterfly processing element (BPE) with the lowest
rate of complex multipliers and adders, which utilizes 𝑟 or
𝑟 − 1 complex multipliers in parallel to implement each
of the butterfly computations. Another strategy was based
on targeting hardware oriented radix 2

𝛼 or 4𝛽 which is an
alternative way of representing higher radices by means of
less complicated and simple butterflies in which they used the
symmetry and periodicity of the root unity to further lower
down the coefficient multiplier memories’ accesses [10–20].

Based on the higher radices butterfly and the parallel FFT
concepts [21, 22], we will introduce the structure of higher
multiplexed 2𝛼 or 4𝛽 butterflies that will reduce the resources
in terms of complex multiplier and adder by maintaining the
same throughput and the same speed in comparison to the
other proposed butterflies structures in [13–20].

This paper is organized as follows. Section 2 describes the
higher radices butterfly computation and Section 3 details the
FFT parallel processing. Section 4 elaborates the proposed
higher radices butterflies;meanwhile Section 5 draws the per-
formance evaluation of the proposedmethod and Section 6 is
devoted to the conclusion.

2. Higher Radices’ Butterfly Computation

The basic operation of a radix-𝑟 PE is the so-called butterfly
computation in which 𝑟 inputs are combined to give the 𝑟
outputs via the following operation:

X = B
𝑟
xin,

xin = [𝑥
(0)
, 𝑥
(1)
, . . . , 𝑥

(𝑟−1)
]
𝑇

,

X = [𝑋
(0)
, 𝑋
(1)
, . . . , 𝑋

(𝑟−1)
]
𝑇

,

(1)

where xin and X are, respectively, the butterfly’s input and
output vectors. B

𝑟
is the butterfly matrix (dim(B

𝑟
) = 𝑟 × 𝑟)

which can be expressed as

B
𝑟
= W
𝑁
T
𝑟
, (2)

for decimation in frequency (DIF) process, and

B
𝑟
= T
𝑟
W
𝑁
, (3)

for decimation in time (DIT) process. In both cases the
twiddle factor matrix, W

𝑁
, is a diagonal matrix which is

defined by W
𝑁

= diag (1, 𝑤𝑝
𝑁
, 𝑤
2𝑝

𝑁
, . . . , 𝑤

(𝑟−1)𝑝

𝑁
) with 𝑝 =

0, 1, . . . , 𝑁/𝑟
𝑠

− 1 and 𝑠 = 0, 1, . . . , log
𝑟
𝑁 − 1 and T

𝑟
is the

adder tree matrix within the butterfly structure expressed as
[4]

T
𝑟
=

[
[
[
[
[
[
[
[
[
[
[

[

𝑤
0

𝑁
𝑤
0

𝑁
𝑤
0

𝑁
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑤

0

𝑁

𝑤
0

𝑁
𝑤
𝑁/𝑟

𝑁
𝑤
2𝑁/𝑟

𝑁
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑤

(𝑟−1)𝑁/𝑟

𝑁

𝑤
0

𝑁
𝑤
2𝑁/𝑟

𝑁
𝑤
4𝑁/𝑟

𝑁

...
... 𝑤
2(𝑟−1)𝑁/𝑟

𝑁

...
...

...
...

...
...

...
...

...
...

...
...

𝑤
0

𝑁
𝑤
(𝑟−1)𝑁/𝑟

𝑁
𝑤
2(𝑟−1)𝑁/𝑟

𝑁
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑤

(𝑟−1)
2
𝑁/𝑟

𝑁

]
]
]
]
]
]
]
]
]
]
]

]

. (4)

As seen from (2) and (3), the adder tree, T
𝑟
, is almost

identical for the two algorithms, with the only difference
being the order in which the twiddle factor and the adder
tree multiplication are computed. A straightforward imple-
mentation of the adder tree is not effective for higher radices
butterflies due to the added complex multipliers in the
higher radices butterflies’ critical path that will complicate its
implementation in VLSI.

By defining the element of the 𝑙th line and the𝑚th column
in the matrix T

𝑟
as [T
𝑟
]
𝑙,𝑚
,

[T
𝑟
]
𝑙,𝑚

= 𝑤
⟦(𝑙𝑚𝑁/𝑟)⟧

𝑁

𝑁
, (5)

where 𝑙 = 0, 1, . . . , 𝑟 − 1, 𝑚 = 0, 1, . . . , 𝑟 − 1, and ⟦𝑥⟧
𝑁

represents the operation 𝑥 modulo 𝑁. By defining W
𝑁(𝑚,V,𝑠)

the set of the twiddle factor matrix as

[W
𝑁
]
𝑙,𝑚(V,𝑠) = diag (𝑤

𝑁(0,V,𝑠), 𝑤𝑁(1,V,𝑠), . . . , 𝑤𝑁(𝑟−1,V,𝑠)) , (6)

where the index 𝑟 is the FFT’s radix, V = 0, 1, . . . , 𝑉 − 1

represents the number of words of size 𝑟 (𝑉 = 𝑁/𝑟), and
𝑠 = 0, 1, . . ., 𝑆 is the number of stages (or iterations 𝑆 =

log
𝑟
𝑁 − 1). Finally, the twiddle factor matrix in (2) and (3)

can be expressed for the different stages of an FFT process as
[7, 8]

[W
𝑁
]
𝑙,𝑚(V,𝑠) = {

𝑤
⟦⌊V/𝑟𝑠⌋𝑙𝑟𝑠⟧

𝑁

𝑁
for 𝑙 = 𝑚

0 elsewhere,
(7)

for the DIF process and (3) would be expressed as

[W
𝑁
]
𝑙,𝑚(V,𝑠) = {

𝑤
⟦⌊V/𝑟(𝑆−𝑠)⌋𝑙𝑟(𝑆−𝑠)⟧

𝑁

𝑁
for 𝑙 = 𝑚

0 elsewhere,
(8)

for the DIT process, where 𝑙 = 0, 1, . . . , 𝑟 − 1 is the 𝑙th
butterfly’s output, 𝑚 = 0, 1, . . . , 𝑟 − 1 is the 𝑚th butterfly’s
input, and ⌊𝑥⌋ represents the integer part operator of 𝑥.

