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In 2003 Matveev suggested a new version of the Diamond Lemma suitable for topological applications. We apply this result to
different situations and get a new conceptual proof of theorem on decomposition of three-dimensional manifolds into boundary
connected sum of prime components.

1. Introduction

Since 2003 Matveev [1–3] had suggested a new version of the
Diamond Lemma [4] of great importance for various fields of
mathematics, which is suitable for and efficient solving topo-
logical problems. In this paper we apply this result to get a
new conceptual proof of theorem on decomposition of three-
dimensional manifolds into boundary connected sum of
prime components.

2. Definition, Lemma, and
𝜕-Irreducible Manifolds

Diamond Lemma (see [5]). If an oriented graph Γ has the
properties (FP) and (MF), then each of its vertices has a unique
root.

Definition 1. Let 𝐷 be a proper disk in a compact connected
3-manifold𝑀. A disk reduction of𝑀 along𝐷 consists in cut-
ting𝑀 along the disk𝐷. Its result is a new manifold𝑀.

We apply nontrivial disk reductions to a given manifold
𝑀 as many times as possible. If this process stops, then we
obtain a set of new manifolds, which is called a root of𝑀.

(1) If the disk is splitting, the manifold𝑀 is obtained by
gluing the manifolds𝑀

1
and𝑀

2
together along disks

on their boundaries. Then 𝑀 is called a boundary
connected sum of themanifolds𝑀

1
and𝑀

2
and den-

oted by𝑀 = 𝑀
1
#
𝜕
𝑀
2
.

(2) If the disk is nonsplitting, then𝑀 is also connected.

Definition 2. 𝑀 is said to be 𝜕 irreducible if every properly
embedded disk in𝑀 is trivial.

Lemma 3 (see [6]). Let𝑀 be a 𝜕-irreducible manifold. Let𝑁
be the manifold obtained from 𝑀 by attaching a 1-handle to
make the boundary connected. Then𝑁 is a prime which is not
𝜕 irreducible.

3. Proof of Theorem 4

Theorem4. Any connected irreducible compact 3-manifold𝑀
different from a ball and with nonempty boundary is homeo-
morphism to a boundary connected sum𝑀 = 𝑀

1
#
𝜕
⋅ ⋅ ⋅ #
𝜕
𝑀
𝑛

of prime manifolds. All the summands are defined uniquely up
to reordering and, if𝑀 is non-Orientale, replacing solid tori by
solid Klein bottles 𝑆1×̃𝐷2.
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We apply the universal scheme [4] in two stages. First, by
considering reductions along all disks we establish unique-
ness of the 𝜕-irreducible manifolds 𝑀

𝑖
. Then we restrict

ourselves to reductions only along splitting disks and by
lemma [3] complete the proof of the theorem.

We construct the graph Γ [5] whose vertices are compact
connected irreducible manifolds, considered up to addition
or deletion of three-dimensional balls.The edges of the graph
correspond to reductions along both splitting and nonsplit-
ting disks.

Lemma5 (see [7]). Each essential disks reduction strictly decr-
eases 𝛾(𝐴), where 𝛾(𝐴) = ∑

𝑖
𝑔
2
(𝐹
𝑖
) (𝐴 ∈ 𝑉(Γ)), 𝑔(𝐹

𝑖
) is the

genus of a component 𝐹
𝑖
⊂ 𝜕𝑀, and the sum is taken over all

components of 𝜕𝑀.

Since every set of vertexes of nonnegative integers has a
minimal vertex, by Lemma 5, the process stops and we get a
root. Then Γ has the properties (FP).

Lemma 6. The graph Γ has a mediator function; that is, Γ has
the properties (MF).

Proof. Let (→𝐴𝐵
1
,
→
𝐴𝐵
2
) ∈ 𝐸

2
(Γ) be a pair of edges with com-

mon beginning. Following the universal scheme, we define
the value 𝜇(→𝐴𝐵

1
,
→
𝐴𝐵
2
) of the mediator function 𝜇 : 𝐸2(Γ) →

𝑁 ∪ {0} to be the minimal number |𝐷
1
∩ 𝐷
2
| of connected

components in the intersection of disks𝐷
1
, 𝐷
2
⊂ 𝐴, defining

the edges →𝐴𝐵
1
and →𝐴𝐵

2
. This minimum is taken over all pairs

of such disks. As usual, we assume that the disks are in general
position, so that their intersection consists of a finite number
of circles and arcs.

