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An investigation is made on the effect of suspended particles (fine dust) on double-diffusive convection of a compressible Rivlin-
Ericksen elastico-viscous fluid.The perturbation equations are analyzed in terms of normal modes after linearizing the relevant set
of equations. A dispersion relation governing the effects of viscoelasticity, compressibility, stable solute gradient, and suspended
particles is derived. For stationary convection, Rivlin-Ericksen fluid behaves like an ordinary Newtonian fluid due to the vanishing
of the viscoelastic parameter. The stable solute gradient compressibility has a stabilizing effect on the system whereas suspended
particles hasten the onset of thermosolutal instability. The Rayleigh numbers and the wave numbers of the associated disturbances
for the onset of instability as stationary convection are obtained and the behaviour of various parameters on Rayleigh numbers
has been depicted graphically. It has been observed that oscillatory modes are introduced due to the presence of viscoelasticity,
suspended particles, and stable solute gradient which were not existing in the absence of these parameters.

1. Introduction

A layer of Newtonian fluid heated from below, under varying
assumptions of hydrodynamics, has been treated in detail by
Chandrasekhar [1]. Chandra [2] performed careful experi-
ments in an air layer and found contradiction between the
theory and the experiment. He found that the instability
depended on the depth of the layer. A Bénard-type cellular
convection with fluid descending at the cell centre was
observed when predicted gradients were imposed, if the layer
depth was more than 10mm. But if the layer of depth was
less than 7mm, convection occurred at much lower gradients
than predicted and appeared as irregular strips of elongated
cells with fluid rising at the centre. Chandra called this
motion columnar instability. The effect of particle mass and
heat capacity on the onset of Bénard convection has been con-
sidered by Scanlon and Segel [3]. They found that the critical
Rayleigh number was reduced solely because the heat capac-
ity of the clean gas was supplemented by that of the particles.
The effect of suspended particles was found to destabilize
the layer. Palniswamy and purushotham [4] have considered

the stability of shear flow of stratified fluids with fine dust and
have found the effect of fine dust to increase the region of
instability. A study of double-diffusive convection with fine
dust has been made by Sharma and Rani [5]. Kumar et al.
[6] have studied effect of magnetic field on thermal instability
of rotating Rivlin-Ericksen viscoelastic fluid, in which effect
of magnetic field has stabilizing as well as destabilizing effect
on the system. Also, Rayleigh-Taylor instability of Rivlin-
Ericksen elastico-viscous fluid through porous medium has
been considered by Sharma et al. [7]. They have studied
the stability aspects of the system. The effects of a uniform
horizontal magnetic field and a uniform rotation on the
problem have also been considered separately. Kumar [8] has
also studied the stability of superposed viscous-viscoelastic
Rivlin-Ericksen fluids in presence of suspended particles
through a porous medium. In one other study, Kumar and
Singh [9] have studied the stability of superposed viscous-
viscoelastic fluids through porous medium, in which effects
of uniform horizontal magnetic field and a uniform rotation
are considered. Kumar et al. [10] have also studied hydero-
dynamic and hyderomagnetic stability of Rivlin-Ericksen
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fluid and found that the growth rates decrease as well as
increase with the increase in kinematic viscosity and kine-
matic viscoelasticity in absence and presence of magnetic
field. Singh and Gupta [11] have studied thermal instability
of Rivlin-Ericksen elastico viscous fluid permeated with sus-
pended particles in hydrodynamics in a porous medium and
found that magnetic field has only stabilizing effect whereas
medium permeability has a destabilizing effect on the system.
EI-Sayed et al. [12] have studied nonlinear Kelvin-Helmholtz
instability of Rivlin-Ericksen viscoelastic electrified fluid
particle mixtures saturating porous medium and, in one
another study, Kumar and Mohan [13] have also studied
double-diffusive convection in compressible viscoelastic fluid
through Brinkman porous media.

The present paper attempts to study the stability of
double-diffusive convection Rivlin-Ericksen elastico-viscous
fluids permeated with suspended particles. Viscosity is a
function of space and time in a large variety of fluid flows, and
its variation can have a dramatic effect on flow stability. In this
paper, instability due to double-diffusive effects in viscosity
permeated with suspended particles flow has been discussed.
Double-diffusive systems are known to display a rich variety
of instability behavior in density permeated with suspended
particles fluid flow system. In viscosity permeated systems,
it was found that stable flow in the context of single com-
ponent systems becomes unstable due to double-diffusive
effect. Many interesting flow patterns arise due to this insta-
bility; these aspects form themotivation for the present study.

