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An exact analytical solution is obtained for the problem of three-dimensional transient heat conduction in the multilayered sphere.
The sphere has multiple layers in the radial direction and, in each layer, time-dependent and spatially nonuniform volumetric
internal heat sources are considered. To obtain the temperature distribution, the eigenfunction expansion method is used. An
arbitrary combination of homogenous boundary condition of the first or second kind can be applied in the angular and azimuthal
directions. Nevertheless, solution is valid for nonhomogeneous boundary conditions of the third kind (convection) in the radial
direction. A case study problem for the three-layer quarter-spherical region is solved and the results are discussed.

1. Introduction

Multilayer materials are composite media composed of sev-
eral layers. Because of the additional benefit of combining
various mechanical, physical, and thermal properties of dif-
ferent substances, a construction using multilayer elements
is of interest. Multilayer materials are used in semicircular
fiber insulated heaters, multilayer insulation materials, and
nuclear fuel rods. Multilayer transient heat conduction finds
applications in thermodynamics, fuel cells, and electrochem-
ical reactors. The layered sphere is utilized to investigate the
thermal properties of composite media by assuming embed-
ded spherical particles in the composite matrix. For solving
the problems of multilayer transient heat conduction, the
same methods which are used in solving problems of single
layer transient heat conduction are applied. These methods
can be classified into two groups: analytical methods and
numerical methods. Analytical methods are advantageous
over numerical methods in two ways: (1) analytical solutions
can be used as benchmark to examine and actually confirm
numerical algorithms; (2) compared to a discrete numerical
solution, the mathematical form of an analytical solution
can provide better insight. It should also be mentioned
that the analytical methods applied to multilayer transient

conduction are analogous to those used in the single-layer
transient heat conduction. These analytical methods include
Green’s function method, the Laplace transform, separation
of variables, and eigenfunction expansion method.

Many researchers have solved the transient heat con-
duction problem in a composite medium. For instance, Salt
[1] solved the transient heat conduction problem in a two-
dimensional composite slab using an orthogonal eigenfunc-
tion expansion technique. Mikhailov and Özişik [2], using
the orthogonal expansion approach, solved the problem of
transient three-dimensional heat conduction in a composite
Cartesian medium. Haji-Sheikh and Beck [3] used Green’s
function method to obtain temperature distribution in a
three-dimensional two-layer orthotropic slab. deMonte [4, 5]
applied the eigenfunction expansion method to obtain the
transient temperature distribution for the heat conduction in
a two-dimensional two-layer isotropic slab with homogenous
boundary conditions. Lu et al. [6] and Lu and Viljanen [7]
combined separation of variables and Laplace transforms
to solve the transient conduction in the two-dimensional
cylindrical and spherical media. Singh et al. [8, 9] and
Jain et al. [10, 11] used the combination of separation of
variables and eigenfunction expansion methods to solve the
two-dimensional multilayer transient heat conduction in
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spherical coordinates. Recently, Dalir andNourazar [12] used
the eigenfunction expansion method to solve the problem of
three-dimensional transient heat conduction in a multilayer
cylinder.

Singh et al. [8, 9] and Jain et al. [10, 11] have studied
2D multilayer transient conduction problems in spherical
and cylindrical coordinates. They have obtained analytical
solutions for 2D multilayer transient heat conduction in
spherical coordinates, in polar coordinates with multiple
layers in the radial direction, and in a multilayer annulus.
They have used the method of partial solutions to obtain
the temperature distributions. In the method of partial
solutions, the nonhomogeneous transient problem is split
into two subproblems: a nonhomogeneous steady-state sub-
problem and a homogeneous transient subproblem. Then,
the eigenfunction expansion method is used to solve the
nonhomogeneous steady-state subproblem and the method
of separation of variables is used to solve the homogeneous
transient subproblem.

The literature survey for the exact analytical solution for
3D transient heat conduction in multilayered sphere demon-
strates that such a solution has not, so far, been developed.
Thus, in the present paper, using the eigenfunction expansion
method, an analytical triple-series solution for transient
heat conduction in the 3D spherical coordinates for radial
multilayer domain with spatially nonuniform and time-
dependent internal heat sources is obtained. Homogenous
boundary conditions of the first or second kind can be applied
on surfaces of 𝜃 = constant and 𝜙 = constant. However,
nonhomogeneous boundary conditions of the third kind
(convection) [11] are used in the 𝑟-direction.

Some assumptions are made for the 3D multilayer spher-
ical transient conduction problem. First, the problem is a
boundary-value problem of conduction in spherical (𝑟-𝜃-𝜙
coordinates) or part-sphericalmultilayer geometries. Second,
volumetric internal heat sources of nonuniform and time-
dependent (𝑟, 𝜃, 𝜙 and 𝑡-dependent) types are present. Third,
on the inner and outer radial boundaries, nonhomogeneous
boundary conditions of any kind can be used but, on the
boundary surfaces in the 𝜃 and 𝜙-directions, only the first
or second kind of homogeneous boundary condition can be
applied.

2. Mathematical Formulation

A 𝑛-layer composite spherical slab (𝑟
0
≤ 𝑟 ≤ 𝑟

𝑛
, 0 ≤ 𝜃 ≤

𝜓, and 0 ≤ 𝜙 ≤ 𝜔) is considered. All the layers have perfect
thermal contact and are presumed to be isotropic in thermal
properties. 𝛼

𝑖
and 𝑘

𝑖
are the temperature independent ther-

mal diffusivity and thermal conductivity of the 𝑖th layer. At
𝑡 = 0, the 𝑖th layer is at a specified temperature 𝑓

𝑖
(𝑟, 𝜃, 𝜙)

and time dependent heat sources 𝑔
𝑖
(𝑟, 𝜃, 𝜙, 𝑡) are switched

on in each radial layer. For 𝑡 > 0, homogenous boundary
conditions of first or second kind are applied to the angular
surfaces of 𝜃 = 0 and 𝜃 = 𝜓 and azimuthal surfaces of 𝜙 = 0
and 𝜙 = 𝜔. For the inner (𝑖 = 1, 𝑟 = 𝑟

0
) and the outer

(𝑖 = 𝑛, 𝑟 = 𝑟
𝑛
) radial surfaces, all three kinds of boundary

conditions are applicable.

