Research Article

Introduction to gb-Triple Systems

Guy Roger Biyogmam
Department of Mathematics, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, OK 73096, USA

Correspondence should be addressed to Guy Roger Biyogmam; guy.biyogmam@swosu.edu

Received 10 January 2014; Accepted 3 February 2014; Published 13 March 2014

Academic Editors: D. Herbera and H. Li

Copyright © 2014 Guy Roger Biyogmam. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper introduces the category of gb-triple systems and studies some of their algebraic properties. Also provided is a functor from this category to the category of Leibniz algebras.

1. Introduction

A triple system is a vector space g over a field K together with a K-trilinear map $T: g^3 \to g$. Among the many examples known in the literature, one may mention 3-Lie algebras [1] and Lie triple systems [2] which are the generalizations of Lie algebras to ternary algebras, Jordan triple systems [2] which are the generalizations of Jordan algebras, and Leibniz 3-algebras [3] and Leibniz triple systems [4] which are generalizations of Leibniz algebras [5]. In this paper we enrich the family of triple systems by introducing the concept of gb-triple systems, presented as another generalization of Leibniz algebras with the particularity that, for all $a, b \in g$, the map $T: g \to g$, defined by $T(a, x, b) = T(a, x, b)$, is a derivation of g, a property of great importance in Nambu Mechanics. We investigate some of their algebraic properties and provide a functorial connection with Leibniz algebras and Lie algebras.

For the remaining of this paper, we assume that K is a field of characteristic different to 2 and all tensor products are taken over K.

Definition 1. A gb-triple system is a K-vector space g equipped with a trilinear operation

$$[-, -, -]_g: g^3 \to g$$

satisfying the identity

$$\left[x, y, [a, b, c]_g \right]_g = \left[a, [x, y, b]_g, c \right]_g - \left[[a, x, c]_g, y, b \right]_g - \left[x, [a, y, c]_g, b \right]_g$$

(2)

for fixed $p \neq q \in \{1, 2, \ldots, n\}$. It is easy to check that the identity (2) is satisfied. So g is a gb-triple system when endowed with the operation $[-, -, -]_g$.

Because of the resemblance between the identity (2) and the generalized Leibniz identity [3], it is worth mentioning that, in general, Leibniz 3-algebras do not coincide with gb-triple systems. The following example provides a Leibniz 3-algebra that is not a gb-triple system.

Example 3. The two-dimensional complex Leibniz 3-algebra \mathcal{L} (see [6, Theorem 2.14]) with basis $\{a_1, a_2\}$, $\dim([\mathcal{L}, \mathcal{L}, \mathcal{L}]) = 1$, and brackets

$$[a_i, a_j, a_k]_{\mathcal{L}} = \begin{cases} a_{p}, & \text{if } i = p, j = q, k \neq p, q \\ -a_{p}, & \text{if } i = q, j = p, k \neq p, q \\ 0, & \text{else} \end{cases}$$

(3)

for fixed $p \neq q \in \{1, 2\}$. It is easy to check that its bracket does not satisfy the identity (2).
Definition 4. Let \(g, g' \) be gb-triple systems. A function \(\alpha : g \to g' \) is said to be a homomorphism of gb-triple systems if
\[
\alpha \left([x, y, z]_g \right) = [\alpha(x), \alpha(y), \alpha(z)]_{g'}, \quad \forall x, y, z \in g. \tag{5}
\]

We may thus form the category gb-TS of gb-triple systems and gb-triple system homomorphisms.

Recall that if \(g \) is a vector space endowed with a trilinear operation \([\cdot, \cdot, \cdot]_g \), then a map \(D : g \to g \) is called a derivation with respect to \(\sigma \) if
\[
D(\sigma (a, b, c)) = \sigma (D(a), b, c) + \sigma (a, D(b), c) + \sigma (a, b, D(c)) \tag{6}
\]

Lemma 5. Let \(g \) be a gb-triple system and \(g, h \in g \). Then the map \(D_{gh} \) defined on \(g \) by
\[
D_{gh}(x) = [g, x, h]_g \tag{7}
\]
is a derivation with respect to the bracket \([-,-,-]_g\) of \(g \).

Proof. By setting \(\sigma = [-,-,-]_g \) and using the identity (2), we have
\[
\sigma(x, y, D_{gh}(a)) = \left[x, y, [g, a, h]_g \right]_g
\]
\[
= [g, [x, y, a]_g, h]_g - [[g, x, h]_g, y, a]_g
\]
\[
= [g, y, x, a]_g - [g, x, y, h]_g - [x, y, a]_g
\]
\[
= D_{gh}(\sigma(x, y, a)) - \sigma(D_{gh}(x), y, a)
\]
\[
- \sigma(x, D_{gh}(y), a). \tag{8}
\]

Definition 6. A subspace \(I \) of a gb-triple system \(g \) is a subalgebra of \(g \) if \(I \) is a gb-triple system when endowed with the trilinear operation of \(g \).