As a result, the 𝑙th transform output during each stage can
be illustrated as

X
(V,𝑠) [𝑙] =

𝑟−1

∑

𝑚=0

𝑥
(V,𝑠) [𝑚]𝑤

⟦𝑙𝑚𝑁/𝑟+⌊V/𝑟𝑠⌋𝑙𝑟𝑠⟧
𝑁

𝑁
, (9)

for the modified DIF process, and

X
(V,𝑠) [𝑙] =

𝑟−1

∑

𝑚=0

𝑥
(V,𝑠) [𝑚]𝑤

⟦𝑙𝑚𝑁/𝑟+⌊V/𝑟(𝑆−𝑠)⌋𝑚𝑟(𝑆−𝑠)⟧
𝑁

𝑁
, (10)

for the modified DIT process.
The conceptual key to the modified radix-𝑟 FFT butterfly

is the formulation of the radix-𝑟 as composed engines with
identical structures and a systematic means of accessing
the corresponding multiplier coefficients [8, 9]. This enables
the design of an engine with the lowest rate of complex
multipliers and adders, which utilizes 𝑟 or 𝑟 − 1 complex
multipliers in parallel to implement each of the butterfly
computations. There is a simple mapping from the three
indices 𝑚, V, and 𝑠 (FFT stage, butterfly, and element) to
the addresses of the multiplier coefficients needed by using

VLSI Design 3

the proposed FFT address generator in [24]. For a single
processor environment, this type of butterfly with 𝑟 parallel
multipliers would result in decreasing the time delay for the
complete FFT by a factor of 𝑂(𝑟). A second aspect of the
modified radix-𝑟 FFT butterfly is that they are also useful
in parallel multiprocessing environments. In essence, the
precedence relations between the engines in the radix-𝑟 FFT
are such that the execution of 𝑟 engines in parallel is feasible
during each FFT stage. If each engine is executed on the
modified processing element (PE), it means that each of the
𝑟 parallel processors would always be executing the same
instruction simultaneously, which is very desirable for SIMD
implementation on some of the latest DSP cards.

Based on this concept, Kim and Sunwoo proposed a
proper multiplexing scheme that reduces the usage of com-
plex multiplier for the radix-8 butterfly from 11 to 5 [25].

3. Parallel FFT Processing

For the past decades, therewere several attempts to parallelize
the FFT algorithm which was mostly based on paralleliz-
ing each stage (iteration) of the FFT process [26–28]. The
most successful FFT parallelization was accomplished by
parallelizing the loops during each stage or iteration in the
FFT process [29, 30] or by focusing on memory hierarchy
utilization that is achieved by the combination of production
and consumption of butterflies’ results, data reuse, and FFT
parallelism [31].

The definition of the DFT is represented by

𝑋
(𝑘)

=

𝑁−1

∑

𝑛=0

𝑥
(𝑘)
𝑤
𝑛𝑘

𝑁
, 𝑘 ∈ [0,𝑁 − 1] , (11)

where 𝑥
(𝑛)

is the input sequence,𝑋
(𝑘)

is the output sequence,
𝑁 is the transform length, and 𝑤

𝑁
is the 𝑁th root of unity:

𝑤
𝑁

= 𝑒
−𝑗2𝜋/𝑁. Both 𝑥

(𝑛)
and 𝑋

(𝑘)
are complex valued

sequences.
Let 𝑥
(𝑛)

be the input sequence of size𝑁 and let 𝑝
𝑟
denote

the degree of parallelism which is multiple of 𝑁; therefore,
we can rewrite (11) by considering 𝑘

1
= 0, 1, . . . , 𝑉 − 1, 𝑝 =

0, 1, . . . , 𝑝
𝑟
−1, 𝑞 = 0, 1, . . . , 𝑝

𝑟
−1,𝑉 = 𝑁/𝑝

𝑟
, and 𝑘 = 𝑘

1
+𝑞𝑉

as [9]
𝑋
(𝑘
1
+𝑞𝑁/𝑝

𝑟
)

= [𝑤
0

𝑁

𝑁/𝑝
𝑟
−1

∑

𝑛=0

𝑥
(𝑝
𝑟
𝑛)
𝑤
𝑛(𝑘
1
+𝑞
𝑟
𝑁/𝑝
𝑟
)

𝑁/𝑝
𝑟

+ 𝑤
(𝑘
1
+𝑞𝑁/𝑝

𝑟
)

𝑁

𝑁/𝑝
𝑟
−1

∑

𝑛=0

𝑥
(𝑝
𝑟
𝑛+1)

𝑤
𝑛(𝑘
1
+𝑞𝑁/𝑝

𝑟
)

𝑁/𝑝
𝑟

+ ⋅ ⋅ ⋅ + 𝑤
(𝑝
𝑟
−1)(𝑘

1
+𝑞𝑁/𝑝

𝑟
)

𝑁

𝑁/𝑝
𝑟
−1

∑

𝑛=0

𝑥
(𝑝
𝑟
𝑛+(𝑝
𝑟
−1))

𝑤
𝑛(𝑘
1
+𝑞𝑁/𝑝

𝑟
)

𝑁/𝑝
𝑟

] .

(12)

If 𝑋
(𝑘)

is the 𝑁th order Fourier transform ∑
𝑁−1

𝑛=0
𝑥
(𝑛)
𝑤
𝑛𝑘

𝑁
,

then, 𝑋
(0)
(𝑘1)

, 𝑋
(1)
(𝑘1)

, . . ., and 𝑋
(𝑝
𝑟
−1)
(𝑘1)

will be the 𝑁th/𝑝
𝑟

order Fourier transforms given, respectively, by the fol-
lowing expressions:∑𝑉−1

𝑛=0
𝑥
(𝑝
𝑟
𝑛)
𝑤
𝑛V
𝑉
,∑𝑉−1
𝑛=0

𝑥
(𝑝
𝑟
𝑛+1)

𝑤
𝑛V
𝑉
, . . ., and

∑
𝑉−1

𝑛=0
𝑥
(𝑝
𝑟
𝑛+(𝑝
𝑟
−1))

𝑤
𝑛V
𝑉
.