The governing differential equation of the 3D transient
conduction in a multilayered sphere with heat sources is as
follows:

𝜕
2𝑇
𝑖

𝜕𝑟2
+
2

𝑟

𝜕𝑇
𝑖

𝜕𝑟
+
1

𝑟2
𝜕2𝑇
𝑖

𝜕𝜃2
+
cot 𝜃
𝑟2

𝜕𝑇
𝑖

𝜕𝜃
+

1

𝑟2sin2𝜃
𝜕2𝑇
𝑖

𝜕𝜙2

+
𝑔
𝑖
(𝑟, 𝜃, 𝜙, 𝑡)

𝑘
𝑖

=
1

𝛼
𝑖

𝜕𝑇
𝑖

𝜕𝑡
,

𝑇
𝑖
= 𝑇
𝑖
(𝑟, 𝜃, 𝜙, 𝑡) , 𝑟

0
≤ 𝑟 ≤ 𝑟

𝑛
,

𝑟
𝑖−1
≤ 𝑟 ≤ 𝑟

𝑖
, 1 ≤ 𝑖 ≤ 𝑛,

0 ≤ 𝜃 ≤ 𝜓, 𝜓 < 𝜋,

0 ≤ 𝜙 ≤ 𝜔, 𝜔 < 2𝜋,

𝑡 ≥ 0.

(1)

The boundary conditions are as follows.

(i) Inner surface of 1st layer (𝑖 = 1):

𝐴 in
𝜕𝑇
1

𝜕𝑟
(𝑟
0
, 𝜃, 𝜙, 𝑡) + 𝐵in𝑇1 (𝑟0, 𝜃, 𝜙, 𝑡) = 𝐶in. (2)

(ii) Outer surface of 𝑛th layer (𝑖 = 𝑛):

𝐴out
𝜕𝑇
𝑛

𝜕𝑟
(𝑟
𝑛
, 𝜃, 𝜙, 𝑡) + 𝐵out𝑇𝑛 (𝑟𝑛, 𝜃, 𝜙, 𝑡) = 𝐶out. (3)

(iii) 𝜃 = 𝜓 surface (𝑖 = 1, 2, . . . , 𝑛):

𝑇
𝑖
(𝑟, 𝜃 = 𝜓, 𝜙, 𝑡) = 0 or

𝜕𝑇
𝑖

𝜕𝜃
(𝑟, 𝜃 = 𝜓, 𝜙, 𝑡) = 0,

𝑖 = 1, . . . , 𝑛.

(4)

(iv) 𝜙 = 0 surface (𝑖 = 1, 2, . . . , 𝑛):

𝑇
𝑖
(𝑟, 𝜃, 𝜙 = 0, 𝑡) = 0 or

𝜕𝑇
𝑖

𝜕𝜃
(𝑟, 𝜃, 𝜙 = 0, 𝑡) = 0,

𝑖 = 1, . . . , 𝑛.

(5)

(v) 𝜙 = 𝜔 surface (𝑖 = 1, 2, . . . , 𝑛):

𝑇
𝑖
(𝑟, 𝜃, 𝜙 = 𝜔, 𝑡) = 0 or

𝜕𝑇
𝑖

𝜕𝜃
(𝑟, 𝜃, 𝜙 = 𝜔, 𝑡) = 0,

𝑖 = 1, . . . , 𝑛.

(6)

(vi) Inner interface of the 𝑖th layer (𝑖 = 2, . . . , 𝑛):

𝑇
𝑖
(𝑟
𝑖−1
, 𝜃, 𝜙, 𝑡) = 𝑇

𝑖−1
(𝑟
𝑖−1
, 𝜃, 𝜙, 𝑡) 𝑖 = 2, . . . , 𝑛,

𝑘
𝑖

𝜕𝑇
𝑖

𝜕𝑟
(𝑟
𝑖−1
, 𝜃, 𝜙, 𝑡) = 𝑘

𝑖−1

𝜕𝑇
𝑖−1

𝜕𝑟
(𝑟
𝑖−1
, 𝜃, 𝜙, 𝑡) 𝑖 = 2, . . . , 𝑛.

(7)
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(vii) Outer interface of the 𝑖th layer (𝑖 = 1, . . . , 𝑛 − 1):

𝑇
𝑖
(𝑟
𝑖
, 𝜃, 𝜙, 𝑡) = 𝑇

𝑖+1
(𝑟
𝑖
, 𝜃, 𝜙, 𝑡) 𝑖 = 1, . . . , 𝑛 − 1, (8)

𝑘
𝑖

𝜕𝑇
𝑖

𝜕𝑟
(𝑟
𝑖
, 𝜃, 𝜙, 𝑡) = 𝑘

𝑖+1

𝜕𝑇
𝑖+1

𝜕𝑟
(𝑟
𝑖
, 𝜃, 𝜙, 𝑡) 𝑖 = 1, . . . , 𝑛 − 1.

(9)

The initial condition is as follows:

𝑇
𝑖
(𝑟, 𝜃, 𝜙, 𝑡 = 0) = 𝑓

𝑖
(𝑟, 𝜃, 𝜙) , 1 ≤ 𝑖 ≤ 𝑛. (10)

It is worth mentioning that, at 𝑟 = 𝑟
0
and 𝑟 = 𝑟

𝑛
, boundary

conditions of first, second, or third kind are applied by
appropriate selection of the coefficients in (2) and (3). It
should also be mentioned that zero inner radius (𝑟

0
= 0) for

multilayered sphere ismodeled by assigning zero values to𝐵in
and 𝐶in in (2) [8].

3. Solution Methodology

The eigenfunction expansion method is used to solve the
problem. In the eigenfunction expansion method, first, by
using the associated eigenvalue problem (∇2𝜑 = −𝜆2𝜑),
the eigenfunctions are attained at every spatial direction of
the problem. The associated eigenvalue problem is solved by
the use of separation of variables. Afterward, the dependent
variable and the available nonhomogeneity in the governing
differential equation of the problem are separately written as
series expansions of the eigenfunctions. In heat conduction
problems, the dependent variable is temperature and the
available nonhomogeneity is the volumetric heat source. The
series expansions are then substituted into the differential
equation. By performing some mathematical manipulations,
an ordinary differential equation (ODE) is finally obtained
for the independent variable. The solution of the problem is
completed by solving this ODE, which is a first order ODE in
the case of heat conduction problems.

As stated before, the method of partial solutions was
used by Jain and Singh [11] for solving 2D transient heat
conduction problems, the reason being that the heat source
is independent of time. However, the method of partial
solutions cannot be used for solving the present 3D transient
heat conduction problem because the heat source depends
on time. Thus, due to time dependence of the heat source,
the partial solution of the steady-state subproblem cannot
include the heat source term and the partial solutionsmethod
cannot be used. Therefore, to the best knowledge of the
authors, the most efficient tool for solving the 3D heat
conduction problem of the present paper is the eigenfunction
expansion method.

