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The present study describes artificial neural network (ANN) based approach for the retrieval of atmospheric temperature
profiles from AMSU-A microwave temperature sounder. The nonlinear relationship between the temperature profiles and satellite
brightness temperatures dictates the use of ANN, which is inherently nonlinear in nature. Since latitudinal variation of temperature
is dominant one in the Earth’s atmosphere, separate network configurations have been established for different latitudinal belts,
namely, tropics, mid-latitudes, and polar regions. Moreover, as surface emissivity in the microwave region of electromagnetic
spectrum significantly influences the radiance (or equivalently the brightness temperature) at the satellite altitude, separate
algorithms have been developed for land and ocean for training the networks. Temperature profiles from National Center for
Environmental Prediction (NCEP) analysis and brightness temperature observations of AMSU-A onboard NOAA-19 for the year
2010 have been used for training of the networks. Further, the algorithm has been tested on the independent dataset comprising
several months of 2012 AMSU-A observations. Finally, an error analysis has been performed by comparing retrieved profiles with
collocated temperature profiles from NCEP. Errors in the tropical region are found to be less than those in the mid-latitude and
polar regions. Also, in each region the errors over ocean are less than the corresponding ones over land.

1. Introduction

Numerical weather prediction (NWP) is crucially depen-
dent on proper initialization of NWP models, which effec-
tively boils down to an accurate estimation of the present
atmospheric state, a vitally important component of which
is the atmospheric temperature profile. Such profiles can
be estimated from observations taken by satellite-borne
sounders operating in the microwave region of electromag-
netic spectrum. The Advanced Microwave Sounding Unit
(AMSU) A on board the latest generation of the National
Oceanic and Atmospheric Administration (NOAA) polar
orbiting satellites measures the outgoing radiances from the
atmosphere and the Earth surface. With channels in the
oxygen absorption band, AMSU-A is designed to retrieve the
atmospheric temperature from about 3 hPa (∼45 km) down
to the Earth’s surface. The AMSU sounding unit operates
on board the NOAA satellites since 1998. AMSU-A has

11 channels located close to the oxygen absorption lines below
60GHz and four window channels at 23.8, 31.4, 50.3, and
89GHz. The instrument has instantaneous fields of view
of 3.3∘ and sample 30 Earth views. Therefore, the AMSU
observation scan angle varies from −48∘ to +48∘ with the
corresponding local zenith angle reaching 58∘ [1–3]. The
channel characteristics are given in Table 1.

Retrieval of temperature profile from satellite observa-
tions is an inverse problem, being at the same time also a
highly nonlinear and ill-posed one, the solution of which
requires efficient techniques. In the past, several retrieval
techniques have been used. A very old technique is multiple
linear regression, which is still used as a benchmark for
judging the power of more modern techniques (e.g., [4]).
An iterated minimum-variance based algorithm [5] was
proposed earlier, while more recently 1-D variational method
has been proposed by Boukabara et al. [6] for the retrieval of
temperature profiles from AMSU-A observations.
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Table 1: AMSU-A channel’s specifications.

Channel
number Frequency (GHz) Bandwidth

(MHz)
Noise equivalent

(K)
1 23.8 251.02 0.20
2 31.4 161.20 0.27
3 50.3 161.14 0.22
4 52.8 380.52 0.15
5 53.596 ± 0.155 168.20 0.15
6 54.4 380.54 0.13
7 54.94 380.56 0.14
8 55.5 310.34 0.14
9 57.290 310.42 0.20
10 57.290 ± 0.217 76.58 0.22
11 57.290 ± 0.322 ± 0.0480 35.11 0.24
12 57.290 ± 0.322 ± 0.0220 15.29 0.35
13 57.290 ± 0.322 ± 0.0100 7.93 0.47
14 57.290 ± 0.322 ± 0.0045 2.94 0.78
15 89.0 1998.98 0.11

Back propagation neural networks have also been used
for the retrieval of atmospheric temperature profile from
AdvancedMicrowave SoundingUnit-A (AMSU-A)measure-
ments [4, 7]. This is because of their ability to efficiently han-
dle inherently nonlinear problems. Other examples of neural
network technique for the retrieval of atmospheric tem-
peratures using IASI instrument and hyperspectral Fourier
transform infrared dataset, respectively, are available in [8, 9].
Blackwell [10] very recently did an analysis of high-resolution
profiling of atmosphere by considering hypothetical 87 chan-
nels microwave sounder using neural network. Also, Tao et
al. [11] performed error variance estimation in retrievals of
geophysical parameters using neural network technique.