4. The Proposed Higher Radices Butterflies

Most of the FFTs’ computation transforms are done within
the butterfly loops. Any algorithm that reduces the number
of additions andmultiplications in these loops will reduce the
overall computation speed. The reduction in computation
is achieved by targeting trivial multiplications which have
a limited speedup or by parallelizing the FFTs that have a
significant speedup on the execution time of the FFT. In this
section we will be limited in the elaboration of the proposed
butterfly’s radix-2𝛼/4𝛽 (the radix-2/4 families) for the DIT
FFT process. By rewriting (3) as

X = W
𝑁

𝑟−1

∑

𝑚=0

𝑥
(𝑚)

𝑤
𝑙𝑚𝑁/𝑟

𝑁
= W
𝑁

𝑟−1

∑

𝑚=0

𝑥
(𝑚)

𝑤
𝑙𝑚

𝑟
(13)

and by applying the concept of the parallel FFT (introduced in
Section 3) on the kernelB

𝑟
, therefore, (13) will be expressed as

X = W
𝑁

𝑟−1

∑

𝑚=0

𝑥
(𝑚)

𝑤
𝑙𝑚

𝑟

= W
𝑁
[

𝑟/𝛼−1

∑

𝑚=0

𝑥
(𝛼𝑚)

𝑤
𝑙𝑚𝛼

𝑟
+ ⋅ ⋅ ⋅

+

𝑟/𝛼−1

∑

𝑚=0

𝑥
(𝛼𝑚+(𝛼−1))

𝑤
𝑙(𝛼𝑚+(𝛼−1))

𝑟
]

= W
𝑁
[𝑋
(0)

+ 𝑤
𝑙

𝑟
𝑋
(1)

+ ⋅ ⋅ ⋅ + 𝑤
𝑙(𝛼−1)

𝑟
𝑋
(𝛼−1)

]

for 𝑙 = 0, . . . ,
𝑟

𝛼
− 1.

(14)

It is to be noted that the notation 𝑤
𝑥
in all figures of

this paper represents the set of twiddle factor associated
with the butterfly input defined by [𝑤

0
, . . . , 𝑤

(𝑟−2)
] =

diag(𝑤𝑝
𝑁
, 𝑤
2𝑝

𝑁
, . . . , 𝑤

(𝑟−1)𝑝

𝑁
).

For the radix-4 butterfly (𝑟 = 2 and𝛼 = 2), we can express
(13) as

X = W
𝑁
[

1

∑

𝑚=0

𝑥
(2𝑚)

𝑤
𝑙𝑚

2
+ 𝑤
𝑙

4

1

∑

𝑚=0

𝑥
(2𝑚+1)

𝑤
𝑙𝑚

2
]

= W
𝑁
[𝑋
(0)

+ 𝑤
𝑙

4
𝑋
(1)
] ,

(15)

and the conventional radix-22 (MDC-R22) BPE in terms of
radix-2 butterfly is illustrated in Figure 1.

The use of resources could also be reduced by a feedback
network and a multiplexing network where the feedback
network is for feeding the 𝑖th output of the 𝑗th radix-2
adder network to the 𝑗th input of the 𝑖th butterfly and the
multiplexers selectively pass the input data or the feedback,
alternately, to the corresponding radix-2 adder network as

4 VLSI Design

In0

In2

In1

In3

Out0

Out1

Out2

Out3

radix-2
Conventional

butterfly

radix-2
Conventional

butterfly
radix-2

Conventional

butterfly

radix-2
Conventional

butterfly

w0

w1

w2
−j

Figure 1: Conventional radix-22 (MDC-R22) BPE (butterfly pro-
cessing element).

0

1

1

0

0

1

1

0

In0

In2

In1

In3

Out0

Out1

Out2

Out3

Radix-2
adder network

Radix-2
adder network

w0

w1

w2

−jSel1

Partial MuxMDC-R22

(a)

−

(b)

Figure 2: (a) Proposed multiplexed radix-22 (MuxMDC-R22) BPE
and (b) block circuit diagram of the radix-2 adder network [7].

illustrated in Figure 2(a) [23]. The circuit block diagram of
the radix-2 adder network is illustrated in Figure 2(b) that
consists of two complex adders only.

With the rising edge of the clock cycle the inputs data are
fed to the butterfly’s input of the system presented in Figure 1.
In order to complete the butterfly’s operations within one
clock cycle, the following conditions should be satisfied:

𝑇CLK > 𝑇CM + 2𝑇CA,

Throughput = 4

𝑇CLK
,

(16)

CLK

TCLK

Out0–3

In0–3

Figure 3: Timing block diagram of Figure 1.

CLK

TCLK

t1 t2
Sel1

Out0–3

In0–3

Figure 4: Timing block diagram of Figure 2(a).

where 𝑇CM/𝑇CA is the time required to perform one complex
multiplication/addition and the timing block diagram of
Figure 1 is sketched in Figure 3.

With the rising edge of the clock cycle the inputs data
are fed to the butterfly’s input of the system presented in
Figure 2(a) and with the falling edge of the clock cycle the
feedback data are fed to the butterfly’s input. In order to
complete the butterfly’s operations within one clock cycle, the
following conditions should be satisfied:

𝑡
1
> 𝑇CM + 𝑇CA,

𝑡
2
> 𝑇CA,

𝑇CLK > (𝑡
1
+ 𝑡
2
) > 𝑇CM + 2𝑇CA,

Throughput = 4

𝑇CLK
,

(17)

and the timing block diagram of Figure 2(a) is illustrated in
Figure 4.