For the transient problem of present paper, the associated
eigenvalue problem is written as follows:

∇
2
𝜑
𝑖
= −𝜆
2
𝜑
𝑖
󳨐⇒

𝜕2𝜑
𝑖

𝜕𝑟2
+
2

𝑟

𝜕𝜑
𝑖

𝜕𝑟
+
1

𝑟2
𝜕2𝜑
𝑖

𝜕𝜃2

+
cot 𝜃
𝑟2

𝜕𝜑
𝑖

𝜕𝜃
+

1

𝑟2sin2𝜃
𝜕2𝜑
𝑖

𝜕𝜙2

= −𝜆
2
𝜑
𝑖
.

(11)

Using the method of separation of variables, (11) is solved as
follows:

𝜑
𝑖
(𝑟, 𝜃, 𝜙) = 𝑅

𝑖
(𝑟) Θ
𝑖
(𝜃)Φ
𝑖
(𝜙) , (12)

𝑅󸀠󸀠
𝑖
Θ
𝑖
Φ
𝑖

𝑅
𝑖
Θ
𝑖
Φ
𝑖

+
2

𝑟

𝑅󸀠
𝑖
Θ
𝑖
Φ
𝑖

𝑅
𝑖
Θ
𝑖
Φ
𝑖

+
1

𝑟2

𝑅
𝑖
Θ󸀠󸀠
𝑖
Φ
𝑖

𝑅
𝑖
Θ
𝑖
Φ
𝑖

+
cot 𝜃
𝑟2

𝑅
𝑖
Θ󸀠
𝑖
Φ
𝑖

𝑅
𝑖
Θ
𝑖
Φ
𝑖

+
1

𝑟2sin2𝜃
𝑅
𝑖
Θ
𝑖
Φ󸀠󸀠
𝑖

𝑅
𝑖
Θ
𝑖
Φ
𝑖

= −𝜆
2𝑅𝑖Θ𝑖Φ𝑖

𝑅
𝑖
Θ
𝑖
Φ
𝑖

,

(13)

𝑅󸀠󸀠
𝑖

𝑅
𝑖

+
2

𝑟

𝑅󸀠
𝑖

𝑅
𝑖

+
1

𝑟2

Θ󸀠󸀠
𝑖

Θ
𝑖

+
cot 𝜃
𝑟2

Θ󸀠
𝑖

Θ
𝑖

+
1

𝑟2sin2𝜃
Φ󸀠󸀠
𝑖

Φ
𝑖

= −𝜆
2
, (14)

𝑅󸀠󸀠
𝑖

𝑅
𝑖

+
2

𝑟

𝑅󸀠
𝑖

𝑅
𝑖

+
1

𝑟2

Θ󸀠󸀠
𝑖

Θ
𝑖

+
cot 𝜃
𝑟2

Θ󸀠
𝑖

Θ
𝑖

= −
1

𝑟2sin2𝜃
Φ󸀠󸀠
𝑖

Φ
𝑖

− 𝜆
2
, (15)

sin2𝜃(𝑟2
𝑅󸀠󸀠
𝑖

𝑅
𝑖

+ 2𝑟
𝑅󸀠
𝑖

𝑅
𝑖

+
Θ󸀠󸀠
𝑖

Θ
𝑖

+ cot 𝜃
Θ󸀠
𝑖

Θ
𝑖

+ 𝜆
2
𝑟
2
)

= −
Φ󸀠󸀠
𝑖

Φ
𝑖

− = +]2,

(16)

Φ
󸀠󸀠

𝑖
+ ]2
𝑖𝑚
Φ
𝑖
= 0 󳨀→ Φ

𝑖𝑚
(𝜙) = 𝑐

1
sin ]
𝑖𝑚
𝜙 + 𝑐
2
cos ]
𝑖𝑚
𝜙,

𝑟
2
𝑅󸀠󸀠
𝑖

𝑅
𝑖

+ 2𝑟
𝑅󸀠
𝑖

𝑅
𝑖

+
Θ󸀠󸀠
𝑖

Θ
𝑖

+ cot 𝜃
Θ󸀠
𝑖

Θ
𝑖

+ 𝜆
2
𝑟
2
=

]2

sin2𝜃
,

(17)

󳨀→ 𝑟
2
𝑅󸀠󸀠
𝑖

𝑅
𝑖

+ 2𝑟
𝑅󸀠
𝑖

𝑅
𝑖

+ 𝜆
2
𝑟
2
= −

Θ󸀠󸀠
𝑖

Θ
𝑖

− cot 𝜃
Θ󸀠
𝑖

Θ
𝑖

+
]2

sin2𝜃

= +𝛽
2
,

(18)

𝑟
2
𝑅
󸀠󸀠

𝑖
+ 2𝑟𝑅

󸀠

𝑖
+ (𝜆
2

𝑖𝑝𝑛
𝑟
2
− 𝛽
2

𝑛
) 𝑅
𝑖
= 0

󳨀→ 𝑅
𝑖𝑝𝑛
(𝑟) =

1

√𝑟
[𝑐
3
𝐽
𝛽
𝑛
+0.5

(𝜆
𝑖𝑝𝑛
𝑟)

+ 𝑐
4
𝑌
𝛽
𝑛
+0.5

(𝜆
𝑖𝑝𝑛
𝑟)] ,

Θ
󸀠󸀠

𝑖
+ (cot 𝜃)Θ󸀠

𝑖
+ (𝛽
2
−

]2

sin2𝜃
)Θ
𝑖
= 0.

(19)

By using the following change of variable:

𝜇 = cos 𝜃 󳨀→ 1 − 𝜇
2
= sin2𝜃 (20)

the first and second derivatives of Θ with respect to 𝜃 are
obtained as follows:

Θ
󸀠
=
𝑑Θ
𝑖

𝑑𝜃
=
𝑑Θ
𝑖

𝑑𝜇

𝑑𝜇

𝑑𝜃
= − sin 𝜃

𝑑Θ
𝑖

𝑑𝜇
,

Θ
󸀠󸀠

𝑖
=
𝑑2Θ
𝑖

𝑑𝜃2
=
𝑑

𝑑𝜃
(
𝑑Θ
𝑖

𝑑𝜃
) =

𝑑

𝑑𝜃
(− sin 𝜃

𝑑Θ
𝑖

𝑑𝜇
)

= − cos 𝜃
𝑑Θ
𝑖

𝑑𝜇
− sin 𝜃 𝑑

𝑑𝜃
(
𝑑Θ
𝑖

𝑑𝜇
)

= sin2𝜃
𝑑2Θ
𝑖

𝑑𝜇2
− cos 𝜃

𝑑Θ
𝑖

𝑑𝜇
.

