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The paper presents a numerical investigation of non-Newtonian modeling effects on unsteady periodic flows in a two-dimensional
(2D) pipe with two idealized stenoses of 75% and 50% degrees, respectively. The governing Navier-Stokes equations have been
modified using the Cartesian curvilinear coordinates to handle complex geometries. The investigation has been carried out to
characterize four different non-Newtonian constitutive equations of blood, namely, the (i) Carreau, (ii) Cross, (iii) Modified
Casson, and (iv) Quemada models. The Newtonian model has also been analyzed to study the physics of fluid and the results
are compared with the non-Newtonian viscosity models. The numerical results are represented in terms of streamwise velocity,
pressure distribution, and wall shear stress (WSS) as well as the vorticity, streamlines, and vector plots indicating recirculation zones
at the poststenotic region. The results of this study demonstrate a lower risk of thrombogenesis at the downstream of stenoses and
inadequate blood supply to different organs of human body in the Newtonian model compared to the non-Newtonian ones.

1. Introduction

Stenosis is characterized by localized arterial narrowing
that is initiated due to deposition of lipid, cholesterol, and
some other substances on the endothelium and is of major
concern to most of the Western world. Atherosclerotic lesions
preferentially occur in arteries and arterioles in regions of
high curvature or bifurcations and junctions causing major
changes in flow structure and consequently large changes
in fluid loading on vessel walls [1]. Such plaques or arterial
constrictions usually disturb normal blood flow through the
artery and there is considerable evidence that hydrodynamic
factors can play a significant role in the development and
progression of these lesions. It has been established that once
a mild stenosis is developed inside the arterial lumen, the
resulting flow disorder further influences the development
of the disease and the arterial deformability to some extent,
which eventually changes the regional blood rheology as well
[2].

The rheological behavior of blood can be identified
by non-Newtonian viscosity. Halder [3] demonstrated that

the rheology of blood and the fluid dynamical properties of
blood flow can play an important role in the basic under-
standing, diagnosis, and treatment of many cardiovascular
and arterial diseases. Now, stenosis not only develops in one
position of artery but also it may develop at more than one
location of the cardiovascular system. However, in many
medical situations, the patient is found to have multiple
stenoses in the same arterial segment. So, several studies were
conducted by Misra et al. [4], Minagar et al. [5], Johnston and
Kilpatrick [6], and Mustapha and Amin [7] to understand
the effects of double stenoses on blood flow in arteries. A
numerical investigation has been conducted for generalized
Newtonian blood flows past a couple of irregular arterial
stenoses [8].

A few studies have been carried out on multiple stenoses
using the momentum integral method and finite element
method. There are also many papers devoted to studying
these phenomena experimentally. Kilpatrick et al. [9] per-
formed one of the most extensive works on double stenoses
where they worked on the vascular resistance of arterial



stenoses in series. However, Ang and Mazumdar [10] worked
on triplet stenoses and their research presented that mul-
tiple stenoses have more significant effects on blood flow
compared to the sum of the consequences of the individual
stenoses. Blood flow through irregular multistenoses has
been investigated with and without magnetohydrodynamic
effect by Mustapha et al. [11, 12].

Using computed outcomes founded on Galerkin finite
element method Tu et al. [13] executed numerical simu-
lations of models for steady and pulsatile blood flow for
distinct constriction levels and Reynolds numbers inside the
artery with rigid wall. Talukder et al. [14] experimented the
consequences of multiple stenoses on pressure. Young and
Tsai [15] experimentally investigated the steady and pulsatile
flow aspects through stenotic arteries and found significant
pressure decrease across the stenosis. On the contrary, Tu and
Deville [16] presented a theoretical analysis of pulsatile flow
of blood in stenosed arteries.