Since the performance of these techniques depends on
the dataset used for training the algorithm, the training
dataset should faithfully represent the variabilities of the
real atmosphere. The present study proposes an Artificial
Neural Network (ANN) based approach for retrieving the
atmospheric temperature profile. The structure of the paper
is as follows. In the next section we describe the data and
methodology including the explanation of ANN architecture
used by us. This is followed by description of results and
discussion in Section 3. The conclusions are presented in
Section 4.

2. Data and Methods

We describe below the dataset used by us in the Section 2.1
followed by themethodology in Section 2.2 and a description
about ANN in Section 2.3.

2.1. Data. Temperature profiles from NCEP GDAS analysis
along with concurrent AMSU-A L1-B brightness temperature
observations for the year 2010 have been used to establish
the neural network configurations. The NCEP implemented

operationally a series of numerical models for the generation
of globalmodel analyses and forecasts. One of the operational
systems is Global Data Assimilation System (GDAS). The
details of GDAS are available in Kalnay et al. [12]. Model
output at analysis time and a 6-hour forecast are available
from the National Oceanic and Atmospheric Administration
(NOAA)NationalOperationalModelArchive&Distribution
System (NOMADS; http://nomads.ncdc.noaa.gov/) server.

Observations of all 15 channels of AMSU-A have been
used. It is well known that each AMSU channel is extremely
sensitive to temperature of a particular atmospheric layer
starting from the troposphere and going right up to the lower
stratosphere. Temperature profiles from NCEP have been
taken at 26 pressure levels given in Table 2. AMSU-A has
48 km spatial resolution at nadir. NCEP temperature profiles
of 1∘ spatial resolution at four synoptic hours, namely, 0000,
0600, 1200, and 1800 UTC, have been used. The data for
2010 have been used for developing as well as validating the
retrieval algorithm. Moreover, a few months of data from
the same two sources in 2012 have been used for further
independent testing.

2.2. Methodology. We want to clarify at the outset that the
entire study is for retrieval of temperature profiles in the clear-
sky region. For delineating clear-sky region the following
has been done. We have used simulation based threshold
values of brightness temperatures for each channel of AMSU-
A. The simulations were carried out for clear sky condition
using diverse atmospheric profiles through RTTOV radiative
transfer model. To exclude cloudy pixels from AMSU-A
observations we have chosen only those pixels for which
the brightness temperature of each channel is greater than
the corresponding precomputed threshold. To develop the
retrieval algorithm a training dataset has been created for
tuning the neural network from the NCEP analysis as well
as AMSU-A for the year 2010. A part of the data is for
training the algorithm and the remaining part is withheld
for validation. Due to different emission signatures of land
and ocean at thesemicrowave frequencies the neural network
configurations have been established separately for land and
ocean. Also the study area has been further subdivided into
tropical, mid-latitude, and polar regions, respectively. This
division into three separate regions is for the simple reason
that the temperature profiles display quite different degree of
variability in these regions as seen in Table 2.The variability is
low in the tropics (30∘S–30∘N) and much higher in the polar
regions ((90∘S–60∘S) and (60∘N–90∘N)). In the mid-latitude
((60∘S–30∘S) and (30∘N–60∘N)), it is in the intermediate
range. Our aim is to derive temperature at specific pressure
levels. Accordingly, for a particular region, neural networks
are established separately for each pressure level. Once the
retrieval at each level is done, with a specific network
configuration, we combine the retrieved temperature at each
level into a temperature profile.

AMSU-A observations have been resampled at NCEP
grid resolution for spatial collocation. As far as temporal
collocation is concerned, a time window of ±1 hr has been
chosen. From the total number of collocated pairs in the
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Table 2: Statistics of temperature fields from NCEP of the training dataset.

Pressure
(hPa)

Tropical Mid-latitude Polar
Mean
(K)

Standard deviation
(K)

Mean
(K)

Standard deviation
(K)

Mean
(K)

Standard deviation
(K)

1000 299.75 5.59 288.70 11.23 263.50 12.44
975 297.48 5.64 282.32 11.15 262.69 12.17
950 296.10 5.58 280.96 11.06 262.09 11.87
925 294.76 5.42 279.66 10.91 261.46 11.59
900 293.48 5.16 278.46 10.72 260.79 11.40
850 290.09 4.45 276.20 10.28 259.29 11.20
800 287.85 3.60 273.93 9.84 257.50 11.10
750 285.64 3.09 271.41 9.51 255.42 10.99
700 281.64 2.73 268.57 9.30 258.08 10.72
650 279.13 2.57 265.40 9.12 250.70 10.07
600 275.77 2.57 261.74 8.99 247.98 8.96
550 271.42 2.62 257.66 8.90 244.61 8.16
500 267.30 2.74 253.01 8.84 240.34 7.92
450 262.51 2.93 247.74 8.74 235.46 7.66
400 256.05 3.14 241.74 8.54 230.00 7.26
350 249.48 3.17 235.11 8.09 224.14 6.68
300 241.29 3.04 228.14 7.18 218.82 6.22
250 231.68 2.60 221.94 6.08 216.53 7.78
200 220.35 1.96 218.67 5.89 217.37 10.00
150 207.49 2.42 217.04 5.52 217.18 10.69
100 195.66 4.46 214.31 6.59 215.86 11.89
70 199.45 4.44 214.22 6.09 215.09 13.01
50 206.94 3.51 215.52 5.23 214.76 13.95
30 215.67 2.72 218.18 5.68 215.41 15.22
20 222.01 2.66 221.04 6.82 217.16 16.13
10 230.22 3.23 227.19 8.98 223.02 17.21