(21)
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Substituting (21) in (19) results in the following:

Θ
󸀠󸀠

𝑖
+ (cot 𝜃)Θ󸀠

𝑖
+ (𝛽
2
−

]2

sin2𝜃
)Θ
𝑖
= 0

󳨀→ sin2𝜃
𝑑2Θ
𝑖

𝑑𝜇2
− cos 𝜃

𝑑Θ
𝑖

𝑑𝜇

+ (
cos 𝜃
sin 𝜃

)(− sin 𝜃
𝑑Θ
𝑖

𝑑𝜇
) + (𝛽

2
−

]2

sin2𝜃
)Θ
𝑖
= 0

󳨀→ (1 − 𝜇
2
)
𝑑2Θ
𝑖

𝑑𝜇2
− 2𝜇

𝑑Θ
𝑖

𝑑𝜇
+ (𝛽
2

𝑛
−

]2
𝑖𝑚

1 − 𝜇2
)Θ
𝑖
= 0.

(22)

If 𝛽2
𝑛
= 𝑛(𝑛 + 1), (22) is the associated Legendre equation. Its

solution is written as follows:

Θ
𝑖𝑛
(𝜇) = 𝑐

5
𝑃
]
𝑖𝑚

𝑖𝑛
(𝜇) + 𝑐

6
𝑄

]
𝑖𝑚

𝑖𝑛
(𝜇)

󳨀→ Θ
𝑖𝑛 (𝜃) = 𝑐5𝑃

]
𝑖𝑚

𝑖𝑛
(cos 𝜃) + 𝑐6𝑄

]
𝑖𝑚

𝑖𝑛
(cos 𝜃)

𝑄
]
𝑖𝑚

𝑖𝑛
(cos 0) =𝑄]𝑖𝑚

𝑖𝑛
(1) =∞→𝑐

6
= 0

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ Θ
𝑖𝑛
(𝜃) = 𝑃

]
𝑖𝑚

𝑖𝑛
(cos 𝜃) .

(23)

The problem eigenvalues are 𝜁2
𝑖𝑚𝑛𝑝

= 𝜆2
𝑖𝑝𝑛
+ ]2
𝑖𝑚
. It should be

stated that the heat fluxes continuity at the interfaces of the
radial layers gives the following:

Φ
𝑖𝑚
= Φ
𝑚
, ]

𝑖𝑚
= ]
𝑚
,

𝜆
𝑖𝑝𝑛
= 𝜆
1𝑝𝑛√

𝛼
1

𝛼
𝑖

.

(24)

The eigenfunctions 𝑅
𝑖𝑝𝑛
(𝑟), Θ

𝑖𝑛
(𝜃), and Φ

𝑖𝑚
(𝜙) in 𝑟-, 𝜃-, and

𝜙-directions are derived by applying the boundary conditions
in each direction in the following equation:

𝑅
𝑖𝑝𝑛
(𝑟) =

1

√𝑟
[𝑐
3
𝐽
𝑛(𝑛 + 1) + 0.5

(𝜆
𝑖𝑝𝑛
𝑟) + 𝑐
4
𝑌
𝑛(𝑛 + 1) + 0.5

(𝜆
𝑖𝑝𝑛
𝑟)] ,

Θ
𝑖𝑛
(𝜃) = 𝑃

]
𝑚

𝑖𝑛
(cos 𝜃) ,

Φ
𝑚
(𝜙) = 𝑐

1
sin ]
𝑚
𝜙 + 𝑐
2
cos ]
𝑚
𝜙.

(25)

It is assumed that the solution of the problem is in the form
of a triple-series expansion of the derived eigenfunctions as
follows:

𝑇
𝑖
(𝑟, 𝜃, 𝜙, 𝑡) =

∞

∑
𝑚=1

∞

∑
𝑛 = 1

∞

∑
𝑝= 1

𝑇
𝑖𝑚𝑛𝑝 (𝑡) 𝑅𝑖𝑝𝑛 (𝑟) Θ𝑖𝑛 (𝜃)Φ𝑚 (𝜙) .

(26)
The heat source term is also written as a triple-series expan-
sion of the eigenfunctions such that

𝑔
𝑖
(𝑟, 𝜃, 𝜙, 𝑡) =

∞

∑
𝑚=1

∞

∑
𝑛 = 1

∞

∑
𝑝= 1

𝑔
𝑖𝑚𝑛𝑝

(𝑡) 𝑅
𝑖𝑝𝑛
(𝑟) Θ
𝑖𝑛
(𝜃)Φ
𝑚
(𝜙) ,

(27)

where the coefficient 𝑔
𝑖𝑚𝑛𝑝

(𝑡) is obtained by the use of the
orthogonality property as follows:

𝑔
𝑖𝑚𝑛𝑝

(𝑡) = (∫
𝜔

0

∫
𝜓

0

∫
𝑟
𝑖

𝑟
𝑖 − 1

𝑔
𝑖
(𝑟, 𝜃, 𝜙, 𝑡) 𝑟

2

× 𝑅
𝑖𝑝𝑛
(𝑟) Θ
𝑖𝑛
(𝜃)Φ
𝑚
(𝜙) 𝑑𝑟 𝑑𝜃 𝑑𝜙)

× (∫
𝜔

0

∫
𝜓

0

∫
𝑟
𝑖

𝑟
𝑖 − 1

𝑟
2
𝑅
2

𝑖𝑝𝑛
(𝑟) Θ
2

𝑖𝑛
(𝜃)

× Φ
2

𝑚
(𝜙) 𝑑𝑟 𝑑𝜃 𝑑𝜙)

−1

.