Blood is a complex mixture of cells, proteins, lipoproteins,
and ions by which nutrients and wastes are transported. Red
blood cells typically comprise approximately 40% of blood by
volume. As red blood cells are small semisolid particles, they
increase the viscosity of blood and affect the behavior of the
fluid. Blood is approximately four times more viscous than
water. Moreover, blood does not exhibit a constant viscosity
at all flow rates and is especially non-Newtonian in the micro-
circulatory system [17]. Most of the authors have paid more
attention in the investigation of the blood flow by assuming
that the blood is Newtonian and homogeneous fluid. How-
ever, the non-Newtonian behavior is most evident at very
low shear rates when the red blood cells clump together into
larger particles. According to Berger and Jou [1] and Huang
et al. [18], the shear rates fall below that asymptotic level
when the viscosity of blood increases and the non-Newtonian
properties of blood are exhibited, especially when the shear
rates drop below 10s™". Blood also exhibits non-Newtonian
behavior in small branches and capillaries, where the cells
squeeze through microvasculature and a cell-free skimming
layer reduces the effective viscosity through the tube.

The presence of moderate or severe stenoses in the artery
can cause the flow to transit from laminar to transition in
the downstream region. Moreover, wall pressure and wall
shear stress initiated by stenoses play important roles in
hemodynamics. Fry [19] revealed that high wall shear stress
caused by atherosclerosis is a strong factor for endothelial or
inner side damage in an artery. It can again overstimulate
platelet thrombosis causing blockage [20]. Therefore, it is
important to study the hemodynamic factors to understand
the fundamental scenario behind the physiology of arterial
diseases.

The aim of the present study is to investigate the non-
Newtonian modeling effects on the unsteady periodic flow
through an arterial segment with two stenoses of different
degree using the most well-documented blood constitutive
equations, namely, the Carreau [21], Cross [22], Modified
Gonzalez and Moraga [23], and Quemada [24] models. New-
tonian and non-Newtonian flow computations have been
carried out elaborately in order to examine the modeling
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FIGURE 1: Schematic diagram for the double arterial stenoses.

effects with respect to the vortex formation, wall pressure,
wall shear stress, and streamlines to achieve very good flow
insight into a stenotic artery.

2. Governing Equation

Incompressible, homogeneous, and sinusoidal pulsatile flow
is simulated for Reynolds number 300. The arterial wall is
assumed rigid and blood is modeled as both Newtonian and
non-Newtonian fluids for the flow field computation.

The geometry of the two-dimensional (2D) pipe with
two cosine-shaped stenoses constricted symmetrically on
both sides of the central axis is shown in Figurel. The
artery upstream and downstream to the stenoses have been
considered as a straight rigid pipe. Due to the presence of
the stenoses, the height of the pipe, J, is a variable in the
streamwise direction (i.e., § = §(x)). Away from the stenosis,
the height of the pipe is constant and is represented here using
D (i.e., § = D in the region either upstream or downstream
of the stenosis). First stenosis is centered 5D downstream of
the pipe inlet (i.e., the inlet location is x/D = —5) and second
stenosis is centered 4D downstream of the first stenosis.
The stenoses are centered at x/D = 0.0 and x/D = 4.0
axial locations and each stenosis length is 2D. The length
of the prestenotic region has been considered to be smaller
than the poststenotic region for detailed flow insight into
the downstream region. The cosine-shaped symmetrically
constricted regions are modeled using the following formula:

where f. = (1/2)[1 - ((100 - percentage)/lOO)z] is a
parameter that controls the reduction of the cross-sectional
area of stenosis. In the present study, a 75% and 50% reduction
of the cross-sectional area has been considered at the center
of the first and second stenosis, correspondingly. Generally,
the 75% constricted stenosis is referred to as critical stenosis
whereas the 50% constricted one is referred to as severe
stenosis.

Here x and y are used to represent the streamwise and
radial coordinates, respectively. Also the tensor notation is
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used in these two directions and it is represented by indices 1
and 2, respectively:
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The blood viscosity, ¢ = u(|yl), depends on the shear rate
= (1/2)((0u;/0x ;) +(0u ;/0x;)), and its magnitude is defined

aslyl =
its viscosity tends to a constant value which is denoted by
loo = 3.45x 107° Pa - 5, while for a non-Newtonian model,
constitutive relations are used for the apparent viscosity of the
blood that are presented in Section 3.