2. Formulation of the Problem and
Perturbation Equations

We have considered an infinite, horizontal, and compressible
electrically conducting Rivlin-Ericksen elastico-viscous fluid
permeated with suspended particles, bounded by the planes
𝑧 = 0 and 𝑧 = 𝑑. This layer is heated from below so that
temperature at bottom (at 𝑧 = 0) and at the upper layer (at
𝑧 = 𝑑) is 𝑇

0
and 𝑇

𝑑
, respectively, and that a steady adverse

temperature gradient 𝛽(= |𝑑𝑇/𝑑𝑧|) and solute gradient 𝛽󸀠(=
|𝑑𝐶/𝑑𝑧|) are maintained. Here, ⃗𝑔(0, 0, −𝑔) denotes the accel-
eration due to gravity.The effect of fluid compressibility, even
small in magnitude, is also considered.

Let 𝜌, 𝜇, 𝜇󸀠, and 𝑢⃗(𝑢, V, 𝑤) denote the density, viscosity,
viscoelasticity, and velocity of pure fluid, and let V⃗(𝑥⃗, 𝑡)
and 𝑁(𝑥⃗, 𝑡) denote the velocity and number density of the
suspended particles, 𝑥⃗(𝑥, 𝑦, 𝑧) and 𝜆(0, 0, 1); 𝐾 = 6𝜋𝜇𝜂, 𝜂
being particle radius, is the Stokes drag coefficient. Then, the
equations of motion and continuity governing the flow are

𝜌 [

𝜕𝑢⃗

𝜕𝑡

+ (𝑢⃗ ⋅ ∇) 𝑢⃗] = − ∇𝑝 + 𝜌 ⃗𝑔 + 𝐾𝑁 (V⃗ − 𝑢⃗)

+ (𝜇 + 𝜇
󸀠 𝜕

𝜕𝑡

)∇
2
𝑢⃗,

(1)

∇ ⋅ 𝑢⃗ = 0. (2)

Assuming uniform particle size, spherical shape, and
small relative velocities between the fluid and particles, the
presence of particles adds an extra force term in equation of

motion (1), proportional to the velocity difference between
particles and fluid. Since the force exerted by the fluid on the
particles is equal and opposite to that exerted by the particles
on the fluid, there must be an extra force term, equal in mag-
nitude but opposite in sign, in the equations of motion of the
particles.The distance between the particles is assumed quite
large compared with their diameters, so that interparticle
reactions are ignored. The buoyancy forces on the particles
are neglected. If 𝑚𝑁 is the mass of the particles per unit
volume, then the equations of motion and continuity for the
particles, under the above assumptions, are

𝑚𝑁[

𝜕V⃗
𝜕𝑡

+ (V⃗ ⋅ ∇) V⃗] = 𝐾𝑁 (𝑢⃗ − V⃗) ,

𝜕𝑁

𝜕𝑡

+ ∇⃗ ⋅ (𝑁V⃗) = 0.

(3)

Let 𝐶V, 𝐶𝑝𝑡, 𝐶𝑝, 𝑇, and 𝑞 denote the heat capacity of fluid
at constant volume, heat capacity of particles, and heat capac-
ity of fluid at constant pressure, temperature, and effective
thermal conductivity of the pure fluid, respectively. Hence,
the volume fractions of the particles are assumed to be small;
the effective properties of the suspension are taken to be those
of the clean fluid. If we assume that the particles and fluid
are in the thermal equilibrium, the equation of heat conduc-
tion gives

𝜌𝐶V [
𝜕

𝜕𝑡

+ 𝑢⃗ ⋅ ∇]𝑇 + 𝑚𝑁𝐶
𝑝𝑡

(

𝜕

𝜕𝑡

+ V⃗ ⋅ ∇)𝑇 = 𝑞∇
2
𝑇.