(28)

Substitution of (26) and (27) in (1) results in the following:

𝑇
𝑖𝑚𝑛𝑝

(𝑡) 𝑅
󸀠󸀠

𝑖𝑝𝑛
(𝑟) Θ
𝑖𝑛
(𝜃)Φ
𝑖𝑚
(𝜙) +

2

𝑟
𝑇
𝑖𝑚𝑛𝑝

(𝑡) 𝑅
󸀠

𝑖𝑝𝑛
(𝑟) Θ
𝑖𝑛
(𝜃)Φ
𝑖𝑚
(𝜙) +

1

𝑟2
𝑇
𝑖𝑚𝑛𝑝

(𝑡) 𝑅
𝑖𝑝𝑛
(𝑟) Θ
󸀠󸀠

𝑖𝑛
(𝜃)Φ
𝑖𝑚
(𝜙)

+
cot 𝜃
𝑟2

𝑇
𝑖𝑚𝑛𝑝

(𝑡) 𝑅
𝑖𝑝𝑛
(𝑟) Θ
󸀠

𝑖𝑛
(𝜃)Φ
𝑖𝑚
(𝜙) +

1

𝑟2sin2𝜃
𝑇
𝑖𝑚𝑛𝑝

(𝑡) 𝑅
𝑖𝑝𝑛
(𝑟) Θ
𝑖𝑛
(𝜃)Φ
󸀠󸀠

𝑖𝑚
(𝜙)

+
1

𝑘
𝑖

𝑔
𝑖𝑚𝑛𝑝

(𝑡) 𝑅
𝑖𝑝𝑛
(𝑟) Θ
𝑖𝑛
(𝜃)Φ
𝑖𝑚
(𝜙) =

1

𝛼
𝑖

𝑇
󸀠

𝑖𝑚𝑛𝑝
(𝑡) 𝑅
𝑖𝑝𝑛
(𝑟) Θ
𝑖𝑛
(𝜃)Φ
𝑖𝑚
(𝜙) ,

(29)

󳨀→
𝑑𝑇
𝑖𝑚𝑛𝑝 (𝑡)

𝑑𝑡
+ (−𝛼

𝑖
)(

𝑅󸀠󸀠
𝑖𝑝𝑛
(𝑟)

𝑅
𝑖𝑝𝑛 (𝑟)

+
2

𝑟

𝑅󸀠
𝑖𝑝𝑛
(𝑟)

𝑅
𝑖𝑝𝑛 (𝑟)

+
1

𝑟2

Θ󸀠󸀠
𝑖𝑛
(𝜃)

Θ
𝑖𝑛 (𝜃)

+
cot 𝜃
𝑟2

Θ󸀠
𝑖𝑛
(𝜃)

Θ
𝑖𝑛 (𝜃)

+
1

𝑟2sin2𝜃
Φ󸀠󸀠
𝑖𝑚
(𝜙)

Φ
𝑖𝑚
(𝜙)

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

= Γ
𝑖𝑚𝑛𝑝

𝑇
𝑖𝑚𝑛𝑝

(𝑡) =
𝛼
𝑖

𝑘
𝑖

𝑔
𝑖𝑚𝑛𝑝

(𝑡) . (30)
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Equation (30) is a first-order nonhomogeneous ODE and has
the following solution:

𝑇
𝑖𝑚𝑛𝑝

(𝑡) =
𝛼
𝑖

𝑘
𝑖

𝑒
−Γ
𝑖𝑚𝑛𝑝
𝑡
∫
𝜏 = 𝑡

𝜏 = 0

𝑔
𝑖𝑚𝑛𝑝

(𝜏) 𝑒
Γ
𝑖𝑚𝑛𝑝
𝜏
𝑑𝜏 + 𝑎

𝑖1
𝑒
−Γ
𝑖𝑚𝑛𝑝
𝑡
.

(31)

Application of the initial condition (10) on (26) gives the
following:

𝑇
𝑖
(𝑟, 𝜃, 𝜙, 𝑡 = 0)

= 𝑓
𝑖
(𝑟, 𝜃, 𝜙)

=

∞

∑
𝑚=1

∞

∑
𝑛 = 1

∞

∑
𝑝= 1

𝑇
𝑖𝑚𝑛𝑝 (0) 𝑅𝑖𝑝𝑛 (𝑟) Θ𝑖𝑛 (𝜃)Φ𝑖𝑚 (𝜙) .

(32)

The coefficient 𝑎
𝑖1
of (31) is found by the use of the orthogo-

nality property for obtained eigenfunctions as follows:

𝑎
𝑖1

= 𝑇
𝑖𝑚𝑛𝑝 (0)

=
∫
𝜔

0
∫
𝜓

0
∫
𝑟
𝑖

𝑟
𝑖−1

𝑓
𝑖
(𝑟, 𝜃, 𝜙) 𝑟2𝑅

𝑖𝑝𝑛
(𝑟) Θ
𝑖𝑛
(𝜃)Φ
𝑖𝑚
(𝜙) 𝑑𝑟 𝑑𝜃 𝑑𝜙

∫
𝜔

0
∫
𝜓

0
∫
𝑟
𝑖

𝑟
𝑖 − 1

𝑟2𝑅2
𝑖𝑝𝑛
(𝑟) Θ2
𝑖𝑛
(𝜃)Φ2
𝑖𝑚
(𝜙) 𝑑𝑟 𝑑𝜃 𝑑𝜙

.

(33)

The solution of differential equation (1) having (2) to (9) as
boundary conditions and (10) as initial condition is (26) with
(31) as the coefficients.

4. Case Study Problem

We consider a three-layer quarter-sphere (0 ≤ 𝑟 ≤ 𝑟
3
, 0 ≤

𝜃 ≤ 𝜋/2, and 0 ≤ 𝜙 ≤ 𝜋) which is initially (𝑡 = 0) at uniform
unit temperature. For time 𝑡 > 0, thermal convection occurs,
from the outer radial surface at 𝑟 = 𝑟

3
at (zero) ambient

temperature. However, the 𝜃 = 0, 𝜃 = 𝜋/2, 𝜙 = 0, and 𝜙 = 𝜋
surfaces are at uniformand constant zero temperatures.These
boundary conditions lead to the following: 𝐴 in = 1, 𝐴out =
𝑘
3
, 𝐵in = 0, 𝐵out = ℎ, 𝐶in = 0, and 𝐶out = 0. Additionally, the

uniformly distributed heat source 𝑔
𝑖
, 𝑖 = 1, . . . , 3, is turned

on in each layer at 𝑡 = 0. The governing differential equation
for the 3D transient heat conduction with heat sources in this
three-layer quarter-spherical region is as follows:

𝜕
2
𝑇
𝑖

𝜕𝑟2
+
2

𝑟

𝜕𝑇
𝑖

𝜕𝑟
+
1

𝑟2
𝜕
2
𝑇
𝑖

𝜕𝜃2
+
cot 𝜃
𝑟2

𝜕𝑇
𝑖

𝜕𝜃
+

1

𝑟2sin2𝜃
𝜕
2
𝑇
𝑖

𝜕𝜙2
+
𝑔
𝑖

𝑘
𝑖

=
1

𝛼
𝑖

𝜕𝑇
𝑖

𝜕𝑡
,

𝑇
𝑖
= 𝑇
𝑖
(𝑟, 𝜃, 𝜙, 𝑡) , 0 ≤ 𝑟 ≤ 𝑟

3
,

𝑟
𝑖−1
≤ 𝑟 ≤ 𝑟

𝑖
, 1 ≤ 𝑖 ≤ 3,

0 ≤ 𝜃 ≤
𝜋

2
,

0 ≤ 𝜙 ≤ 𝜋,

𝑡 ≥ 0.