Definition 7. A subalgebra \(I \) of a gb-triple system \(g \) is called ideal (resp., left ideal, resp., right ideal) of \(g \) if it satisfies the condition \([g, I, g]_g \subseteq I\) (resp., \([g, g, I]_g \subseteq I\), resp., \([I, g, g]_g \subseteq I\)). If \(I \) satisfies the three conditions, then \(I \) is called a 3-sided ideal.

Note that none of these three conditions implies the others as in the case of Lie triple systems.

Example 8. In Example 2, the subspace \(\mathfrak{F}_1 \) with basis \(\{a_p, a_q\} \) is an ideal of \(g \). However the subspace \(\mathfrak{F}_2 \) with basis \(\{a_p\} \) is not an ideal of \(g \), since, for \(k \neq p, q \), we have \([a_p, a_q, a_k] = a_p \notin \mathfrak{F}_2\).

Definition 9. Given a gb-triple system \(g \), one defines the center of \(g \) and the derived algebra of \(g \), respectively, by
\[
Z(g) = \{ x \in g : [g, x, g]_g = 0 \},
\]
\[
[g, g, g] = \{ [a_1, a_2, a_3]_g, a_1, a_2, a_3 \in g \}. \tag{9}
\]

Lemma 10. For a gb-triple system \(g \), \(Z(g) \) and \([g, g, g]\) are ideals of \(g \).

Proof. Clearly, \([g, Z(g), g]_g = 0 \). So \(Z(g) \) is an ideal of \(g \). That \([g, g, g]_g \) is an ideal follows from the fact that \(g \) is closed under the operation \([-,-,-]_g\). \qed

The following theorem classifies a subfamily of two-dimensional complex gb-triple systems. This result was obtained by Camacho et al. in [6] for Leibniz 3-algebras.

Theorem 11. Up to isomorphism, there are seven two-dimensional complex gb-triple systems with one-dimensional derived algebra.

Proof. The proof is similar to [6, Theorem 2.14]. Let \(g \) be a gb-triple system with basis \(\{a_i, a_k\} \), and assume that \(\dim([g, g, g]_g) = 1 \). Then write \([a_i, a_j, a_k]_g = \alpha_i a_j a_k, i, j, k = 1, 2 \). Then, using the identity (2), the only possible nonzero coefficients yield to the system of equations
\[
\alpha_{211} (\alpha_{122} + \alpha_{212} + \alpha_{221}) = 0,
\]
\[
\alpha_{122} (\alpha_{212} + \alpha_{221} + \alpha_{211}) = 0,
\]
\[
\alpha_{222} (\alpha_{212} + \alpha_{221}) = 0,
\]
for which the solution provides the following gb-triple systems with bracket operations:
\[
g_1 : [a_i, a_j, a_k]_g = \begin{cases} a a_i, & \text{if } i, k = 2, j = 1 \\ 0, & \text{else} \end{cases}
\]
\[
g_2 : [a_i, a_j, a_k]_g = \begin{cases} a a_i, & \text{if } i, j, k = 2 \\ 0, & \text{else} \end{cases}
\]
\[
g_3 : [a_i, a_j, a_k]_g = \begin{cases} a_i, & \text{if } i = 1, j, k = 2 \\ -a_i, & \text{if } i, j = 2, k = 1 \\ 0, & \text{else} \end{cases}
\]
\[
g_4 : [a_i, a_j, a_k]_g = \begin{cases} a_i, & \text{if } i, k = 2, j = 1 \\ -a_i, & \text{if } i, j = 2, k = 1 \\ 0, & \text{else} \end{cases}
\]
\[
g_5 : [a_i, a_j, a_k]_g = \begin{cases} a_i, & \text{if } i, k = 2, j = 1 \\ a a_i, & \text{if } i, j, k = 2 \\ 0, & \text{else} \end{cases}
\]
\[
g_6 : [a_i, a_j, a_k]_g = \begin{cases} a_i, & \text{if } i = 1, j, k = 2 \\ -a_i, & \text{if } i, j = 2, k = 1 \\ a a_i, & \text{if } i, j, k = 2 \end{cases}
\]
\[
g_7 : [a_i, a_j, a_k]_g = \begin{cases} - (1 + \alpha) a_i, & \text{if } i = 1, j, k = 2 \\ a_i, & \text{if } i, k = 2, j = 1 \\ a a_i, & \text{if } i, j = 2, k = 1 \end{cases}
\]
with \(\alpha \neq 0 \). \qed
Definition 12. Given a gb-triple system \(g \), one defines the left center and the right center of \(g \), respectively, by
\[
\begin{align*}
Z_L(g) &= \{ x \in g : [x, g, g]_g = 0 \}, \\
Z_R(g) &= \{ x \in g : [g, x, g]_g = 0 \}.
\end{align*}
\] (12)

Lemma 13. The left center \(Z_L(g) \) and the right center \(Z_R(g) \) are 3-sided ideals of \(g \).