Further block building of these modules could be
achieved by duplicating the block circuit diagram of
Figure 2(a) and combining them in order to obtain the radix-
8 MDC-R23 BPE; therefore, for this case (𝑟 = 4 and 𝛼 = 2),
(4) could be expressed as

X
(𝑙)
= W
𝑁
[

3

∑

𝑚=0

𝑥
(2𝑚)

𝑤
𝑙𝑚

4
+ 𝑤
𝑙

8

3

∑

𝑚=0

𝑥
(2𝑚+1)

𝑤
𝑙𝑚

4
]

= W
𝑁
[𝑋
(0)

+ 𝑤
𝑙

8
𝑋
(1)
] ,

(18)

and the signal flow graph (SFG) of the DIT conventional
MDC-R23 BPE butterfly is illustrated in Figure 5. The
resources in the conventional MDC-R23 BPE could also be

VLSI Design 5

Out0

Out2

Out6

Out7

Out1

Out4

Out3

Out5

−j

In0

In2
In6

In4

In1

In3

In7

In5

w0

w4

w1

w5

w3

w2

w6

c

c1

Conventional
radix-4

butterfly

Conventional
radix-4

butterfly

Conventional
radix-2

butterfly

Conventional
radix-2

butterfly

Conventional
radix-2

butterfly

Conventional
radix-2

butterfly

Figure 5: Conventional MDC-R23 BPE.

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

In0

In2

In6

In4

In1

In3

In7

In5

w0

w1

w5

w3

Partial
MuxMDC-R22

Partial
MuxMDC-R22

Out0

Out1

Out5

Out7

Out2

Out4

Out3

Out6

Sel2

w4, c

w2, −j

w6, c1

Figure 6: Proposed MuxMDC-R23 BPE based on the partial
MuxMDC-R22.

reduced by means of the partial multiplexed radix 22 and a
feedback network yielding to the proposed MuxMDC-R23
BPE structure in Figure 6.

The clock timing of Figure 5 is computed as
𝑇CLK > 𝑇CM + 𝑡pm + 3𝑇CA,

Throughput = 8

𝑇CLK
,

(19)

where 𝑡pm is the time required to execute one complex
multiplication on a constant multiplier and the clock timing
of the proposed MuxMDC-R23 is estimated as

𝑡
1
> 𝑇CM + 𝑇CA,

𝑡
2
> 𝑇CA,

𝑡
3
= 𝑡
1
,

𝑇CLK > (𝑡
1
+ 𝑡
2
+ 𝑡
3
) > 2𝑇CM + 3𝑇CA,

Throughput = 8

𝑇CLK
.

(20)

CLK

TCLK

t1 t2

t3

Sel1

Sel2

Out0–7

In0–7

Figure 7: Timing block diagram of Figure 6.

Partial
MuxMDC-R22

Partial
MuxMDC-R22

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

In0

In2

In6

In4

In1

In3

In7

In5

Out0

Out2

Out6

Out7

Out1

Out4

Out3

Out5

Sel2

Partial MuxMDC-R23

−j

c
c1

Figure 8: Proposed Partial MuxMDC-R23.

The overall timing block diagram of the proposed
MuxMDC-R23 is sketched in Figure 7. In Figure 6, the inputs
are multiplied by the twiddle factors 𝑤

𝑖
when 𝑆

2
= 1 and by

the constant factors −𝑗, 𝑐, 𝑐
1
or 1 for 𝑆

2
= 0.

Further block building of these modules could be
achieved by combining two radix-8 butterflies with eight
radix-2 butterflies in order to obtain the conventional MDC-
R24 BPE; therefore, for this case (𝑟 = 8 and 𝛼 = 2), (4) could
be expressed as

X
(𝑙)
= W
𝑁
[

7

∑

𝑚=0

𝑥
(2𝑚)

𝑤
𝑙𝑚

8
+ 𝑤
𝑙

8

7

∑

𝑚=0

𝑥
(2𝑚+1)

𝑤
𝑙𝑚

8
]

= W
𝑁
[𝑋
(0)

+ 𝑤
𝑙

16
𝑋
(1)
] ,

(21)

and the signal flow graph (SFG) of the proposedDIT radix-24
MuxMDC-R24 based on the partialMuxMDC-R23 (Figure 8)
is illustrated in Figure 9.

6 VLSI Design

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

In0

In4

In12

In8

In2

In6

In14

In10

In1

In5

In13

In9

In3

In7

In15

In11

Out0

Out8

Out4

Out13

Out5

Out14

Out7

Out15

Out2

Out1

Out9

Out6

Out3

Out11

Out12

Out10

w11, c

w9, c1

w13, c2

w8 , −j

w12, c3

w10, c4

w14, c5

w2

w6

w4

w0

w5

w1

w3

w7

Partial
MuxMDC-R23

Partial
MuxMDC-R23

Sel3

Figure 9: Proposed MuxMDC-R24 BPE based on the Partial MuxMDC-R23.

CLK

TCLK

t1 t2

t3

t4

Sel1

Sel2

Sel3

Out0–15

In0–15

Figure 10: Timing block diagram of Figure 6.

The clock timing of the conventional MDC-R24 BPE is
computed as

𝑇CLK > 𝑇CM + 2𝑡pm + 4𝑇CA,

Throughput = 16

𝑇CLK
,

(22)

and the clock timing of the proposed MuxMDC-R24 is
estimated as

𝑡
1
> 𝑇CM + 𝑇CA,

𝑡
2
> 𝑇CA,

𝑡
3
= 𝑡pm + 𝑇CA,

VLSI Design 7

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

In0

In4

In12

In8

In2

In6

In14

In10

In1

In5

In13

In9

In3

In7

In15

In11

Out0

Out8

Out1

Out9

Out13

Out5

Out11

Out7

Out15

Out2

Out4

Out12

Out3

Out6

Out14

Out10w9 , −j

w1

w0

w2

w11

w3

w7

Sel

Radix-4
adder

network

Radix-4
adder

network

Radix-4
adder

network

Radix-4
adder

network

w4, c

w8 , c1

w12, c2

w5, c1

w13, c3

w6, c2

w10, c3

w14, −c

Figure 11: The proposed DIT MuxMDC-R42.

−

−−

−

In0

In2

In1

In3

Out0

Out1

Out2

Out3−j

Figure 12: Block circuit diagram of the radix-4 adder network.

Iteration i

Sw
itc

h

Sw
itc

h

Radix-r
BPE

Radix-r
BPE

Radix-r
BPE

Stage 1 Stage 2 Stage S

x(�,s)[0]

x(�,s)[1]

x(�,s)[r − 1]

X(�,s)[0]
X(�,s)[1]

X(�,s)[r − 1]

...
...