(4)

If 𝐶 denotes the solute concentration, the equation of
solute conduction gives

𝜌𝐶
󸀠

V [
𝜕

𝜕𝑡

+ 𝑢⃗ ⋅ ∇]𝐶 + 𝑚𝑁𝐶
󸀠

𝑝𝑡
[

𝜕

𝜕𝑡

+ V⃗ ⋅ ∇]𝐶 = 𝑞
󸀠∇
2
𝐶
,

(5)

where 𝐶
󸀠

V, 𝐶
󸀠

𝑝𝑡
, and 𝑞

󸀠 denote the analogous solute quantities.
Spiegel and Veronis [14] defined 𝑓 as any one of the

state variables (pressure 𝑝, density 𝜌, or temperature 𝑇) and
expressed these in the form

𝑓 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑓
𝑚

+ 𝑓
0
(𝑧) + 𝑓

󸀠
(𝑥, 𝑦, 𝑧, 𝑡) , (6)

where𝑓
𝑚
is the constant space average of𝑓,𝑓

0
is the variation

in the absence of motion, and 𝑓
󸀠 is the fluctuation resulting

from motion.
The initial state of the system is taken to be quiescent

layer (no settling) with a uniform particle distribution 𝑁
0
,

therefore a state in which the density, pressure, temperature,
solute concentration, and velocity at any point in the fluid are
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given by 𝜌 = 𝜌(𝑧), 𝑝 = 𝑝(𝑧), 𝑇 = 𝑇(𝑧), 𝐶 = 𝐶(𝑧), V⃗ = 0, 𝑢⃗ =

0, 𝑁
0
= constant, respectively, where

𝑇 (𝑧) = 𝑇
0
− 𝛽𝑧, 𝐶 (𝑧) = 𝐶

0
− 𝛽
󸀠
𝑧,

𝑃 (𝑧) = 𝑝
𝑚

− 𝑔∫

𝑧

0

(𝜌
𝑚

− 𝜌
0
) 𝑑𝑧,

𝜌 (𝑧) = 𝜌
𝑚

[1 − 𝛼
𝑚

(𝑇 − 𝑇
𝑚
) + 𝛼
󸀠

𝑚
(𝐶 − 𝐶

𝑚
)

+ 𝐾
𝑚

(𝑝 − 𝑝
𝑚
) ] ,

𝛼
𝑚

= −(

1

𝜌

𝜕𝜌

𝜕𝑇

)

𝑚

(= 𝛼 say) ,

𝛼
󸀠

𝑚
= −(

1

𝜌

𝜕𝜌

𝜕𝐶

)

𝑚

(= 𝛼
󸀠 say) ,

𝐾
𝑚

= −(

1

𝜌

𝜕𝜌

𝜕𝑝

)

𝑚

.

(7)

Consider a small perturbation on the steady state solution
and let 𝛿𝑝, 𝛿𝜌, 𝜃, 𝛾, 𝑢⃗(𝑢, V, 𝑤), V⃗(1 ⋅ 𝑟, 𝑠), and𝑁 denote, respec-
tively, the perturbations in pressure 𝑝, density 𝜌, temperature
𝑇, solute concentration 𝐶, fluid velocity 𝑢⃗(0, 0, 0), particle
velocity V⃗(0, 0, 0), and number density 𝑁

0
. The change in

density 𝛿𝜌, caused mainly by the perturbations 𝜃 and 𝛾 in
temperature and solute concentration, is given by

𝛿𝜌 = −𝜌
𝑚

(𝛼𝜃 − 𝛼
󸀠
𝛾) . (8)

Then the linearized perturbation equations relevant to the
problem, Spiegel and Veronis [14], Scanlon and Segel [3], and
Rivlin and Ericksen [15], become

𝜕𝑢⃗

𝜕𝑡

= −

1

𝜌
𝑚

∇𝛿𝑝 + 𝑔 (𝛼𝜃 − 𝛼
󸀠
𝛾) 𝜆 +

𝐾𝑁

𝜌
𝑚

(V⃗ − 𝑢⃗)

+ (] + ]󸀠
𝜕

𝜕𝑡

)∇
2
𝑢⃗,

(9)

∇ ⋅ 𝑢⃗ = 0, (10)

(

𝑚

𝐾

𝜕

𝜕𝑡

+ 1) V⃗ = 𝑢⃗, (11)

𝜕𝑁

𝜕𝑡

+ ∇ ⋅ (𝑁
0
V⃗) = 0, (12)

(1 + ℎ)

𝜕𝜃

𝜕𝑡

= 𝛽 (

𝐺 − 1

𝐺

) (𝑤 + ℎ𝑠) + 𝜅∇
2
𝜃, (13)

(1 + ℎ
󸀠
)