Proof. To show that \(Z_L(g) \) is an ideal of \(g \), let \(g, g' \in g \) and let \(x \in Z_L(g) \). Then, for every \(u, v \in g \), we have, by the identity (2),
\[
\left[[g, x, g']_g, u, v \right]_g = \left[[g, [x, u, v]_g, g']_g - [x, [g, u, g']_g, v]_g \right]_g - [x, u, [g, v, g']_g]_g = 0.
\] (13)

So \([g, Z_L(g), g]_g \subseteq Z_L(g) \). The proof that \(Z_R(g) \) is both left ideal and right ideal is similar, so is the case for \(Z_R(g) \).

Definition 14. Given a gb-triple system \(g \), we define left and right centralizers of a subalgebra \(S \) in \(g \) by
\[
\begin{align*}
C^l_g(S) &= \{ x \in g : [x, S, g]_g = 0 \}, \\
C^r_g(S) &= \{ x \in g : [g, S, x]_g = 0 \},
\end{align*}
\] (14) (15)

respectively.

Lemma 15. Let \(S \) be an ideal of a gb-triple system \(g \). Then \(C^r_g(S) \) and \(C^l_g(S) \) are also ideals of \(g \).

Proof. To show that \(C^r_g(S) \) is an ideal of \(g \), let \(x \in C^r_g(S), u \in S \), and \(g, a, b \in g \). Then, by the identity (2),
\[
\left[[g, u, [a, x, b]]_g \right]_g = \left[a, [g, u, x]_g, b \right]_g - \left[[a, g, b]_g, u, x \right]_g = 0.
\] (16)

So \([g, C^r_g(S), g]_g \subseteq C^r_g(S) \). The proof for \(C^l_g(S) \) is similar.

Definition 16. For a gb-triple system \(g \) and a subalgebra \(S \) of \(g \), we define the left normalizer of \(S \) in \(g \) by
\[
\mathcal{N}^l_g(S) := \{ x \in g : [x, S, g]_g \subseteq S \},
\] (17)

and the right normalizer of \(S \) in \(g \) by
\[
\mathcal{N}^r_g(S) := \{ x \in g : [g, S, x]_g \subseteq S \}.
\] (18)

Lemma 17. Let \(S \) be a subalgebra of a gb-triple system \(g \). Then \(\mathcal{N}^l_g(S) \) and \(\mathcal{N}^r_g(S) \) are also subalgebras of \(g \).

Proof. To show that \(\mathcal{N}^l_g(S) \) is a subalgebra of \(g \), let \(x, y, z \in \mathcal{N}^l_g(S), u \in S \), and \(g \in g \). Then, by the identity (2), we have
\[
\left[[g, u, [x, y, z]]_g, y \right]_g - \left[[x, g, z]_g, u, y \right]_g - \left[[g, [u, x, z]]_g, y \right]_g \in S.
\] (19)

So \([\mathcal{N}^l_g(S), \mathcal{N}^r_g(S), \mathcal{N}^r_g(S)]_g \subseteq \mathcal{N}^l_g(S) \). The proof for \(\mathcal{N}^r_g(S) \) is similar.

Remark 18. If \(S \) is an ideal, then \(\mathcal{N}^l_g(S) = g = \mathcal{N}^r_g(S) \).

2. From gb-Triple Systems to Leibniz Algebras

Recall that a Leibniz algebra (sometimes called Loday algebra, named after Jean-Louis Loday) is a \(K \) vector space with a bilinear product \([-,-]\) satisfying the Leibniz identity
\[
[x, [y, z]] = [[x, y] z] + [y, [x, z]].
\] (20)

Proposition 19. Let \(g \) be a gb-triple system. Define on \(g^2 \) the bracket operation \([-,-]\) by
\[
[a_1 \otimes a_2, b_1 \otimes b_2] = [a_1, b_1, a_2]_g \otimes b_2 + b_1 \otimes [a_1, b_2, a_2]_g.
\] (21)

Then \([-,-]\) satisfies the Leibniz identity.