...
...

...

Figure 13: 𝑆 stages radix-𝑟 pipelined FFT.

8 VLSI Design

1 2 3 4 5 6 7 8

0

5

10

15

20

25

30

Re
so

ur
ce

s n
ee

de
d

in
 te

rm
s o

f c
om

pl
ex

 m
ul

tip
lie

r

−5

log4(N)

R-22 [17]

R-24 [17], proposed MuxMDC-R22
R-24 [13, 14, 15, 16], R-23 [17]

Figure 14: Comparison between the different butterflies’ structures
in terms of complexmultiplier needed to compute the 4 parallel BPE
pipelined FFTs of size𝑁.

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

Re
so

ur
ce

s n
ee

de
d

in
 te

rm
s o

f c
om

pl
ex

 ad
de

r

log4(N)

R-23 [17], R-24 [17]

Proposed MuxMDC-R22
R-24 [13, 14, 15, 16], R-23 [17]

Figure 15: Comparison between the different butterflies’ structures
in terms of complex adder needed to compute the 4 parallel BPE
pipelined FFTs of size𝑁.

𝑡
4
= 𝑡
1
,

𝑇CLK > (𝑡
1
+ 𝑡
2
+ 𝑡
3
+ 𝑡
4
) > 2𝑇

𝐶𝑀
+ 𝑡pm + 4𝑇CA,

Throughput = 16

𝑇CLK
.

(23)

The overall timing block diagram of the proposedMuxMDC-
R24 is sketched in Figure 10.

With the same reasoning as above, we will be limited in
the elaboration of the proposed butterfly’s radix-4𝛼 family to
the DIT FFT process.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

10

20

30

40

50

60

70

Re
so

ur
ce

s n
ee

de
d

in
 te

rm
s o

f c
om

pl
ex

 m
ul

tip
lie

r

Proposed MuxMDC-R23

log8(N)

R-22 [17]
R-23 [17]

R-24 [17]

R-24 [13, 14, 15, 16], R-23 [17]

R-2 [18, 19], R-24 [20]

Figure 16: Comparison between the different butterflies’ structures
in terms of complexmultiplier needed to compute the 8 parallel BPE
pipelined FFTs of size𝑁.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

50

100

150

200

250

300

Re
so

ur
ce

s n
ee

de
d

in
 te

rm
s o

f c
om

pl
ex

 ad
de

r

Proposed MuxMDC-R23

R-2 [18], R-22 [17], R-23 [17], R-23 [17]
R-2 [19], R-24 [20]

log8(N)

Figure 17: Comparison between the different butterflies’ structures
in terms of complex adder needed to compute the 8 parallel BPE
pipelined FFTs of size𝑁.

For the radix-16 butterfly (𝑟 = 4 and 𝛼 = 4), we can
express (4) as

X = W
𝑁
[

3

∑

𝑚=0

𝑥
(4𝑚)

𝑤
𝑙𝑚

4
+ 𝑤
𝑙

16

3

∑

𝑚=0

𝑥
(4𝑚+1)

𝑤
𝑙𝑚

4

+𝑤
2𝑙

16

3

∑

𝑚=0

𝑥
(4𝑚+2)

𝑤
𝑙𝑚

4
+ 𝑤
3𝑙

16

3

∑

𝑚=0

𝑥
(2𝑚+1)

𝑤
𝑙𝑚

4
]

= W
𝑁
[𝑋
(0)

+ 𝑤
𝑙

16
𝑋
(1)

+ 𝑤
2𝑙

16
𝑋
(2)

+ 𝑤
3𝑙

16
𝑋
(3)
] ,

(24)

VLSI Design 9

Table 1: Resources needed to compute an FFT of size𝑁.

Butterfly structure Complex multiplier Complex adder Latency (cycles) 𝑇 (Spc)
4 parallel BPE architectures

R-24 [13], [14] 4(log
4
𝑁 − 1) 16log

4
𝑁 𝑁/4 4

R-24 [15] 4(log
4
𝑁 − 1) 16log

4
𝑁 𝑁/4 4

R-24 [16] 4(log
4
𝑁 − 1) 16log

4
𝑁 𝑁/4 4

R-22 [17] 3(log
4
𝑁 − 1) 16log

4
𝑁 𝑁/4 4

R-23 [17] 4(log
4
𝑁 − 1) 8log

4
𝑁 𝑁/4 4

R-24 [17] 3.5(log
4
𝑁 − 4) 8log

4
𝑁 𝑁/4 4

Proposed MuxMDC-R22 3(log
4
𝑁 − 1) 4log

4
𝑁 𝑁/4 4

8 parallel BPE architectures
R-2 [18] 8(log

4
𝑁 − 1) 16log

4
𝑁 𝑁/8 8

R-2 [19] 8(log
4
𝑁 − 1) 32log

4
𝑁 𝑁/8 8

R-24 [20] 8(log
4
𝑁 − 1) 32log

4
𝑁 𝑁/8 8

R-22 [17] 6(log
4
𝑁 − 1) 16log

4
𝑁 𝑁/8 8

R-23 [17] 6log
4
𝑁 − 7 16log

4
𝑁 𝑁/8 8

R-24 [17] 7log
4
𝑁 − 8 16log

4
𝑁 𝑁/8 8

Proposed MuxMDC-R23 7(log
8
𝑁 − 1) 8log

8
𝑁 𝑁/8 8

16 parallel BPE architectures
Proposed MuxMDC-R24 17(log

16
𝑁 − 1) 16log

16
𝑁 𝑁/16 16

Proposed MuxMDC-R42 15(log
16
𝑁 − 1) 32log

16
𝑁 𝑁/16 16

Table 2: Resources needed in terms of FA to compute an FFT of size𝑁.