To compute the blood flow though double constricted
artery, the governing equations are transformed into curvilin-
ear coordinates. Thompson et al. [25] introduced an approach
where the finite difference equations are formulated in a
transformed curvilinear coordinate system that coincides
with the boundaries of the fluid domain. In this approach
flow domain in physical space is mapped onto a rectangular
domain in computational space, as shown in Figure 3. For
mapping x; — &, if J; represents the elements of the
Jacobian matrix, J, of the transformation then

=0,

2y,77i- When blood is treated as a Newtonian fluid,

0x;

Jij = a_f, (3)

The determinate of the Jacobian matrix, J, is denoted by ]|
and given by

= as (4)

where A;; are the elements of the cofactor matrix, A, of the
Jacobian, defined as

Al =177 (5)

By applying the chain rule, the derivatives can now be
expressed in the transformed variables in the following way:
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where ¢ is a generic variable.

The governing equations for an incompressible flow take
the following forms in the general Cartesian curvilinear
coordinate system:
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where A;; are the elements of the cofactor matrix, A, of the
Jacobian |J].
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2.1. Boundary Conditions. In the present study, no slip con-
dition has been used at the arterial wall, where velocity u and
v are zero. The sinusoidal pulsatile laminar velocity profile
u(r) = 2U[1 - (y/R)z][l + 0.3sint] is used to generate
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FIGURE 2: Relations between the shear rate and the apparent blood
viscosity for the different models.

the time-dependent pulsatile boundary condition at the inlet
of pipe, where bulk velocity, U, depends on the Reynolds
number and y is the radial length of artery. The zero gradient
condition is applied at the outlet of artery, where velocity
gradient u and v are zero along the streamwise direction.

3. Non-Newtonian Viscosity Models

Newtonian fluid viscosity is always constant against the
shear rate. On the other hand, non-Newtonian fluid viscosity
changes depending on the shear rate. Figure 2 represents
the relationship between blood viscosity and the shear rate
for Newtonian and four different non-Newtonian models.
The Newtonian and these four non-Newtonian models are
summarized in Table 1.

The relationship between the shear rates and viscosity for
the non-Newtonian blood viscosity models, that is, Carreau,
Cross, Modified Casson, and Quemada models, along with
the Newtonian viscosity model is presented in Figure 2. Blood
viscosity is constant in the Newtonian model shown by
the solid line. On the other hand, the viscosity of blood
produced by non-Newtonian models for low shear rates (less
than 100s™") is higher than that of the Newtonian model.
Viscosity in the Carreau and Modified Casson models tends
to asymptotic constant viscosity, ., at the shear rate, y,
greater than 10*s™". The Quemada and the Cross models
exhibit the non-Newtonian properties of blood at shear rates
rate, y, less than 10* s™'. Particularly, viscosity asymptotically
matches the constant viscosity at the shear rates, y, greater
than 10?s™! in the Cross model. Quemada model shows the
asymptotic nature below the constant viscosity, y,.

4. Numerical Procedures

A three-point backward difference formula is used for time
derivation of the velocity where the central difference is
used for the convective and diffusion terms. Here a pressure
correction algorithm is used and pressure as well as the
velocity components are stored at the center of a control
volume according to the collocated grid arrangement. The
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Poisson like pressure correction equation is discretised using
the pressure smoothing approach, which prevents the even-
odd node uncoupling in the pressure and velocity fields. A
BI-CGSTAB [26] solver is used for solving the matrix of
velocity vectors, while for the Poisson like pressure correction
equation a ICCG [27] solver is applied due to its symmetric
and positive definite nature. Overall, the code is second-order
accurate in both time and space.

The three-dimensional (3D) version of the present code
has been successfully used for various numerical simulation
involving LES and DNS techniques. The code is named as
BOFFIN (Body Fitted Flow Integrator) which was developed
in Imperial College, London, and the details of the program
can be found in [28]. It has extensively been used in different
3D pulsatile flow simulations [29-35].