𝜕𝛾

𝜕𝑡

= 𝛽
󸀠
(𝑤 + ℎ

󸀠
𝑠) + 𝜅

󸀠
∇
2
𝛾, (14)

where 𝜇, 𝜇
󸀠
, ] = 𝜇/𝜌

𝑚
, ]󸀠 = 𝜇

󸀠
/𝜌
𝑚
, 𝜅(= 𝑞/𝜌

𝑚
𝐶V), and 𝜅

󸀠
(= 𝑞
󸀠
/

𝜌
𝑚
𝐶
󸀠

V) stand for viscosity, viscoelasticity, kinematic viscosity,
kinematic viscoelasticity, thermal diffusivity, and analogous
solute diffusivity, respectively.

Also, ℎ = 𝑓(𝐶
𝑝𝑡
/𝐶V), ℎ

󸀠
= 𝑓(𝐶

󸀠

𝑝𝑡
/𝐶
󸀠

V), 𝑓 = 𝑚𝑁
0
/𝜌
𝑚
, and

𝐺 = 𝐶
𝑝
𝛽/𝑔.

Initially, 𝑢⃗ = (0, 0, 0), V⃗ = (0, 0, 0), 𝑇 = 𝑇(𝑧), and𝑁 = 𝑁
0
,

so, (4) yields 0 = 0, identically.
After perturbation, (4) becomes

(𝜌
𝑚

+ 𝛿𝜌)𝐶V (
𝜕

𝜕𝑡

+ 𝑢⃗ ⋅ ∇) (𝑇 + 𝜃) + (𝑚𝑁
0
+ 𝑚𝑁)𝐶

𝑝𝑡

× (

𝜕

𝜕𝑡

+ V⃗ ⋅ ∇) (𝑇 + 𝜃) = 𝑞∇
2
(𝑇 + 𝜃) .

(15)

Follow Speigal and Veronis [14] where the flow equations
are found to be the same as those for incompressible fluids
except that the static temperature gradient is replaced by its
excess over the adiabatic and 𝐶V is replaced by 𝐶

𝑝
, that is, 𝛽

is replaced by (𝛽 − (𝑔/𝐶
𝑝
)), and linearizing (4) gives

𝜕𝜃

𝜕𝑡

+

𝑚𝑁
0

𝜌
𝑚

𝐶
𝑝𝑡

𝐶V

𝜕𝜃

𝜕𝑡

= (𝛽 −

𝑔

𝐶
𝑝

) (𝑤 + ℎ𝑠) +

𝑞

𝜌
𝑚
𝐶V

∇
2
𝜃,

(16)

that is, (13). However, 𝛽󸀠 remains unaltered and, as above, (5)
yields (14).

3. The Dispersion Relation

Analyzing the disturbances into normal modes, we assume
that the perturbation quantities are of the form

[𝑤, 𝜃, 𝛾] = [𝑊 (𝑧) , Θ (𝑧) , Γ (𝑧)] exp [𝑖𝑘
𝑥
𝑥 + 𝑖𝑘

𝑦
𝑦 + 𝑛𝑡] ,

(17)

where 𝑘
𝑥
and 𝑘
𝑦
are wave numbers along 𝑥- and 𝑦-directions,

respectively, 𝑘(= √𝑘
2

𝑥
+ 𝑘
2

𝑦
) is the resultant wave number, and

𝑛 is the growth rate, which is, in general a complex constant.
Using (15), (9)–(14) in nondimensional form become

[𝜎(1 +

𝑀

1 + 𝜏
1
𝜎

) − (1 + 𝐹𝜎) (𝐷
2
− 𝑎
2
)] (𝐷

2
− 𝑎
2
)𝑊

+

𝑔𝑎
2
𝑑
2

]
(𝛼Θ − 𝛼

󸀠
Γ) = 0,

(18)

(𝐷
2
− 𝑎
2
− 𝐻𝑝
1
𝜎)Θ = −𝛽(

𝐺 − 1

𝐺

)

𝑑
2

𝜅

(𝐻 + 𝜏
1
𝜎)

(1 + 𝜏
1
𝜎)

𝑊,

(19)

(𝐷
2
− 𝑎
2
− 𝐻
󸀠
𝑞𝜎) Γ = −𝛽

󸀠 𝑑
2

𝜅
󸀠

(𝐻
󸀠
+ 𝜏
1
𝜎)