Butterfly structure FA
4 parallel BPE architectures

R-24 [13], [14] 12𝑛
2

(log
4
𝑁 − 1) + 20 (𝑝log

4
𝑁 − 1) + 32𝑝log

4
𝑁

R-24 [15] 12𝑛
2

(log
4
𝑁 − 1) + 20𝑝 (log

4
𝑁 − 1) + 32𝑝log

4
𝑁

R-24 [16] 12𝑛
2log
4
(𝑁 − 1) + 20𝑝log

4
(𝑁 − 1) + 32𝑝log

4
𝑁

R-22 [17] 9𝑛
2

(log
4
𝑁 − 1) + 15𝑝 (log

4
𝑁 − 1) + 32𝑝log

4
𝑁

R-23 [17] 12𝑛
2

(log
4
𝑁 − 1) + 20𝑝 (log

4
𝑁 − 1) + 16𝑝log

4
𝑁

R-24 [17] 10.5𝑛
2

(log
4
𝑁 − 1) + 17.5𝑝 (log

4
𝑁 − 1) + 16𝑝log

4
𝑁

Proposed MuxMDC-R22 9𝑛
2

(log
4
𝑁 − 1) + 15𝑝 (log

4
𝑁 − 1) + 8𝑝log

4
𝑁

8 parallel BPE architectures
R-2 [18] 24𝑛

2

(log
4
𝑁 − 1) + 40𝑝 (log

4
𝑁 − 1) + 32𝑝log

4
𝑁

R-2 [19] 24𝑛
2

(log
4
𝑁 − 1) + 40𝑝 (log

4
𝑁 − 1) + 64𝑝log

4
𝑁

R-24 [20] 24𝑛
2

(log
4
𝑁 − 1) + 40𝑝 (log

4
𝑁 − 1) + 64𝑝log

4
𝑁

R-22 [17] 18𝑛
2

(log
4
𝑁 − 1) + 30𝑝 (log

4
𝑁 − 1) + 32𝑝log

4
𝑁

R-23 [17] 18𝑛
2

(log
4
𝑁 − 1) + 30𝑝 (log

4
𝑁 − 1) + 32𝑝log

4
𝑁 − 21𝑛

2

− 35𝑝

R-24 [17] 21𝑛
2

(log
4
𝑁 − 1) + 35𝑝 (log

4
𝑁 − 1) + 32𝑝log

4
𝑁 − 24𝑛

2

− 40𝑝

Proposed MuxMDC-R23 21𝑛
2

(log
8
𝑁 − 1) + 35𝑝 (log

8
𝑁 − 1) + 16𝑝log

8
𝑁

16 parallel BPE architectures
Proposed MuxMDC-R24 51𝑛

2

(log
16
𝑁 − 1) + 85𝑝 (log

16
𝑁 − 1) + 32𝑝log

16
𝑁

Proposed MuxMDC-R42 45𝑛
2

(log
16
𝑁 − 1) + 75𝑝 (log

16
𝑁 − 1) + 64𝑝log

16
𝑁

and the proposed MDC-R42 in terms of radix-4 network
is illustrated in Figure 11 where the feedback network is for
feeding the 𝑖th output of the 𝑗th radix-4 network to the 𝑗th
input of the 𝑖th butterfly and the switches selectively pass the
input data or the feedback, alternately, to the corresponding
radix-4 butterfly. The circuit block diagram of the radix-4
network is illustrated in Figure 12.

5. Performance Evaluation

FFTs are the most powerful algorithms that are used in com-
munication systems such as OFDM. Their implementation
is very attractive in fixed point due to the reduction in cost
compared to the floating point implementation. One of the
most powerful FFT implementations is the pipelined FFT

10 VLSI Design

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
20

40

60

80

100

120

140

160

180

Re
so

ur
ce

s n
ee

de
d

in
 te

rm
s o

f c
om

pl
ex

 ad
de

r

Proposed MuxMDC-R24

Proposed MuxMDC-R42

log16(N)

Figure 18: Comparison between the different butterflies’ structures
in terms of complex adder needed to compute the 16 parallel BPE
pipelined FFTs of size𝑁.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

10

20

30

40

50

60

Re
so

ur
ce

s n
ee

de
d

in
 te

rm
s o

f c
om

pl
ex

 m
ul

tip
lie

r

Proposed MuxMDC-R24

Proposed MuxMDC-R42

log16(N)

Figure 19: Comparison between the different butterflies’ structures
in terms of complex multiplier needed to compute the 16 parallel
BPE pipelined FFTs of size𝑁.

ar

ai

br

bi

Pr

Pi

e

−

−

Figure 20: Complex multiplier using three real multipliers and five
real adders.

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

Re
so

ur
ce

s n
ee

de
d

in
 te

rm
s f

ul
l a

dd
er

Proposed MuxMDC-R22

×10
6

log4(N)

R-24 [13, 14, 15, 16]
R-22 [17]
R-23 [17]

R-24 [17]

Figure 21: Comparison between the different butterflies’ structures
in terms of full adder needed to compute the 4 parallel pipelined
FFTs of size𝑁 (multiplier on 16 bits and adder on 32 bits).

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

2

4

6

8

10

12

14
×10

6

Re
so

ur
ce

s n
ee

de
d

in
 te

rm
s f

ul
l a

dd
er

Proposed MuxMDC-R23

log8(N)

R-2 [18]
R-2 [19], R-24 [20]
R-22 [17]

R-23 [17]
R-24 [17]

Figure 22: Comparison between the different butterflies’ structures
in terms of full adder needed to compute the 8 parallel pipelined
FFTs of size𝑁 (multiplier on 16 bits and adder on 32 bits).

which is highly implemented in the communication systems;
see Figure 13.