(34)

The boundary conditions have the following forms:

𝜕𝑇
1

𝜕𝑟
(0, 𝜃, 𝜙, 𝑡) = 0, (35)

𝑘
3

𝜕𝑇
3

𝜕𝑟
(𝑟
3
, 𝜃, 𝜙, 𝑡) + ℎ𝑇

3
(𝑟
3
, 𝜃, 𝜙, 𝑡) = 0, (36)

𝑇
𝑖
(𝑟,

𝜋

2
, 𝜙, 𝑡) = 0, (37)

𝑇
𝑖
(𝑟, 𝜃, 0, 𝑡) = 0, (38)

𝑇
𝑖
(𝑟, 𝜃, 𝜋, 𝑡) = 0. (39)

(i) Inner interface of the 𝑖th layer (𝑖 = 2, 3):

𝑇
𝑖
(𝑟
𝑖 − 1
, 𝜃, 𝜙, 𝑡) = 𝑇

𝑖 − 1
(𝑟
𝑖 − 1
, 𝜃, 𝜙, 𝑡) ,

𝑘
𝑖

𝜕𝑇
𝑖

𝜕𝑟
(𝑟
𝑖 − 1
, 𝜃, 𝜙, 𝑡) = 𝑘

𝑖−1

𝜕𝑇
𝑖 − 1

𝜕𝑟
(𝑟
𝑖 − 1
, 𝜃, 𝜙, 𝑡) .

(40)

(ii) Outer interface of the 𝑖th layer (𝑖 = 1, 2):

𝑇
𝑖
(𝑟
𝑖
, 𝜃, 𝜙, 𝑡) = 𝑇

𝑖 + 1
(𝑟
𝑖
, 𝜃, 𝜙, 𝑡) , (41)

𝑘
𝑖

𝜕𝑇
𝑖

𝜕𝑟
(𝑟
𝑖
, 𝜃, 𝜙, 𝑡) = 𝑘

𝑖 + 1

𝜕𝑇
𝑖 + 1

𝜕𝑟
(𝑟
𝑖
, 𝜃, 𝜙, 𝑡) . (42)

The initial condition is as follows:

𝑇
𝑖
(𝑟, 𝜃, 𝜙, 0) = 1, 1 ≤ 𝑖 ≤ 3. (43)

According to (25), by the use of the eigenfunction expansion
method, the following solutions in 𝑧-, 𝑟-, and 𝜃-directions are
obtained from the associated eigenvalue problem:

Φ
𝑚
(𝜙) = 𝑐

1
sin ]
𝑚
𝜙 + 𝑐
2
cos ]
𝑚
𝜙,

Θ
𝑖𝑛
(𝜃) = 𝑃

]
𝑚

𝑖𝑛
(cos 𝜃) ,

𝑅
𝑖𝑝𝑛 (𝑟) =

1

√𝑟
[𝑐
3
𝐽
𝑛(𝑛 + 1) + 0.5

(𝜆
𝑖𝑝𝑛
𝑟) + 𝑐
4
𝑌
𝑛(𝑛 + 1) + 0.5

(𝜆
𝑖𝑝𝑛
𝑟)] .

(44)
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The eigenvalues are 𝜁2
𝑖𝑚𝑛𝑝

= 𝜆2
𝑖𝑝𝑛
+]2
𝑖𝑚
.The heat flux continuity

conditions at the interfaces imply the following:

𝜆
𝑖𝑝𝑛
= 𝜆
1𝑝𝑛√

𝛼
1

𝛼
𝑖

. (45)

The eigenfunctions𝑅
𝑖𝑝𝑛
(𝑟),Θ

𝑖𝑛
(𝜃), andΦ

𝑚
(𝜙) in the 𝑟, 𝜃- and

𝜙-directions are obtained by applying the relevant boundary
conditions in each direction. Application of the boundary
conditions in the 𝜙-direction due to (44) gives the following:

Φ
𝑚
(𝜙) = 𝑐

1
sin ]
𝑚
𝜙 + 𝑐
2
cos ]
𝑚
𝜙

󳨀→

{{{{{{{

{{{{{{{

{

Φ
𝑚 (0) = 0 󳨀→ 𝑐

2
= 0

󳨀→ Φ
𝑚 (𝜃) = 𝑐1 sin ]𝑚𝜙

Φ
𝑚
(𝜋) = 0 󳨀→ 𝑐

1
sin ]
𝑚
𝜋 = 0

𝑐
1
̸= 0

󳨀󳨀󳨀󳨀→ sin ]
𝑚
𝜋 = 0 = sin (𝑚𝜋) .

(46)

Then the 𝜙-direction eigenvalues and eigenfunction are
obtained as follows:

]
𝑚
= 𝑚, 𝑚 = 1, 2, . . .

Φ
𝑚
(𝜙) = sin (𝑚𝜙) .

(47)

Using the 𝜃-direction boundary condition, (37), onΘ in (44)
results in the following relation:

Θ
𝑖𝑛
(𝜃) = 𝑃

𝑚

𝑖𝑛
(cos 𝜃)

Θ
𝑖𝑛
(𝜋/2) = 0

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ 𝑃
𝑚

𝑖𝑛
(cos(𝜋

2
)) = 0

󳨀→ 𝑃
𝑚

𝑖𝑛
(0) = 0,

(48)

where 𝑃𝑚
𝑖𝑛
(0) = 0 is only satisfied when 𝑛 are odd integers;

that is, 𝑛 = 1, 3, 5, . . .. Thus the 𝜃-direction eigenvalues and
the eigenfunction are as follows:

𝑛 = 1, 3, 5, . . .

Θ
𝑖𝑛
(𝜃) = 𝑃

𝑚

𝑖𝑛
(cos 𝜃) .