year 2010 roughly 60% have been randomly chosen for
training the algorithm, while the rest are used for validation.
Similar collocation has been done in some months of 2012
for an independent testing of the algorithm. The collocation
statistics is provided in Table 3. After the temperatures
are retrieved, we have compared the retrieved profiles with
collocated NCEP profiles and the strength of the algorithm
has been quantified statistically in terms of BIAS and standard
deviation (STD) of the difference.

2.3. Artificial Neural Network. Neural networks are com-
posed of simple elements operating in parallel. The entire
network design is inspired by biological nervous system.
Hence the elements are called neurons. Typically, the neural
networks are adjusted, or trained, such that a particular input
pattern leads to a specific target output pattern. This is done
by iteratively adjusting the weights interlinking the neurons.
These networks have been trained to perform complex
functions in various fields such as pattern recognition [13]
and voice [14] and speech recognition [15].There can bemore
than one layer in a neural network in which neurons of one

layer are interconnected with neurons of the other layers.
A schematic of the neural network architecture used in this
study has been shown in Figure 1. These layers are known as
input, hidden, and output layers. Each layer has one weight
matrix, a BIAS vector, and anoutput vector. There are three
distinct functional operations, which take place in any neural
network. First, the vector input p is multiplied by scalar
weightw to form the productwp. Second, this weighted input
is added to a vector BIAS b to form the net input n. Finally,
the net input n is passed through a transfer function f , which
produces a vector output a. Here, both b andw are adjustable
parameters. By adjusting these parameters, one can achieve
the desired training of the neural network.

The network should be chosen such that it could be
able to model the nonlinearity of the problem. The most
popular type of neural network and the one employed in our
study is the feed forward back propagation neural network. A
description about back propagation theory, its architecture,
and its applications can be found in many publications, for
example, [16–20]. In the present study, we have used feed
forward back-propagation neural network with two hidden
layers with 10 neurons in each hidden layer. The Input layer
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Table 3: Number of collocated points used for estimating the temperature profiles.

Tropical Mid-latitude Polar
Land Ocean Land Ocean Land Ocean

Training (2010) 125179 165978 142027 156002 131799 155102
Validation (2010) 83453 110652 94686 104002 87867 103404
Testing (2012) 1902786 2670948 1305113 3288203 1845789 2314500
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Figure 1: Schematic for three-layer neural network used for training.

has 16 elements, out of which 15 are the AMSU-A channel
brightness temperatures and the remaining one is the satellite
zenith angle. Temperature at a specific pressure level is the
output of the neural network. The number of input neurons
is fixed in each case for obvious reason.The output consists of
only neuron. The numbers of hidden layers and the number
of neurons in these layers are basically tuning parameters of
the retrieval algorithm. We have kept these fixed at 2 and 10,
respectively, for each retrieval.These optimum numbers have
been determined by keeping on changing the numbers until
one gets the optimum network performance. The transfer
function used is Log-sigmoid in the first hidden layer and
hyperbolic tangent sigmoid in the second hidden layer.

3. Results and Discussion

The retrieval algorithm explained above has been tested
during four months (January, April, July, and November,
2012) of data. Since the algorithm has been developed for
three geographical regions, the comparison has also been
done accordingly.Themonth-wise statistics have been shown
in Figures 2, 3, and 4 for these geographical regions separately.
For a comprehensive picture, we have combined the errors
for all themonths for the individual geographical regions and
these are shown in Figures 5–7.

Figure 5 shows the STD and BIAS for tropical regions.
Over ocean the error lies between 1 K and 2K for all the
levels. Over land in lower troposphere, it is 3 K at 1000 hPa
and decreases to around 2K while it remains near to 1 K in
mid-troposphere. A slightly higher error at tropopause has
been found over both the surfaces.