Since the objective of this paper ismainly concentrated on
the higher radices butterflies structures, in our performance
study we will be limited to the impact of the butterfly struc-
ture. Once the pipeline is filled, the butterflies will produce 𝑟
output each clock cycle (throughput 𝑇 in samples per cycle
(Spc)). Therefore, Table 1 will draw the comparison between

VLSI Design 11

X(0)

X(8)

X(16)

X(24)

X(32)

X(40)

X(48)

X(56)

X(1)

X(9)

X(17)

X(25)

X(33)

X(41)

X(49)

X(57)

X(2)

X(10)

X(18)

X(26)

X(34)

X(42)

X(50)

X(58)

X(3)

X(11)

X(19)

X(27)

X(35)

X(43)

X(51)

X(59)

X(4)

X(12)

X(20)

X(28)

X(36)

X(44)

X(52)

X(60)

X(5)

X(13)

X(21)

X(29)

X(37)

X(45)

X(53)

X(61)

X(6)

X(14)

X(22)

X(30)

X(38)

X(46)

X(54)

X(62)

X(7)

X(15)

X(23)

X(31)

X(39)

X(47)

X(55)

X(63)

X(0)

X(8)

X(16)

X(24)

X(32)

X(40)

X(48)

X(56)

X(1)

X(9)

X(17)

X(25)

X(33)

X(41)

X(49)

X(57)

X(2)

X(10)

X(18)

X(26)

X(34)

X(42)

X(50)

X(58)

X(3)

X(11)

X(19)

X(27)

X(35)

X(43)

X(51)

X(59)

X(4)

X(12)

X(20)

X(28)

X(36)

X(44)

X(52)

X(60)

X(5)

X(13)

X(21)

X(29)

X(37)

X(45)

X(53)

X(61)

X(6)

X(14)

X(22)

X(30)

X(38)

X(46)

X(54)

X(62)

X(7)

X(15)

X(23)

X(31)

X(39)

X(47)

X(55)

X(63)

PE

PE

PE

PE

PE

PE

PE

Radix-8

Radix-8

Radix-8

Radix-8

Radix-8

Radix-8

Radix-8

Radix-8

PE

Figure 23: Two stage pipelined FFT (or array structure) with a feedback network [23].

the different butterflies’ structures in terms of resources
needed to compute an FFT of size𝑁.

As shown in Figure 14, we could clearly see that the
proposed MuxMDC-R22 for the four parallel pipelined FFTs
of size 𝑁 will have the same amount of complex multiplier
compared to the radix 24 cited in [30]. Furthermore, our
proposedMuxMDC-R22 achieves a reduction in the usage of
complex multiplier by a factor that ranges between 1.1 and 1.4
compared to the other cited butterflies.

For the 4 parallel pipelined FFTs of size𝑁, the reduction
in the usage of complex adder for our proposed method
MuxMDC-R22 ranges between 1.9 and 3.9 compared to the
cited butterflies as shown in Figure 15.

For the 8 parallel pipelined FFTs of size𝑁, the reduction
factor in the usage of complex multiplier for our proposed

MuxMDC-R23 could range from 1.3 to 2.1 compared to the
cited butterflies as illustrated in Figure 16.

For the same structure, the reduction factor in the usage
of complex adder for our proposed method MuxMDC-R23
could range from 3.0 to 5.4 compared to the cited butterflies
(Figure 17).

It seems that the proposed MuxMDC-R24 uses less
complex adders than the proposed MuxMDC-R42 as shown
in Figure 18 where the proposed MuxMDC-R24 achieves a
reduction in the usage of complex adder by a factor of 2
but the proposed MuxMDC-R42 achieves a reduction in the
usage of complex multiplier by a factor of 1.1 as shown in
Figure 19.

Since one complex multiplication is counted as 3 real
multiplications and 5 real additions as shown in Figure 20,

12 VLSI Design

Table 2 will illustrate the required resources in terms of full
adder (FA) that will be computed as (a) 𝑛2 for two 𝑛-digit real
multiplier and (b) 𝑝 for two 𝑝-digit real adder.

For the four parallel pipelined FFTs of size𝑁, it seems that
the R-22 butterfly cited in [30] will have approximately the
same amount of FA as the proposedMuxMDC-R22 according
to Figure 21. Our proposed MuxMDC-R22 will achieve a
reduction in the usage of FA by a factor that ranges between
1.17 and 1.34 (Figure 21).

With regard to the eight parallel pipelined FFTs of size
𝑁, it seems that the proposed MuxMDC-R23 will achieve a
reduction in the usage of FA by a factor that ranges between
1.4 and 1.9 in comparison to the other cited butterflies as
shown in Figure 22.

Since the implementation of higher radices by means of
the radix-2𝛼/4𝛽 butterfly is feasible, the optimal pipelined
FFT is achieved by the two stage FFT as shown in Figure 23
where the use of complex memories between the different
stages is completely eliminated and the delay required to fill
up the pipeline is totally absent.

6. Conclusion

It has been shown that the higher radix FFT algorithms are
advantageous for the hardware implementation, due to the
reduced quantity of complex multiplications and memory
access rate requirements.This paper has presented an efficient
way of implementing the higher radices butterflies by means
of the radix-2𝛼/4𝛽 kernel where serial parallel models have
been represented. The proposed optimized different struc-
tures with a scheduling scheme of complex multiplications
are suitable for embedded FFT processors. Furthermore, it
has been proven that the higher radices butterflies could
be obtained by reusing the block circuit diagram of the
radix-2𝛼/4𝛽 butterfly. Based on this concept, the hardware
resources needed could be reduced which is highly desirable
for low power consumption FFT processors. The proposed
method is suitable for large pipelined FFTs implementation
where the performance gain will increase with an increasing
FFTs’ radix size. This structure is also appropriate for SIMD
implementation on some of the latest DSP cards.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank the financial support from
the Natural Sciences and Engineering Research Council of
Canada and from JABERTECH’s Shareholders Trevor Hill
from Alberta and Bassam Kabbara from Kuwait.

References

[1] W.Cooley and J.W.Tukey, “An algorithm for themachine calcu-
lation of complex Fourier series,”Mathematics of Computation,
vol. 19, pp. 297–301, 1965.

[2] P. Duhamel and H. Hollmann, “Split radix FFT algorithm,”
Electronics Letters, vol. 20, no. 1, pp. 14–16, 1984.

[3] S. Winograd, “On computing the discrete Fourier transform,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 73, no. 4, pp. 1005–1006, 1976.

[4] T. Widhe, Efficient Implementation of FFT Processing Elements,
Linkoping Studies in Science and Technology no. 619, Linkop-
ing University, Linköping, Sweden, 1997.