5. Results and Discussion

The geometry of arteries has a vital control on blood flow
pattern and a local luminal constriction like stenosis greatly
disturbs the velocity field. In stenotic flows, of particular
interest are the phenomena of the vortex generation and
propagation as well as the distribution of the wall shear stress
(WSS). According to Neofytou and Drikakis [36], these are
considered the most prominent attributes for blood flows
because of their relation to atheroma formation in arteries.
In line with these two, a detailed description about a set of
hemodynamic factors like wall pressure and centerline veloc-
ity in streamwise direction with vector plot and vorticity can
give a better understanding about the relationship between
the fluid dynamics in pulsatile blood flow and arterial disease
like stenosis. In this section, plots are demonstrated to show
the results of the numerical investigation of blood flow for
both Newtonian and non-Newtonian cases through a double
stenoses model.

The grid independence test has been carried out to
establish a suitable combination of the grid configuration
to adequately resolve the flow for different viscous fluid
in the stenoses. Fixing the Reynolds number at 300, three
computations have been performed for three different grid
systems with 150 x 70 (Case 1), 180 x 80 (Case 2), and 210 x 90
(Case 3) control volumes (in the x and y directions, resp.).

The number of streamwise grid points upstream of the
first stenosis is always fixed at 30 while the rest of the grid
points are distributed nonuniformly within and downstream
of the first stenosis. Figure 4 shows the x — y view of a portion
of grid system and here it is clearly seen that the grid is
significantly refined in order to accurately resolve the wall
shear stress in the near-wall region.

The results of Cases 1, 2, and 3 are compared in Figure 5 in
terms of the nondimensionalized streamwise velocity at dif-
ferent streamwise locations. It is observed from the figure that
results for all three cases collapse to almost the same solution
throughout the artery having a bit variation in frames 5(i)
and (j) which are the poststenotic arterial positions. So, the
agreement found in particular for the streamwise velocity is
quite good and the flow is well resolved by the grids used in
simulation. Therefore, it can be concluded that the present
grid is capable of providing convergent solution independent
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TaBLE 1: Non-Newtonian models with given molecular viscosity of blood.

Model

Effective viscosity”

Newtonian

= 3.45x 107 Pass

Carreau — Carreau [21]

!/‘(|Y|) = U + (!”0 - .“oo) [1 + (M)z](m)/z

Uy = 0.056 Pa-s viscosity at zero shear rate
A = 3.131 time constant

n = 0.3568
. (0 — Hoo)
‘M(l}/|) =Ho T [1 + (Y/Yc)n]
Cross — Cross [22] Uy = 0.0364 Pa-s, at a very low shear rate
Y. = 2.63 5!
n =145
. Vo
() = (v + 2
Modified Casson — Gonzalez and Moraga [23] . =3.45x107
7,=21x1072s"
A=115s"
n=145

Quemada — Quemada [24]

=2

l_lk0+k00 |Y|/Yc

#(WD::#p 2 1+_JETBZ

¢ = 0.45 for haematocrit
Hp=12x107

y, = 1885

ko =2.07and k, = 4.33

*Viscosity is a function of Global shear rate, || in non-Newtonian models.

L]-1
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N i W
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(b)

FIGURE 3: Grid arrangement and notation in two-dimensional case in both physical space (a) and in computational space (b). Solid lines
indicated the grid lines and dashed lines indicated the faces of the control volume.

FIGURE 4: A portion of grid system (x — y view).
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FIGURE 5: Grid independence test with respect to streamwise velocity, u/U at (a) x/D = -5.0 (inlet), (b) x/D = 0.0, (¢c) x/D = 1.0,
(d) x/D = 2.0, (e) x/D = 3.0, (f) x/D = 4.0, (g) x/D = 5.0, (h) x/D = 7.0, (i) x/D = 9.0, (j) x/D = 11.0, (k) x/D = 13.0, and (1) x/D = 15.0
(outlet). Based on three-grid arrangements, Case 1: solid line for 150 x 70 control volumes, Case 2: dashed line for 180 x 80 control volumes,

and Case 3: line with symbol for 210 x 90 control volumes.
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(d) x/D = 2.0, (e) x/D = 3.0, (f) x/D = 4.0, (g) x/D = 5.0, (h) x/D = 7.0, (i) x/D = 9.0, (j) x/D = 11.0, (k) x/D = 13.0, and (1) x/D = 15.0

(outlet).

of different grid sizes. Based on the satisfactory agreement
above the grid arrangement of 180 x 80 (Case 2) has been
used for all other simulation.