Proof. On one hand, we have
\[
[a_1 \otimes a_2, [b_1 \otimes b_2, c_1 \otimes c_2]] = [a_1 \otimes a_2, [b_1, c_1, b_2]_g \otimes c_2] + [a_1 \otimes a_2, c_1 \otimes [b_1, c_2, b_2]_g] + [b_1, c_1, b_2]_g \otimes [a_1, c_2, a_2]_g + [a_1, c_1, a_2]_g \otimes [b_1, c_2, b_2]_g + c_1 \otimes [a_1, b_1, c_2]_g \otimes a_2.
\] (22)
Also,
\[
[\{a_1 \otimes a_2, b_1 \otimes b_2\}, c_1 \otimes c_2] = \left[\left\{a_1, b_1, a_2\right\}_g \otimes b_2, c_1 \otimes c_2\right]
\]
\[
+ \left[\left\{a_1, b_1, a_2\right\}_g \otimes c_2\right]
\]
\[
+ [c_1 \otimes \left\{a_1, b_1, a_2\right\}_g, c_2] \otimes b_2
\]
\[
+ \left[\left\{b_1, c_1, [a_1, b_2, a_2]\right\}_g \otimes c_2\right]
\]
\[
+ [c_1 \otimes \left\{b_1, c_2, [a_1, b_2, a_2]\right\}_g \otimes b_2].
\]
(23)

On the other hand,
\[
[\left\{b_1 \otimes b_2, [a_1 \otimes a_2, c_1 \otimes c_2]\right\} = \left[\left\{b_1 \otimes b_2, [a_1, c_1, a_2]\right\}_g \otimes c_2\right]
\]
\[
+ \left[\left\{b_1 \otimes b_2, c_1 \otimes [a_1, c_2, a_2]\right\}_g\right]
\]
\[
+ \left[\left\{a_1, c_1, a_2\right\}_g \otimes \left\{b_1, c_2, b_2\right\}_g \otimes c_2\right]
\]
\[
+ [c_1 \otimes \left\{b_1, c_2, [a_1, c_2, a_2]\right\}_g \otimes b_2].
\]
(24)

One checks using the identity (2) that the equality
\[
[a_1 \otimes a_2, [b_1 \otimes b_2, c_1 \otimes c_2]] = \left[\left\{a_1 \otimes a_2, b_1 \otimes b_2\right\}, c_1 \otimes c_2\right]
\]
\[
+ \left[\left\{b_1 \otimes b_2, \left\{a_1 \otimes a_2, c_1 \otimes c_2\right\}\right\}_g\right]
\]
(25)

holds.

Corollary 20. Let \(\mathfrak{g}\) be a gb-triple system; then \(\mathfrak{g}^{s_2}\) endowed with the bilinear map \([-,-]\) has a Leibniz algebra structure.

Proof. This is a consequence of Proposition 19.

Similarly, we have the following.

Corollary 21. Let \(\mathfrak{g}\) be a gb-triple system; then \(\mathfrak{g}^{s_2}\) has a Leibniz algebra structure, when endowed with the bilinear map defined by
\[
[a_1 \wedge a_2, b_1 \wedge b_2] = \left[\left\{a_1, b_1, a_2\right\}_g \wedge b_2, c_1 \wedge \left\{a_1, b_2, a_2\right\}_g\right].
\]
(26)

These determine two functors from the category gb-TS of gb-triple systems to the category \(\mathbf{LB}\) of Leibniz algebras.

Definition 22. Let \(\mathfrak{g}\) be a gb-triple system and \(L\) a Leibniz algebra. The action of \(L\) on \(\mathfrak{g}\) is a map \(A : \mathfrak{g} \otimes L \to \mathfrak{g}\) satisfying
\[
(1) \quad A \left(\left\{g_1, g_2, g_3\right\}_g \otimes x\right) = A \left(\left\{g_1, g_2 \otimes x\right\}_g\right)
\]
\[
+ \left[\left\{g_1, g_2 \otimes x\right\}_g, g_3\right]\]
(27)
\[
(2) \quad A \left(\left\{g_1, g_2, g_3\right\}_g \otimes y\right) = A \left(\left\{g_1, g_2 \otimes y\right\}_g\right) - A \left(\left\{g_1 \otimes y\right\}_g \otimes g_3\right)
\]
(28)

for all \(g_1, g_2, g_3 \in \mathfrak{g}\) and \(x, y \in L\).