(1 + 𝜏
1
𝜎)

𝑊, (20)

where we have put 𝑎 = 𝑘𝑑, 𝜎 = 𝑛𝑑
2
/], 𝜏 = 𝑚/𝜅, 𝜏

1
= 𝜏]/𝑑2,

𝑀 = 𝑚𝑁/𝜌
𝑚
, 𝑝
1

= ]/𝜅, 𝑞 = ]/𝜅󸀠, 𝐻 = 1 + ℎ, 𝐻󸀠 = 1 + ℎ
󸀠,

𝐹 = ]󸀠/𝑑2, and 𝐷 = 𝑑/𝑑𝑧.
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Eliminating Θ and Γ between (18) and (20), we obtain

[𝜎(1 +

𝑀

1 + 𝜏
1
𝜎

) − (1 + 𝐹𝜎) (𝐷
2
− 𝑎
2
)] (𝐷

2
− 𝑎
2
− 𝐻𝑝
1
𝜎)

× (𝐷
2
− 𝑎
2
− 𝐻
󸀠
𝑞𝜎) (𝐷

2
− 𝑎
2
)𝑊

− 𝑅(

𝐺 − 1

𝐺

) 𝑎
2
(

𝐻 + 𝜏
1
𝜎

1 + 𝜏
1
𝜎

) (𝐷
2
− 𝑎
2
− 𝐻
󸀠
𝑞𝜎)𝑊

+ 𝑆𝑎
2
(

𝐻
󸀠
+ 𝜏
1
𝜎

1 + 𝜏
1
𝜎

) (𝐷
2
− 𝑎
2
− 𝐻𝑝
1
𝜎)𝑊 = 0,

(21)

where 𝑅 = 𝑔𝛼𝛽𝑑
4
/]𝜅 is the thermal Rayleigh number, 𝑆 =

𝑔𝛼
󸀠
𝛽
󸀠
𝑑
4
/]𝜅󸀠 is the analogous solute Rayleigh number, 𝑝

1
=

]/𝜅 is the thermal Prandtl number, and 𝑞 = ]/𝜅󸀠 is the
analogous Schmidt number.

We consider the case where both boundaries are free and
perfect conductors of heat and solute, while the adjoining
medium is assumed to be electrically nonconducting. The
appropriate boundary conditions for the case are

𝑊 = 𝐷
2
𝑊 = Θ = Γ = 𝐷𝑍 = 0 at 𝑧 = 0, 1. (22)

The case of two free boundaries though little artificial
is the most appropriate for stellar atmospheres. Using (22),
we can show that all the even order derivatives of 𝑊 must
vanish for 𝑧 = 0 and 1 and hence the proper solution of 𝑊
characterizing the lowest mode is

𝑊 = 𝑊
0
sin𝜋𝑧, (23)

where 𝑊
0
is a constant.

Substituting (23) in (21), we obtain the dispersion relation

𝑅
1
𝑥 = (

𝐺

𝐺 − 1

)

× [{𝑖𝜎
1
(1 +

𝑀

1 + 𝑖𝜏
1
𝜎𝜋
2
) + (1 + 𝑖𝐹𝜎𝜋

2
) (1 + 𝑥)}

× {

(1 + 𝑖𝜏
1
𝜎𝜋
2
) (1 + 𝑥) (1 + 𝑥 + 𝑖𝐻𝑝

1
𝜎)

𝐻 + 𝑖𝜏
1
𝜎𝜋
2

}

+

𝑆
1
𝑥 (𝐻
󸀠
+ 𝑖𝜏
1
𝜎𝜋
2
) (1 + 𝑥 + 𝑖𝐻𝑝

1
𝜎)

(𝐻 + 𝑖𝜏
1
𝜎𝜋
2
) (1 + 𝑥 + 𝑖𝐻

󸀠
𝑞𝜎)

] ,

(24)

where

𝑅
1
=

𝑅

𝜋
4
, 𝑥 =

𝑎
2

𝜋
2
,

𝑖𝜎
1
=

𝜎

𝜋
2
, 𝑆

1
=

𝑆

𝜋
4
.

(25)

Equation (24) is the required dispersion relation studying
the effects of suspended particles and compressibility on the
thermosolutal convection inRivlin-Ericksen elastico- viscous
fluid.