As we have discussed earlier, the presence of stenosis
causes a very disturbed flow inside an arterial segment.

Hence, it is important to resolve the magnitude of velocity
at every point inside the artery in order to study the pulsatile
flow behavior.

The nondimensionalized streamwise velocity (u/U)
recorded at different axial locations is presented in
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FIGURE 7: (a) Wall pressure, p/pU? and (b) wall shear stress, 7,,/pU?” for different viscosity models, while Re = 300.

Figures 6(a)-6(1) for the Newtonian and different non-
Newtonian models considering Re = 300. The streamwise
velocity, whose pattern in the inlet corresponds to sinusoidal
laminar pulsatile profile, increases the most with a value
of 5.5 at the neck of the critical stenosis shown in frame
Figure 6(b). It then decreases in the downstream locations.
The velocity again increases in upstream of the severe
stenosis and reaches another peak value of 4.5 at the throat
location which is shown in frame Figure 6(f). The Newtonian
and four other non-Newtonian models show more or less
similar velocity profiles up to the neck of the severe stenosis.
But their patterns diverse erotically in the downstream
location of the severe stenosis shown in frame Figure 6(g).
The Newtonian model shows the highest magnitude with
Gaussian shaped velocity profile followed by Modified
Casson model while with distorted parabolic profile Cross
model shows the lowest value followed by Carreau and
Quemada models (in increasing order). All five models show
almost similar velocity profiles with the some exceptions in
the Newtonian one in frames Figures 6(h)-6(k). The velocity
decreases and does not change significantly towards the
further downstream of the second stenosis since the flow
settles down.

Newtonian fluid always maintains constant viscosity and
the rate of this viscosity is always lower than the non-
Newtonian fluid viscosity. It happens because, after the
poststenotic region the velocity of Newtonian fluid is com-
paratively higher than the non-Newtonian fluid. Negative
values of velocity in the downstream location of both stenoses
near the upper and lower wall correspond to the presence of
permanent recirculation zones shown in frames 6(c) and (g).

Again, due to the narrowing of the artery segment caused
by stenosis formation, flow gets a slender region inside.
According to the Bernoulli equation, the velocity increases
the most at the center of both stenoses since the area is smaller
therein.

Wall pressure, p, normalized by pU? for the Newtonian
and the non-Newtonian models considering physiological
pulsatile inlet flow is shown in Figure 7(a). It is seen that the
wall pressure suddenly drops at the neck of the first stenosis
having (x/D = 0) 75% constriction. After this position wall
pressure tries to recover but does not attain as higher values
as the initial positions. Having another lowest peak at the
throat location of the severe stenosis, it follows an oscillating
pattern through the downstream regions. The Newtonian
and four non-Newtonian models show almost similar pattern
where the non-Newtonian models show smooth curves but
the Newtonian one shows a bit more zigzag pattern near the
downstream of both stenoses. An important observation is
that the wall pressure always maintains negative value for all
viscous fluids in this rigid wall and double stenosed model
artery segment. The diverging-converging shape of the artery
seems to have an effect on this pressure distribution.

The blood pressure in most arteries is unsteady and more
specifically it is pulsatile in nature which causes variation
in pattern of blood pressure during different cardiac phases.
The aorta serves as a compliance chamber that provides a
reservoir of high pressure during diastole as well as systole
and thus blood pressure does not go to zero during diastole
even [17]. However, the lowest wall pressure values are found
at the throat locations of the stenoses in the present study
which are again negative. As a result, the artery might collapse
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FI1GURE 8: Wall shear stress, Tw/pUz, at different pulsatile phase (a) t/T = 9.0, (b) t/T = 9.3, (c) t/T = 9.7, and (d) t/T = 9.9, while Re = 300.

at the neck due to insufficient pressure to maintain the
opening of the lumen. Geometric influences on pressure
losses have also been studied here and it is found that the
pressure drop is so significant in the critical stenosis that the
effect of the 50% stenosis is negligible since the two stenoses
are close to one another which matches the results of Seeley
and Young [37].