We first consider the property (MF1), that is, the case
𝜇(
→
𝐴𝐵
1
,
→
𝐴𝐵
2
) = 0. When the reduction is carried out along

disjoint disks 𝐷
1
and 𝐷

2
, then each of these disks survives

under the reduction along the other disk. We can therefore
assume that 𝐷

𝑖
⊂ 𝐵
𝑗
for (𝑖, 𝑗) = (1, 2) and (𝑖, 𝑗) = (2, 1).

By reducing each of the manifolds 𝐵
𝑗
along the disk 𝐷

𝑖
. We

obtain the same vertex 𝐶 ∈ 𝑉(Γ). This proves the property
(MF1).

Next, we verify the property (MF2), that is, the case
𝜇(
→
𝐴𝐵
1
,
→
𝐴𝐵
2
) > 0, when any two disks𝐷

1
and𝐷

2
defining the

edges →𝐴𝐵
1
and →

𝐴𝐵
2
intersect. Then these disks lie in the

same connected manifold 𝑄 ⊂ 𝐴. According to the universal
scheme, it is enough to show that there exists a mediator disk,
that is, a nontrivial disk𝐷 ⊂ 𝐴 satisfying |𝐷

𝑖
∩𝐷| < |𝐷

1
∩𝐷
2
|

for 𝑖 = 1, 2.

Case 1.Among the circles in𝐷
1
∩𝐷
2
we choose one, denoted

by 𝑐, which is innermost with respect to the disk 𝐷
1
. This

means that the circle 𝑐 bounds a disk 𝐷 in 𝐷
1
such that

𝐷
1
∩ 𝐷
2
= 𝑐. We cut 𝐷

2
along 𝑐 and glue up the boundaries

of the cut by two parallel copies of the disk 𝐷. By applying a
small perturbation we obtain a new disk 𝐷 and a sphere 𝑆
whose intersection with 𝐷

2
is empty and whose intersection

with 𝐷
1
consists of a smaller number of circles (since the

circle 𝑐 has disappeared). The disks 𝐷 must be nontrivial in
𝑄, since otherwise the disk𝐷

2
would be trivial.Therefore,𝐷

can be taken as a mediator disk.

Case 2.Among the arcs in𝐷
1
∩𝐷
2
we choose one, denoted by

𝑐, which is outermost with respect to the disk 𝐷
1
. We cut 𝐷

2

along 𝑐 and glue up the boundaries of the cut by two parallel
copies of the disk 𝐷. By applying a small perturbation we
obtain a new disk 𝐷 and a sphere 𝐷 whose intersection
with 𝐷

2
is empty and whose intersection with 𝐷

1
consists of

a smaller number of arcs (since the circle 𝑐 has disappeared).
At least one of these two disks (say 𝐷) must be nontrivial in
𝑄, since otherwise the disk𝐷

2
would be trivial.Therefore,𝐷

can be taken as a mediator disk.

By applying the Diamond Lemma we prove that a root of
any vertex of the graph exists and is unique.

We therefore obtain the following theorem, which is a
particular case ofTheorem 4 for manifolds without nonsplit-
ting proper disks.

Theorem 7. Any connected irreducible compact three-dimen-
sional manifold 𝑀 different from a ball and with nonempty
boundary is decomposed by disk reductions into a union of
𝜕-irreducible parts. These parts are defined uniquely up to
reordering.

In order to finish the proof of Theorem 4 we change the
graph Γ constructed by keeping the vertex set intact while
disallowing reductions along nonsplitting disks. The edges of
the new graph Γ


⊂ Γ therefore correspond to reductions

only along splitting disks, so that the root of any vertex
consists exactly of the prime summands of the manifolds
corresponding to the vertex. The properties (FP) and (MF1)
of Γ are automatically inherited by the graph Γ

. The only
difficulty with the proof of the property (MF2) is that after
applying to the disk 𝐷

2
a surgery along the innermost circle

𝑐 ⊂ 𝐷
1
both new spheres 𝑆 and 𝑆 and disk 𝐷 ⊂ 𝑄may be

nonsplitting and therefore can not be taken asmediator disks.

Case 1. Assume that 𝐷
1
∩ 𝐷
2
consists of 𝑛 > 3 circles. Then

we connect the spheres 𝑆 and 𝑆 by a tube which does not
intersect𝐷

1
.

Since each of these spheres is obtained by connecting 𝑆
and 𝑆 by tubes contained in one of the parts into which𝐷∪
𝑆

∪ 𝑆
 divides 𝑄, the disk 𝐷

3
is splitting and nontrivial (the

latter follows from the simple observation that each simple arc
connecting the sphere and disk on the boundary is trivial). It
is important to note that, after a suitable small perturbation,
𝐷
3
intersects 𝐷

1
in 𝑛 − 1 circles and intersects 𝐷

2
in two

circles. Thus,𝐷
3
is a mediator sphere.