(49)

Applying the 𝑟-direction boundary conditions, that is, (35)
and (36), gives the following:

𝑅
𝑖𝑝𝑛 (𝑟)

=
1

√𝑟
[𝑐
3
𝐽
𝑛(𝑛 + 1) + 0.5

(𝜆
𝑖𝑝𝑛
𝑟) + 𝑐
4
𝑌
𝑛(𝑛 + 1) + 0.5

(𝜆
𝑖𝑝𝑛
𝑟)] ,

𝑖 = 1, 2, 3

󳨀→

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑅
󸀠
(0) = 0 󳨀→ 𝑅 (0) = finite

𝑌
𝑛(𝑛 + 1) + 0.5

(0) =∞

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ 𝑐
4
= 0

󳨀→ 𝑅
𝑖𝑝𝑛 (𝑟) = 𝑐3

1

√𝑟
𝐽
𝑛(𝑛 + 1) + 0.5

(𝜆
𝑖𝑝𝑛
𝑟)

𝑘𝑅󸀠 (𝑟
3
) + ℎ𝑅 (𝑟

3
) = 0

󳨀→ 𝑘𝑐
3

1

√𝑟3
𝐽󸀠
𝑛(𝑛 + 1) + 0.5

(𝜆
𝑖𝑝𝑛
𝑟
3
)

− 𝑘𝑐
3

1

2𝑟
3√𝑟3

𝐽
𝑛(𝑛 + 1) + 0.5

(𝜆
𝑖𝑝𝑛
𝑟
3
)

+ ℎ𝑐
3

1

√𝑟3
𝐽
𝑛(𝑛 + 1) + 0.5

(𝜆
𝑖𝑝𝑛
𝑟
3
) = 0

𝑐
3
̸= 0

󳨀󳨀󳨀󳨀→
1

√𝑟3
[𝑘𝐽󸀠
𝑛(𝑛 + 1) + 0.5

(𝜆
𝑖𝑝𝑛
𝑟
3
)

+ (ℎ −
𝑘

2𝑟
3

) 𝐽
𝑛(𝑛 + 1) + 0.5

(𝜆
𝑖𝑝𝑛
𝑟
3
)] = 0

󳨀→ 𝑘𝐽󸀠
𝑛(𝑛 + 1) + 0.5

(𝜆
𝑖𝑝𝑛
𝑟
3
)

+(ℎ −
𝑘

2𝑟
3

) 𝐽
𝑛(𝑛 + 1) + 0.5

(𝜆
𝑖𝑝𝑛
𝑟
3
) = 0.

(50)

Thus the 𝑟-direction eigencondition and eigenfunction are
derived as (]

𝑚
= 𝑚):

𝑘𝐽
󸀠

𝑛(𝑛 + 1) + 0.5
(𝜆
𝑖𝑝𝑛
𝑟
3
) + (ℎ −

𝑘

2𝑟
3

) 𝐽
𝑛(𝑛 + 1) + 0.5

(𝜆
𝑖𝑝𝑛
𝑟
3
) = 0,

𝑅
𝑖𝑝𝑛 (𝑟) =

1

√𝑟
𝐽
𝑛(𝑛 + 1) + 0.5

(𝜆
𝑖𝑝𝑛
𝑟) .

(51)

According to (28) to (33), the coefficients 𝑔
𝑖𝑚𝑛𝑝

(𝑡), 𝑎
𝑖1
, and

Γ
𝑖𝑚𝑛𝑝

are obtained as follows:

𝑔
𝑖𝑚𝑛𝑝 (𝑡) = (∫

𝜋

0

∫
𝜋

0

∫
𝑟
𝑖

𝑟
𝑖 − 1

𝑔
𝑖
𝑟
2 1

√𝑟
𝐽
𝛽
𝑛
+ 0.5

(𝜆
𝑖𝑝𝑛
𝑟) 𝑃
𝑚

𝑖𝑛
(𝜃)

× sin (𝑚𝜙) 𝑑𝑟 𝑑𝜃 𝑑𝜙)

× (∫
𝜋

0

∫
𝜋

0

∫
𝑟
𝑖

𝑟
𝑖−1

𝑟𝐽
2

𝛽
𝑛
+ 0.5

(𝜆
𝑖𝑝𝑛
𝑟) (𝑃
𝑚

𝑖𝑛
(𝜃))
2

× sin2 (𝑚𝜙) 𝑑𝑟 𝑑𝜃 𝑑𝜙)
−1
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= (𝑔
𝑖
(∫
𝑟
𝑖

𝑟
𝑖−1

𝑟
3/2
𝐽
𝛽
𝑛
+ 0.5

(𝜆
𝑖𝑝𝑛
𝑟) 𝑑𝑟)(∫

𝜋

0

𝑃
𝑚

𝑖𝑛
(𝜃) 𝑑𝜃)

×(∫
𝜋

0

sin (𝑚𝜙) 𝑑𝜙))

× ((∫
𝑟
𝑖

𝑟
𝑖−1

𝑟𝐽
2

𝛽
𝑛
+ 0.5

(𝜆
𝑖𝑝𝑛
𝑟) 𝑑𝑟) (∫

𝜋

0

(𝑃
𝑚

𝑖𝑛
(𝜃))
2
𝑑𝜃)

× (∫
𝜋

0

sin2 (𝑚𝜙) 𝑑𝜙))
−1

= (𝑔
𝑖
[(𝜇
𝑖𝑛𝑚
𝑟) 𝐽
𝑚+1

(𝜇
𝑖𝑛𝑚
𝑟)]
𝑟 = 𝑟
𝑖

𝑟 = 𝑟
𝑖 − 1

× (−
1

𝑚
cos (𝑚𝜃))

𝜃 =𝜋

𝜃= 0

(−
1

𝑚
cos (𝑚𝜙))

𝜙=𝜋

𝜙= 0

)

× ([
(𝜇
𝑖𝑛𝑚
𝑟)
2

2
(𝐽
2

𝑚
(𝜇
𝑖𝑛𝑚
𝑟) + 𝐽

2

𝑚+1
(𝜇
𝑖𝑛𝑚
𝑟))]

𝑟 = 𝑟
𝑖

𝑟 = 𝑟
𝑖 − 1

×
𝜋

2
×
𝐿

2
)

−1

= (𝑔
𝑖
[(𝜇
𝑖𝑛𝑚
𝑟) 𝐽
𝑚+1

(𝜇
𝑖𝑛𝑚
𝑟)]
𝑟 = 𝑟
𝑖

𝑟 = 𝑟
𝑖 − 1

×
1

𝑚
(1 − (−1)