[5] T. Widhe, J. Melander, and L. Wanhammar, “Design of efficient
radix-8 butterfly PEs for VLSI,” in Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS ’97),
pp. 2084–2087, June 1997.

[6] J. Melander, T. Widhe, K. Palmkvist, M. Vesterbacka, and L.
Wanhammar, “An FFT processor based on the SIC architecture
with asynchronous PE,” in Proceedings of the IEEE 39thMidwest
Symposium on Circuits and Systems, vol. 3, pp. 1313–1316, Ames,
Iowa, USA, August 1996.

[7] M. Jaber and D. Massicotte, “The self-sorting JMFFT algorithm
eliminating trivial multiplication and suitable for embedded
DSP processor,” in Proceedings of the 10th IEEE International
NEWAS Conference, Montreal, Canada, June 2012.

[8] M. Jaber, “Butterfly processing element for efficient fast Fourier
transform method and apparatus,” US Patent No. 6, 751, 643,
2004.

[9] M. A. Jaber and D. Massicotte, “A new FFT concept for efficient
VLSI implementation: part I—butterfly processing element,” in
16th International Conference on Digital Signal Processing (DSP
’09), pp. 1–6, Santorini, Greece, July 2009.

[10] Y.Wang, Y. Tang, Y. Jiang, J. Chung, S. Song, andM. Lim, “Novel
memory reference reductionmethods for FFT implementations
onDSP processors,” IEEE Transactions on Signal Processing, vol.
55, no. 5, pp. 2338–2349, 2007.

[11] S. He and M. Torkelson, “Design and implementation of a
1024-point pipeline FFT processor,” in Proceedings of the IEEE
Custom Integrated Circuits Conference, pp. 131–134, May 1998.

[12] S. He and M. Torkelson, “New approach to pipeline FFT
processor,” in Proceedings of the 10th International Parallel
Processing Symposium (IPPS ’96), pp. 766–770, April 1996.

[13] E. E. Swartzlander, W. K. W. Young, and S. J. Joseph, “A
radix 4 delay commutator for fast Fourier transform processor
implementation,” IEEE Journal of Solid-State Circuits, vol. 19, no.
5, pp. 702–709, 1984.

[14] J. H. McClellan and R. J. Purdy, Applications of Digital Signal
Processing, Applications of Digital Signal Processing to Radar,
chapter 5, Prentice Hall, New York, NY, USA, 1978.

[15] H. Liu and H. Lee, “A high performance four-parallel 128/64-
point radix-24 FFT/IFFT processor for MIMO-OFDM sys-
tems,” in Proceedings of the IEEE Asia Pacific Conference on
Circuits and Systems (APCCAS ’08), pp. 834–837, Macao, China,
December 2008.

[16] S.-I. Cho, K.-M. Kong, and S.-S. Choi, “Implementation of 128-
point fast fourier transform processor for UWB systems,” in
Proceedings of the International Wireless Communications and
Mobile Computing Conference (IWCMC ’08), pp. 210–213, Crete
Island, Greece, August 2008.

[17] M. Garrido, J. Grajal, M. A. Sanchez, and O. Gustafsson,
“Pipelined radix-2k feedforward FFT architectures,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol.
21, no. 1, pp. 23–32, 2013.

[18] J. A. Johnston, “Parallel pipeline fast Fourier transformer,” IEE
Proceedings F: Communications, Radar and Signal Processing,
vol. 130, no. 6, pp. 564–572, 1983.

VLSI Design 13

[19] E. H. Wold and A. M. Despain, “Pipeline and parallel-pipeline
FFT processors for VLSI implementations,” IEEE Transactions
on Computers, vol. 33, no. 5, pp. 414–426, 1984.

[20] S.-N. Tang, J.-W. Tsai, and T.-Y. Chang, “A 2.4-GS/s FFT proces-
sor for OFDM-based WPAN applications,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 57, no. 6, pp. 451–
455, 2010.

[21] M. Jaber, “Parallel multiprocessing for the fast Fourier trans-
form with pipeline architecture,” US Patent No. 6, 792, 441.

[22] M. A. Jaber and D. Massicotte, “A new FFT concept for efficient
VLSI implementation: part II—parallel pipelined processing,”
in Proceedings of the 16th International Conference on Digital
Signal Processing (DSP 2009), pp. 1–5, Santorini, Greece, July
2009.

[23] M. Jaber, “Fourier transform processor,” US Patent No. 7, 761,
495.

[24] M. Jaber, “Address generator for the fast Fourier transform
processor,” US-6, 993, 547 82 and European Patent Application
Serial no: PCT/USOI /07602.

[25] E. J. Kim andM. H. Sunwoo, “High speed eight-parallel mixed-
radix FFT processor for OFDM systems,” in Proceedings of the
IEEE International Symposium of Circuits and Systems (ISCAS
’11), pp. 1684–1687, Rio de Janeiro, Brazil, May 2011.

[26] P. Li and W. Dong, “Computation oriented parallel FFT algo-
rithms on distributed computer,” in Proceedings of the 3rd
International Symposium on Parallel Architectures, Algorithms
and Programming (PAAP ’10), pp. 369–373, Dalian, China,
December 2010.

[27] D. Takahashi, A. Uno, and M. Yokokawa, “An implementation
of parallel 1-D FFT on the K computer,” in Proceedings of the
IEEE International Conference on High Performance Computing
and Communication, pp. 344–350, Liverpool, UK, June 2012.

[28] R. M. Piedra, “Parallel 1-D FFT implementation with
TMS320C4x DSPs,” Texas Instruments SPRA108, Digital
Signal Processing Semiconductor Group, 1994.

[29] http://www.fftw.org/.
[30] V. Petrov, “MKL FFT performance—comparison of local

and distributed-memory implementations,” Intel Report, 2012,
http://software.intel.com/en-us/node/165305?wapkw=fft.

[31] V. I. Kelefouras, G. S. Athanasiou, N. Alachiotis, H. E. Michail,
A. S. Kritikakou, andC. E. Goutis, “Amethodology for speeding
up fast fourier transform focusing on memory architecture
utilization,” IEEE Transactions on Signal Processing, vol. 59, no.
12, pp. 6217–6226, 2011.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