Distribution of the wall shear stress, 7,,, normalized by
pU? caused by the Newtonian and non-Newtonian fluids
is depicted in Figure 7(b). Both the Newtonian and non-
Newtonian fluids follow the same pattern for wall shear stress
in this stenosed artery where the highest peak occurs at the
center of the critical stenosis (x/D = 0 position) and another
peak is observed at the center of the severe stenosis (x/D = 4
position). A similar result was found in case of asymmetric
shaped single stenosis model where peak WSS occurred at
the throat location by Neofytou and Drikakis [36]. Very high
shear stresses near the throat of the stenosis can activate
platelets and thereby induce thrombosis, which can totally

block blood flow to the heart or brain [17]. The lowest peaks
are observed to occur at the distal ends of both stenoses
at x/D = 1 and x/D = 5 positions, respectively. In the
pre- and poststenotic regions, the wall shear stress remains
almost constant for all models whereas the Carreau model
maintains a very irregular pattern with zigzags and also the
minimum magnitudes among all viscosity models including
the Newtonian one. Additionally, the Cross and Modified
Casson models show comparatively higher wall shear stress
throughout the arterial segment than the other three viscosity
variant fluids.

According to Ku [17], the cyclic nature of the heart pump
creates pulsatile conditions in all arteries. Moreover, heart
always maintains two cyclic phases. It ejects and fills with
blood in alternating cycles called systole and diastole. Blood is
pumped out of the heart during systole. The heart rests during
diastole and no blood is ejected.

The WSS through an arterial segment with critical and
severe stenoses for Re = 300 considering different phases
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FIGURE 9: Streamlines for five different viscosity models: (a) Newtonian, (b) Carreau, (c) Cross, (d) Modified Casson, and (e) Quemada

models for Re = 300.

of a cardiac cycle has been evaluated in this work which
is depicted in Figure 8. These WSS diagrams are illustrated
based on a sinusoidal cycle which is equivalent to a cardiac
cycle. Four distinct phases of a sinusoidal cycle, that is, early
systole, peak systole, peak diastole, and late diastole, are
plotted here for WSS which is also shown inset. At a glance
over the diagram, it is clearly seen that all five viscous fluids
follow similar patterns and two peak values of WSS occur
at the throats of two stenoses. Variation in values is mostly
prominent in the Newtonian model which again maintains
the lowest values in all phases among all five models. On the
contrary, the Carreau and Cross models show comparatively
higher values in different cardiac phases.

An important observation is that the maximum WSS
occurs at the peak systole (£/T = 9.3) shown in frame 8(b)
while the minimal WSS is observed at the peak diastole (¢t/T
= 9.7) shown in frame 8(c) for both Newtonian and non-
Newtonian models. Moreover, it is clearly seen that wall shear
stress is approximately the same at the beginning and the end
of the cycle. This phenomenon proves that our results become
steady eventually.

Figure 9 holds the streamlines caused by pulsatile flow
in a double stenosed arterial segment for Re = 300. Frame
of Figure 9(a) represents the streamline for Newtonian case
and frames of Figures 9(b) to 9(e) represent the streamlines
for four different non-Newtonian viscosity models (Carreau,
Cross, Modified Casson, and Quemada, resp.). In the case
of Newtonian fluid, the flow is fully developed inside the
constriction having higher magnitudes of velocity field in
the contour plot which is significant in the throats and
downstream regions of both stenoses. The flow is partially
developed in the second constriction with a lower magnitude
of velocity field. The high velocity region is comparatively

smaller in the non-Newtonian viscous models around the
critical stenosis and it is almost absent in the severe stenosis.
Only Cross model shows a presence of velocity field inside
the severe constriction with a magnitude of 4. However, the
extent of the breadth of the recirculation region from the
first stenosis and its effects on the flow field downstream
of the second stenosis depend on the stenosis spacing ratio,
constriction ratio, and the Reynolds number [38].

Downstream of the critical stenosis two-stationary eddies
are formed near the upper and lower wall, the sizes of
which are different for every model. For the Newtonian case
these eddies are the largest in size, while a second pair of
smaller eddies in the downstream of severe stenosis is also
generated. In the flow field of the non-Newtonian models,
eddies downstream of the constriction are smaller than the
Newtonian case and the second pair of eddies is absent. The
eddies for the Cross model are the largest while the eddy for
the Carreau model is the smallest one. The difference in size of
the eddy for each of the models can be explained from the fact
that—the behavior of the Carreau model is the most viscous
followed by the Modified Casson, the Quemada, Cross, and
finally the Newtonian model.