Proposition 23. Let \(\mathfrak{g}\) be a gb-triple system; then the Leibniz algebra \(\mathfrak{g}^{s_2}\) acts on \(\mathfrak{g}\) via the map \(A : \mathfrak{g} \otimes \mathfrak{g}^{s_2} \to \mathfrak{g}\) defined by
\[
A(\left\{g_1 \otimes g_2\right\}_g) = [g_1, g_2]_g.
\]

Proof. The first condition of Definition 22 follows by (2). To show (28), we have
\[
A \left(\left\{z \otimes [a_1, a_2]_g \otimes b_1 \otimes b_2\right\}_g\right) = \left[\left\{g_1, g_2 \otimes z\right\}_g \otimes b_1 \otimes b_2\right]
\]
\[
+ [b_1 \otimes \left\{g_1, g_2 \otimes z\right\}_g \otimes b_2].
\]
(29)

Now let \(g_1, g_2 \in \mathfrak{g}\) and consider the map \(A : \mathfrak{g} \otimes \mathfrak{g}^{s_2} : \mathfrak{g} \to \mathfrak{g}\) defined by \(A_{g_1 \otimes g_2}(z) = [g_1, z]_g, z \in \mathfrak{g}\). Clearly, this map is a derivation of \(\mathfrak{g}\) as it is induced by the action (Proposition 23) defined above.

Proposition 24. For a gb-triple system \(\mathfrak{g}\), the subspace \(\mathfrak{U}(\mathfrak{g}) = \{A_{g_1 \otimes g_2} \mid g_1, g_2 \in \mathfrak{g}\}\) is a Lie algebra with respect to the product
\[
\left[A_{a_1 \otimes a_2}, A_{b_1 \otimes b_2}\right] = A_{a_1 \otimes a_2} \circ A_{b_1 \otimes b_2} - A_{b_1 \otimes b_2} \circ A_{a_1 \otimes a_2}.
\]

More precisely, it is an ideal of the Lie algebra \(\text{Der}(\mathfrak{g})\) of derivations of \(\mathfrak{g}\).

Proof. To show that \(\mathfrak{U}(\mathfrak{g})\) is a Lie subalgebra of \(\text{Der}(\mathfrak{g})\), let \(a_1, a_2, b_1, b_2 \in \mathfrak{g}\). Then, for all \(z \in \mathfrak{g}\),
\[
\left[A_{a_1 \otimes a_2}, A_{b_1 \otimes b_2}\right]_{\text{Der}(\mathfrak{g})}(z)
\]
\[
= A_{a_1 \otimes a_2} \circ A_{b_1 \otimes b_2}(z) - A_{b_1 \otimes b_2} \circ A_{a_1 \otimes a_2}(z)
\]
\[
= [a_1, [b_1, z, b_2]_g, a_2]_g - [b_1, [a_1, z, a_2]_g, b_2].
\]
(30)
\[= A \left(z \otimes b_1 \otimes b_2 \otimes a_1 \otimes a_2 \right) \]
\[- A \left(A \left(z \otimes a_1 \otimes a_2 \otimes b_1 \otimes b_2 \right) \right) \]
\[= A \left(z \otimes \left[a_1 \otimes a_2, b_1 \otimes b_2 \right] \right) \quad \text{by Proposition 23} \]
\[= A_{[a_1 \otimes a_2, b_1 \otimes b_2]}(z). \]

(31)

So \(\mathfrak{g}(g) \) is closed under the bracket of \(\text{Der}(g) \). Also, for any derivation \(\in \text{Der}(g) \), we have, for all \(z \in g \),
\[\left[d, A_{n, \Theta a_1} \right]_{\text{Der}(g)}(z) = \left(d \circ A_{n, \Theta a_1} \right)(z) - \left(A_{n, \Theta a_1} \circ d \right)(z) \]
\[= d \left(A_{n, \Theta a_1}(z) \right) - A_{n, \Theta a_1} \left(d \left(z \right) \right) \]
\[= d \left(\left[a_1, z, a_2 \right]_g \right) - \left[a_1, d \left(z \right), a_2 \right]_g \]
\[= \left[d \left(a_1 \right), z, a_2 \right]_g \]
\[+ \left[a_1, z, d \left(a_2 \right) \right]_g \quad \text{by (6)} \]
\[= A_{d(a_1) \otimes a_2}(z) + A_{a_1 \otimes d(a_2)}(z). \]

(32)

Hence \(\left[d, A_{n, \Theta a_1} \right]_{\text{Der}(g)} = A_{d(a_1) \otimes a_2} + A_{a_1 \otimes d(a_2)} \in \mathfrak{g}(g). \quad \square \)

Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.

References

Submit your manuscripts at http://www.hindawi.com