The cases 𝑛 = 1 and 𝑛 = 2 need to be considered separa-
tely. We show that in each of these cases there exists a medi-
ator disk. If 𝑛 = 1, then the disks 𝐷

1
and 𝐷

2
split 𝑄 into 4

parts 𝑋
𝑖
, 1 ≤ 𝑖 ≤ 4. These parts are different, since they are

separated by 𝐷
1
and 𝐷

2
: any two parts lie on different sides

with respect to at least one of the disks. The boundary of
each part consists of a single splitting disk. At least one of
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these disks is nontrivial, since both𝐷
1
and𝐷

2
are nontrivial.

Hence, it can be taken as a mediator disk.
Now let 𝑛 = 2. Then the disks 𝐷

1
and 𝐷

2
split 𝑄 either

into 5 parts𝑋
𝑖
, 1 ≤ 𝑖 ≤ 5 (if the parts𝑋

1
and𝑋

3
are different),

or into 4 parts (if the parts𝑋
1
and𝑋

3
coincide). None of the

other parts can coincide, since only the parts 𝑋
1
and 𝑋

3
are

not separated by𝐷
1
and 𝐷

2
. Since𝑋

1
̸= 𝑋
3
, then each of the

parts 𝑋
2
and 𝑋

3
is bounded by a sphere 𝑋

1
, 𝑋
4
is bounded

by a disk, and at least one of these disks is nontrivial, since
𝐷
2
is nontrivial.This disk can be taken as a mediator.We also

note that the part𝑋
5
is bounded by a torus.

Assume that 𝑋
1
and 𝑋

3
coincide and constitute a single

connected part 𝑋. Then we have three candidates for a
mediator sphere: the spheres 𝜕𝑋

2
and 𝜕𝑋

4
and the new disk

𝐷 = 𝜕𝑋
1
#
𝜕
𝜕𝑋
3
⊂ 𝑋.The latter is obtained by connecting 𝜕𝑋

1

and 𝜕𝑋
3
by a tube inside 𝑋. We assert that at least one of the

three disks is nontrivial and therefore is a mediator.
Arguing by contradiction, assume that all three disks are

trivial. This means that 𝑋
2
is ball and 𝑋 is homeomorphism

to𝐷
2
×𝐼. Then the reduction along the disk𝐷

1
produces two

manifolds 𝑌
1
= (𝑋 ∪𝑋

4
) ∪ 𝐷
1
and 𝑌

1
= (𝑋
5
∪𝑋
2
) ∪ 𝐷


1
, and

the reduction along the disk𝐷
2
also produces two manifolds

𝑌
2
= (𝑋 ∪ 𝑋

2
) ∪ 𝐷
2
and 𝑌

2
= (𝑋
5
∪ 𝑋
4
) ∪ 𝐷


2
. Here the balls

𝑋
2
are viewed as handle of index 1 (if they are attached to𝑋)

or as handle of index 2 (if they are attached to 𝑋
5
). The balls

𝐷
1
,𝐷
1
,𝐷
2
,𝐷
2
, and𝐷

2
glue up the disks on the boundaries of

the corresponding manifolds. Handles𝑋
2
of index 1 connect

different disks on the boundary of the manifold 𝑋 ≈ 𝐷
2
× 𝐼,

which implies that 𝑌
1
≈ 𝑌
2
≈ 𝑆
1
×𝐷
2. On the other hand, the

bases of handles 𝑋
2
of index 2 in the torus 𝜕𝑋

5
are isotopic;

hence 𝑌
1
≈ 𝑌


2
. Therefore, the reductions along the disks 𝐷

1

and 𝐷
2
give the same result. This contradicts the fact that in

our situation when 𝜇(→𝐴𝐵
1
,
→
𝐴𝐵
2
) > 0, the vertices 𝐵

1
and 𝐵

2

must be different.

Case 2. Assume that𝐷
1
∩𝐷
2
consists of 𝑛 > 3 arcs.The proof

can be finished by an argument similar to that used in the
proof of Case 1.

The arguments above are also applicable in the case of
prime decompositions of non-Orientale manifolds, with the
only difference that handles𝑋

2
of index 1 can nowbe attached

to the boundary of the manifold 𝑋 ≈ 𝐷
2
× 𝐼 in two different

ways. In one case the result is the direct product 𝑆1 × 𝐷
2,

and in the other case we get the twisted product 𝑆1 ×̃ 𝐷
2.

Nevertheless, since themanifold𝑀 is non-Orientale, all sum-
mands 𝑆1 × 𝐷2 can be replaced by 𝑆1 ×̃ 𝐷

2.
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