In Table 2, comparisons of the point of separation of the
shear layer from the nose of the stenoses and its position
of reattachment on the wall at the poststenosis region for
the different viscous models are given. The separation of the
Newtonian model starts early, as point of separation (PS) is
recorded at about 0.02671254 which is an upstream location
of the nose of the critical stenosis followed by another PS
due to the severe stenosis at 4.990938, while comparatively
late separation is predicted by all the non-Newtonian models.
The PS of the Cross and the Quemada models is exactly the
same which is at 0.03667778; separation occurs a bit later by
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TABLE 2: Nonlinear model results.
Point of separation Reattachment point
Model
(PS) (RA)
Newtonian 0.267125, 4.990938 1.789380, 5.774552
Carreau 0.401262 1.504084
Cross 0.366777 1.504084
Modified 0.332934, 4.779434 1730357, 5.207934
Casson
Quemada 0.366777 1.615282

the Carreau model. Only the Newtonian and the Modified
Casson models cause flow separation in more than one places.

Comparing all the reattachment (RA) points, it is clear
that the Carreau model underpredicts the regime of the post-
stenosis recirculation of blood, while the Newtonian model
has an overall maximum prediction of the recirculation
regime in case of critical stenosis. For the severe stenosis, the
Newtonian model predicts larger recirculation region than
the Modified Casson model.

The viscous effects of blood on the development of the
flow along the streamwise direction are presented in Figure 10
for Re = 300. In this figure, the streamwise velocity vectors
are appended on the contours of the streamwise velocity u/U.
We find that for all viscous models, the primary recirculation
region develops near the postlip of the critical stenosis due
to the separation of the shear layer from nose of the stenosis.
A small recirculation region is observed at the downstream
of the severe stenosis in the Newtonian model which is
completely absent in case of the non-Newtonian models.
Due to these recirculation, Newtonian fluid provides some
negative contour values where the contour level ranges from
—0.5to 5.5. It is also found that non-Newtonian fluid contour
values are always positive.

Vorticity describes the local spinning motion of fluid
and it can also be said that vorticity highly depends on
viscosity. More insight into the flow separation seen in
Figure 10 is given through the streamwise vorticity contours,
w = (0v/ox) — (0u/dy), in Figurell. Figures 1l(a) to
11(e) represent five different viscosity models, that is, the
Newtonian, Carreau, Cross, Modified Casson, and Quemada
models, respectively. It is noted that a total of 15 unequal
contour levels are plotted between their maximum and
minimum values, which can be viewed easily through the
legend color bar. The vortex units rotated in the clockwise and
anticlockwise direction that gives positive and negative values
of w, respectively. The clockwise rotations are represented
by the solid lines where the anticlockwise rotations are
represented by dashed lines.

Vorticity is very high in low viscosity models. As a result,
more vortices are generated from the nose of the stenosis
where the flow separation begins in the Newtonian fluid
shown in frame of Figure 11(a) where two vortical structures
form in the downstream region of the critical stenosis at
x/D = 1.0; one acts in the anticlockwise direction at the
upper wall and the other acts in the clockwise direction near
lower wall. Both of them interact with each other and then roll
up to downstream region. Another pair of vortical structures
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of clockwise and anticlockwise direction is also present at the
downstream of the second stenosis at x/D = 5.0. It is also
evident from the color legend that the maximum magnitude
of clockwise vortices lies in the region of 0 < x/D < 2.0,
40 < x/D < 6.0, and 9.0 < x/D < 10. An important
observation is that the anticlockwise vortex is absent at the
location 9.0 < x/D < 10 and its strength is very negligible
compared to the clockwise ones.

Berger and Jou [1] found that whereas the individual
vortex moves at a speed proportional to that of the flow, the
front of a train of vorticity, the vorticity wave, propagates at
a much higher speed. The reason for the faster propagation
speed of the vorticity wave is vortex multiplication, in which
a corotating and a contrarotating vortices are generated out
of the original vortex. As a result of this vortex multiplication,
the extent of the vortex wave in Newtonian fluid grows on an
order of magnitude faster than an individual vortex moves.