4. The Stability of the System and
Oscillatory Modes

Here, we examine whether the instability can occur as oscil-
latory modes, if any, on the Rivlin-Ericksen elastico-viscous
fluid in the presence of compressibility and suspended parti-
cles effects.

Multiplying (18) by 𝑊
∗, the complex conjugate of 𝑊,

integrating over the range of 𝑧, and making use of (19) and
(20) with the help of boundary conditions (22), we obtain

𝜎(1 +

𝑀

1 + 𝜏
1
𝜎

) 𝐼
1
+ (1 + 𝐹𝜎) 𝐼

2

−

𝑔𝛼𝑎
2
𝜅

]𝛽
(

𝐺

𝐺 − 1

)(

1 + 𝜏
1
𝜎
∗

𝐻 + 𝜏
1
𝜎
∗
) (𝐼
3
+ 𝐻𝑝
1
𝜎
∗
𝐼
4
)

+

𝑔𝛼
󸀠
𝑎
2
𝜅
󸀠

]𝛽󸀠
(

1 + 𝜏
1
𝜎
∗

𝐻
󸀠
+ 𝜏
1
𝜎
∗
)

× (𝐼
5
+ 𝐻
󸀠
𝑞𝜎
∗
𝐼
6
) = 0,

(26)

where

𝐼
1
= ∫

1

0

(|𝐷𝑊|
2
+ 𝑎
2
|𝑤|
2
) ,

𝐼
2
= ∫

1

0

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷
2
𝑊

󵄨
󵄨
󵄨
󵄨
󵄨

2

+ 2𝑎
2
|𝐷𝑤|
2
+ 𝑎
4
|𝑊|
2
) ,

𝐼
3
= ∫

1

0

(|𝐷Θ|
2
+ 𝑎
2
|Θ|
2
) 𝑑𝑧,

𝐼
4
= ∫

1

0

|Θ|
2
𝑑𝑧,

𝐼
5
= ∫

1

0

(|𝐷Γ|
2
+ 𝑎
2
|Γ|
2
) 𝑑𝑧,

𝐼
6
= ∫

1

0

|Γ|
2
𝑑𝑧.

(27)

The integrals 𝐼
1
–𝐼
6
are all positive definite. Putting 𝜎 =

𝑖𝜎
𝑖
, where 𝜎

𝑖
is real and equating the imaginary parts, we

obtain

𝜎
𝑖
[(1 +

𝑀

1 + 𝜏
1
𝜎
𝑖

) 𝐼
1
+ 𝐹𝐼
2
+

𝑔𝛼𝑎
2
𝜅

]𝛽
(

𝐺

𝐺 − 1

)

× (

𝜏
1
(𝐻 − 1)

𝐻
2
+ 𝜏
2

1
𝜎
2

𝑖

𝐼
3
+

𝐻 + 𝜏
2

1
𝜎
2

𝑖

𝐻
2
+ 𝜏
2

1
𝜎
2

𝑖

𝐻𝑝
1
𝜎
∗
𝐼
4
)

−

𝑔𝛼
󸀠
𝑎
2
𝜅
󸀠

]𝛽󸀠
(

𝜏
1
(𝐻
󸀠
− 1)

𝐻
󸀠2

+ 𝜏
2

1
𝜎
2

𝑖

𝐼
5

+

𝐻
󸀠
+ 𝜏
2

1
𝜎
2

𝑖

𝐻
󸀠2

+ 𝜏
2

1
𝜎
2

𝑖

𝐻
󸀠
𝑞𝜎
∗
𝐼
6
)] = 0.

(28)

Equation (28) implies that 𝜎
𝑖

= 0 or 𝜎
𝑖

̸= 0, which
mean that modes may be nonoscillatory or oscillatory.
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The oscillatory modes are introduced due to presence of
stable solute gradient, which were nonexistent in its absence.

5. The Stationary Convection

When instability sets in as stationary convection, the mar-
ginal state will be characterized by 𝜎 = 0. Putting 𝜎 = 0 in
(24), the dispersion relation reduces to

𝑅
1
= (

𝐺

𝐺 − 1

)[

(1 + 𝑥)
3

𝑥𝐻

+ 𝑆
1

𝐻
󸀠

𝐻

] , (29)

and Rivlin-Ericksen elastico-viscous fluid behaves like an
ordinary Newtonian fluid.