Figure 6 shows the BIAS and standard deviation for mid-
latitude regions over both land and ocean surfaces. From
these figures it can be seen that over land in lower troposphere
the STD is around 4K at 1000 hPa and it then decreases to
2K at 800 hPa, while over ocean from 1000 to 800 hPa STD is
near to 2K. The error is <1.5 K and <2K in mid-troposphere
over ocean and land, respectively. Except near tropopause the
errors are around 1 K for upper troposphere as well as for
lower stratosphere. The BIAS is between 0 and 0.5 K at each
level except at one or two isolated levels. The higher errors
over land can be attributed to higher emissivity and greater
variations in surface characteristics.

The statistics for polar regions for land and ocean are
shown in Figure 7. From this figure we can see that in the
lower troposphere the STD is around 4K at 1000 hPa and it
then decreases to 2K at 600 hPa over land surface, while the
decrease is from 3K to 1.5 K over ocean surface. For mid-
tropospheric regions the error is near 1.5 Kwhile, in the upper
troposphere as well as in the lower stratosphere, errors are less
than 1 K for both the surfaces.

It is worthwhile to investigate the reason for the higher
errors in mid-latitude and polar regions compared to those
in the tropics. Every instrument is designed for the measure-
ment of a parameter for a specified range. If the variability
of the parameter is higher than the specified range, the
instrument may not be able to capture the actual variability,
due to which a large error will occur in the measurement
of the parameter. In the tropics the atmosphere is highly
moisture-laden.Themoisture absorbs the outgoing longwave
radiation emitted by the earth. This absorption gives rise
to the observed temperature structure in the tropics with
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Figure 2: STD and BIAS for retrieved temperature profiles for tropical regions for different months over (a) land and (b) ocean.
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Figure 3: STD and BIAS for retrieved temperature profiles for mid-latitude regions for different months over (a) land and (b) ocean.
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Figure 4: STD and BIAS for retrieved temperature profiles for polar regions for different months over (a) land and (b) ocean.
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Figure 5: STD and BIAS for retrieved temperature profiles for
tropical regions over land and ocean.

moderate variability. On the other hand, in the mid-latitude
and polar regions the atmosphere is generally dry (with low
moisture) and the absorption due to moisture is absent.
Consequently the temperature structure in these two regions
is different from the tropics, with high variability. Because of
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Figure 6: STD and BIAS for retrieved temperature profiles for mid-
latitude regions over land and ocean.

this high variability as seen from Table 2, the accuracies of
retrieval are obviously less than the accuracy in the tropics.

It is also interesting to view our result in the perspective of
the result of a similar study by Shi [4].One difficulty is that Shi
[4] is concerned with only over land. Since we have carried
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out retrieval over ocean as well, a rigorous comparison is
not possible. However, we can compare the corresponding
errors over land. In Shi [4] study the root-mean-square
deviation of temperature retrieval is 3.28 K at the surface, 1.08
to 1.28 K in the mid-troposphere, less than 1.58 K around the
tropopause, and between 1.08 and 1.58 K in the stratosphere.
In our study the retrieval error for land is about 3.5 K in
the lower troposphere, is almost 1.5 K throughout the mid-
troposphere, is about 1 K near tropopause, and is between
1.5 K and 2K in the lower stratosphere. As regards oceans, we
could not find a similar study involving ANN. However, in a
recent study Boukabara et al. [6] retrieved the temperature
profile over land and ocean surface separately using 1-d
variational method. In their study they have provided errors
with respect to GDAS analysis at five different pressure levels,
namely 950, 800, 500, 300, and 100 hPa, over oceans. The
standard deviation of the difference of the retrieved and
model temperatures at these five pressure levels is 2.8, 1.7,
1.4, 1.6, and 1.5 K, respectively. In our study we have retrieved
temperature profile for three geographical regions separately.
In order to compare with Boukabara et al. [6], we combined
the errors for all the three regions over oceans. At the
designated pressure levels, the combined errors are 2.1, 1.6,
1.3, 1.4, and 1.2 K, respectively.

4. Conclusions

In this study we have exploited the capability of neural
network for solving the nonlinear inverse problem of the
retrieval of atmospheric temperatures profiles from satellite
observations with reasonable success. Due to diverse nature
of temperatures in different latitudinal zones, separate net-
work configurations have been employed for three distinct
latitudinal zones. The vertical profiles of retrieval errors are

shown in figures for each region and separately for land and
ocean. There is a general tendency for the errors to be less in
the tropical regions. A possible reason could be the higher
temperature variability in the other two regions, namely,
the mid-latitude and polar regions, which the sensors could
not correctly capture. It can be said in the general terms
that the results are comparable with past studies of similar
natures. In future we will try to improve the algorithms by
making the distinction between land and ocean clearer using
more accuratemicrowave emissivitymodels. Also, we will try
to distinguish between clear-sky and cloudy sky brightness
temperatures using comprehensive radiative transfer models
in the cloudy atmosphere.
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