The vortex structures at the location of 9.0 < x/D < 10
are absent in case of all non-Newtonian models. Moreover,
the strength of the vortices is also weaker in these models than
that of the Newtonian fluid due to more viscosity. Among
all of the viscous models, Modified Casson model shows
the largest and the Cross model shows the smallest vortex
structures.

6. Conclusion

Finite volume numerical simulation of unsteady, incom-
pressible, and homogeneous blood flow in two-dimensional
rigid models with double constriction has been presented in
this paper. Flow field, flow induced wall pressure, and wall
shear stress have been compared for Newtonian and non-
Newtonian models (Carreau, Cross, Modified Casson, and
Quemada) in a rigid pipe with two axisymmetric shaped
stenoses of different degree under pulsatile condition for Re =
300. The maximum shear stresses are observed to occur at
the throat locations of the 75% and 50% constricted regions
which follow a very oscillating manner. The WSS is also
characterized by means of a sequence of different flow stages
in one period of the cardiac pulse. The highest value of WSS is
found at the peak systole while the lowest one occurs during
peak diastole.

Pressure loss can be an important reason of stroke or
heart attack since it causes inadequate blood supply to the
brain, heart, and other organs which is found at the neck
of both stenoses. Moreover, Newtonian fluid causes a very
disturbed pattern where pressure drop frequently fluctuates
between higher and lower values in the downstream of severe
stenosis causing more risk of potential heart attack than
the non-Newtonian fluids. The wall pressure maintains a
negative value throughout the artery segment which might be
explained by the geometric influences. Study of the velocity
patterns along the streamwise direction shows the peak
velocity at the center of each constriction which can be
explained by the Bernoulli equation and the one-dimensional
continuity equation.

Streamlines demonstrate the presence of recirculation
zones in the flow field which is found in the largest scale
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FIGURE 10: Vector plot for the different viscosity model appended on the streamwise velocity contour (a) Newtonian, (b) Carreau, (c) Cross,
(d) Modified Casson, and (e) Quemada models for Re = 300.

-7 -2 -0.1 -0.001 0.01 1 5

FIGURE 11: Vorticity for different viscosity models: (a) Newtonian, (b) Carreau, (c) Cross, (d) Modified Casson, and (e) Quemada models for
Re = 300.
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by the Newtonian fluid where the flow is fully developed
inside both constricted regions. This again increases the
possibility of thrombosis. However, the smallest recirculation
region is caused by the Carreau model. A very interesting
phenomenon of vorticity is observed while investigating its
characteristics; the strength of clockwise vortices is higher
than the anticlockwise ones. Moreover, the speed or propa-
gation of a vortex train is higher than an individual vortex
which is observed in case of Newtonian fluids due to low
viscosity.

In conclusion, it can be stated that the Newtonian fluid
is more likely to cause heart attack or blockage due to its
characteristics of high wall shear stress, pressure loss, and
the largest recirculation region at the throat locations of
the stenoses than the non-Newtonian models. Limitations of
this investigation include the consideration of rigid wall and
simple sinusoidal pulsatile inlet profile instead of compliant
arterial wall and physiological realistic inlet profile.

Nomenclature

English Symbols

A:  Amplitude of the wall oscillation (m)
Ajj: Elements of the cofactor matrix
D: Diameter of artery (m)

J:  Jacobian

p:  Pressure (Pa)

r: Radius of the pipe (m)

Re: Reynolds number (UD/v)

t:  Time (s)

U: Bulk velocity (m - sh

Velocity along the streamwise direction (m -s™")
v: Velocity along the radial direction (m - s™").

s

Greek Symbols

u: Viscosity of blood (kg - m™ -s7")
0: Height of stenosis (m)

v: Kinematic viscosity (m?-s7h)

Vorticity s™H

p: Density of blood (kg - m™)

T,,: Wall shear stress (kg - m't-s7?)

&,: Coordinate along the streamwise direction (m)
&,: Coordinate along the radial direction (m).

g
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