To study the effect of stable solute gradient and suspended
particles, we examine the behaviour of 𝑑𝑅

1
/𝑑𝑆
1
and 𝑑𝑅

1
/𝑑𝐻

analytically.
Equation (29) yields

𝑑𝑅
1

𝑑𝑆
1

= (

𝐺

𝐺 − 1

)

𝐻
󸀠

𝐻

, (30)

which is positive, thereby Rayleigh number increases the
with increase in solute parameter. The stable solute gradient,
therefore, has a stabilizing effect on the system

𝑑𝑅
1

𝑑𝐻

= −(

𝐺

𝐺 − 1

)[

(1 + 𝑥)
3

𝑥

+ 𝑆
1
𝐻
󸀠
]

1

𝐻
2
, (31)

which is negative, implying thereby that the Rayleigh num-
ber decreases with the increase in the suspended particles
number density. Therefore, the effect of suspended particles
is to destabilize the system. We studied here these effects
graphically as shown in Figure 1.

In Figure 1, as value of stable solute gradient parameter
increased, the value of Rayleigh number is increased by
taking values ofwave number𝑥(= 1, 2, 3, 4, 5), for fixed values
𝐺 = 9.8, 𝐻 = 2, 𝐻󸀠 = 10, and 𝑆

1
(= 10, 20, 30), respectively.

Therefore value of Rayleigh number increased with the
increase in wave number showing the stabilizing effect on the
system.

In Figure 2, Rayleigh number decreased with the increase
in the suspended particles by taking values of wave number
𝑥(= 1, 2, 3, 4, 5), for fixed values𝐺 = 9.8, 𝑆

1
= 10,𝐻󸀠 = 5, and

𝐻(= 2, 4, 6), respectively. Therefore values of Rayleigh num-
ber have increased with the decrease of suspended particles
parameter, showing the destabilizing effect on the system.

For fixed 𝑆
1
, 𝐻, and 𝐻

󸀠, let 𝐺 (accounting for the
compressibility effects) also be fixed. Then, we find that

𝑅
𝑐
= (

𝐺

𝐺 − 1

)𝑅
𝑐
, (32)

where 𝑅
𝑐
and 𝑅

𝑐
denote, respectively, the critical Rayleigh

number in the presence and absence of compressibility.𝐺 > 1

is relevant here. The cases 𝐺 < 1 and 𝐺 = 1 correspond to
negative and infinite values of the critical Rayleigh number in
the presence of compressibility, which are not relevant in the
present study.The effect of compressibility is thus to postpone
the onset of thermosolutal convection.
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Figure 1:The variation of Rayleigh number (𝑅
1
)with wave number

𝑥(= 1, 2, 3, 4, 5), for 𝐺 = 9.8, 𝐻 = 2, 𝐻󸀠 = 10, and 𝑆
1
(= 10, 20, 30).
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Figure 2:The variation of Rayleigh number (𝑅
1
)with wave number

𝑥(= 1, 2, 3, 4, 5), for 𝐺 = 9.8, 𝑆
1
= 10, 𝐻󸀠 = 5, and 𝐻(= 2, 4, 6).

6. Conclusion

Combined effect of various parameters, that is, compress-
ibility, suspended particles, and stable solute gradient, has
been investigated on thermosolutal convection of a Rivlin-
Ericksen fluid. The motivation for the present study is due to
the fact thata fluid-particlemixture is not commensuratewith
their scientific and industrial importance.The analysis would
be relevant to the stability of some polymer solutions and
the problem finds its usefulness in several Geophysical situ-
ations and in chemical technology. Hence, a study has been
made on thermosolutal convection in presence of com-
pressible fluid with fine dust. For stationary convection,
Rivlin-Ericksen fluid behaves like an ordinary Newtonian
fluid due to the vanishing of the viscoelastic parameter.
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From (32), it is clear that the effect of compressibility is to
postpone the onset of instability. To investigate the effects of
suspended particles and stable solute gradient, we examined
the expressions 𝑑𝑅

1
/𝑑𝐻 and 𝑑𝑅

1
/𝑑𝑆
1
analytically. Stable

solute gradient postpones the onset of instability whereas
suspended particles are found to hasten the onset of insta-
bility.These results are graphically verified by Figures 1 and 2,
respectively. The oscillatory modes are introduced due to the
presence of viscoelasticity, suspended particles, and stable
solute gradient. In the absence of these, the principle of
exchange of stabilities is found to hold good.
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