𝑚
)

×
𝐿

𝑙𝜋
(1 − (−1)

𝑙
))

× ([
(𝜇
𝑖𝑛𝑚
𝑟)
2

2
(𝐽
2

𝑚
(𝜇
𝑖𝑛𝑚
𝑟) + 𝐽

2

𝑚+1
(𝜇
𝑖𝑛𝑚
𝑟))]

𝑟 = 𝑟
𝑖

𝑟 = 𝑟
𝑖 − 1

×
𝜋𝐿

4
)

−1

󳨀→ 𝑔
𝑖𝑚𝑛𝑝

(𝑡) = 𝑔
𝑖𝑚𝑛𝑝

= 𝑎
𝑖1
𝑔
𝑖
,

Γ
𝑖𝑚𝑛𝑝

= (−𝛼
𝑖
)

× (
𝑅󸀠󸀠
𝑖𝑝𝑛
(𝑟)

𝑅
𝑖𝑝𝑛
(𝑟)

+
1

𝑟

𝑅󸀠
𝑖𝑝𝑛
(𝑟)

𝑅
𝑖𝑝𝑛
(𝑟)

+
1

𝑟2

Θ󸀠󸀠
𝑖𝑛
(𝜃)

Θ
𝑖𝑛
(𝜃)

+
Φ󸀠󸀠
𝑖𝑚
(𝜙)

Φ
𝑖𝑚
(𝜙)
)

= −𝛼
𝑖
(
𝐽󸀠󸀠
𝑚
(𝜆
𝑖𝑝𝑛
𝑟)

𝐽
𝑚
(𝜆
𝑖𝑝𝑛
𝑟)
+
1

𝑟

𝐽󸀠
𝑚
(𝜆
𝑖𝑝𝑛
𝑟)

𝐽
𝑚
(𝜆
𝑖𝑝𝑛
𝑟)
−
𝑚2

𝑟2
− 𝑚
2
) .

(52)

Using the form of a triple-series expansion of the obtained
eigenfunctions, that is, (26), the solution is as follows:

𝑇
𝑖
(𝑟, 𝜃, 𝜙, 𝑡) =

∞

∑
𝑚=1

∞

∑
𝑛 = 1

∞

∑
𝑝= 1

𝑇
𝑖𝑚𝑛𝑝 (𝑡)

1

√𝑟
𝐽
𝛽
𝑛
+ 0.5

× (𝜆
𝑖𝑝𝑛
𝑟) 𝑃
𝑚

𝑖𝑛
(𝜃) sin (𝑚𝜙) ,

(53)

where the coefficient 𝑇
𝑖𝑚𝑛𝑝

(𝑡) is attained as follows:

𝑇
𝑖𝑚𝑛𝑝 (𝑡) =

𝛼
𝑖

𝑘
𝑖

𝑒
−Γ
𝑖𝑚𝑛𝑝
𝑡
𝑔
𝑖𝑚𝑛𝑝

1

Γ
𝑖𝑚𝑛𝑝

(𝑒
Γ
𝑖𝑚𝑛𝑝
𝑡
− 1) + 𝑎

𝑖1
𝑒
−Γ
𝑖𝑚𝑛𝑝
𝑡

=
𝛼
𝑖
𝑔
𝑖𝑚𝑛𝑝

𝑘
𝑖
Γ
𝑖𝑚𝑛𝑝

+ (
1

𝑔
𝑖

−
𝛼
𝑖

𝑘
𝑖
Γ
𝑖𝑚𝑛𝑝

)𝑔
𝑖𝑚𝑛𝑝

𝑒
−Γ
𝑖𝑚𝑛𝑝
𝑡
.

(54)

Therefore, the solution of (34) having (35) to (42) as boundary
conditions and (43) as initial condition is (53) with (54) as the
coefficients.

5. Conclusions

The exact analytical solution, that is, transient temperature
distribution, is derived for the 3D transient heat conduction
problem in amultilayered sphere using eigenfunction expan-
sion method. Time-dependent and nonuniform volumetric
heat generation is considered in each radial layer. Third kind
nonhomogeneous boundary conditions are applied in the
radial direction but the first or second kind homogenous
boundary conditions are used in the angular and azimuthal
directions. The heat conduction in a three-layer quarter-
sphere is solved as a case study problem and the temperature
distribution is found.

Nomenclature

𝐴 in, 𝐵in, 𝐶in: Coefficients in (2)
𝐴out, 𝐵out, 𝐶out: Coefficients in (3)
𝑓
𝑖
(𝑟, 𝜃, 𝜙): Initial temperature distribution in the

𝑖th layer at 𝑡 = 0
𝑔
𝑖
(𝑟, 𝜃, 𝜙, 𝑡): Volumetric heat source distribution in

the 𝑖th layer
𝑔
𝑖𝑚𝑛𝑝

: Coefficient in series expansion for heat
source (Equation (27))

ℎ: Outer surface heat transfer coefficient
𝐽]𝑚: Bessel function of the first kind of order

]
𝑚

𝑘
𝑖
: Thermal conductivity of the 𝑖th layer

𝑟: Radial coordinate
𝑟
𝑖
: Outer radius for the 𝑖th layer
𝑅
𝑖𝑝𝑛
(𝑟): Radial eigenfunctions for the 𝑖th layer

𝑡: Time
𝑇
𝑖
(𝑟, 𝜃, 𝜙, 𝑡): Temperature distribution for the 𝑖th

layer
𝑇
𝑖𝑚𝑛𝑝

: Coefficient in general solution
(Equation (26)) dependent on initial
condition

𝑌]𝑚: Bessel function of the second kind of
order ]

𝑚
.

Greek Symbols

𝛼
𝑖
: Thermal diffusivity of the 𝑖th layer

𝜃: Azimuthal coordinate
Φ
𝑖𝑚
(𝜙): Eigenfunctions in the 𝜙-direction
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Θ
𝑖𝑛
(𝜃): Eigenfunctions in the angular direction

𝜆
𝑖𝑝𝑛
: Radial eigenvalues

]
𝑚
: Eigenvalues in the 𝜙-direction

𝜔: Angle subtended by the multilayers in
the 𝜙-direction

𝜓: Angle subtended by the multilayers in
the 𝜃-direction

Γ
𝑖𝑚𝑛𝑝

: Coefficient in (30).

Subscripts and Superscripts

𝑖: Layer or interface number
󸀠: Differentiation.
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