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The world without a disease is a dream of any human being. The disease spread if not controlled could cause an epidemic situation
to spread and lead to pandemic. To control an epidemic we need to understand the nature of its spread and the epidemic spread
model helps us in achieving this. Here we propose an epidemic spread model which considers not only the current infective
population around the population but also the infective population which remain from the previous generations for computing
the next generation infected individuals. A pushdown cellular automata model which is an enhanced version of cellular automata
by adding a stack component is being used to model the epidemic spread and the model is validated by the real time data of H1N1
epidemic in Abu Dhabi.

1. Introduction

Computational models in epidemics provide insight into
dynamics of the disease spread across a geographical region.
Given a small amount of relevant real time data the model
would give us after certain amount of time what would be the
epidemic situation across the geographical region. Cellular
automata (CA) models are considered to be very handy and
efficient in handling the real time simulation problems in
epidemiology. The reason behind the simplicity of this CA
model is its ability to attain the global behavior from the local
behavior by the interaction of its cells [1–3].

The power of CA has been utilized to solve wide variety
of problems like solving Weyl, Dirac, and Maxwell equa-
tions [4], diffusion equation [5], and Poisson equations [6].
Epidemic spread modeling through cellular automata has
been an importance to many of the researchers. An efficient
epidemic spreadmodel throughCA is given byHoyaWhite et
al. [7]; in this model the population is assumed to be constant
and the rules for the CA are considered to be static. The
movement of population and its effects during an epidemic

spread are given by Sirakoulis et al. [8]. The population
when grouped under patches and their movement during an
epidemic spread are discussed in our earlier work [9]. The
spatial pattern and its dynamics alongwith noise in epidemics
are being provided by Sun et al. [10]. Stochastic model for
epidemic spread with quarantine and vaccination strategies
have been provided by Wang Jeffrey [11].

In all these works discussed above, the susceptible pop-
ulation is infected by the infected population available in
the current time step. There are no considerations for the
populations who are infected at the previous time steps. If
we consider the infected population at current time as 𝑡, then
the population which was infected at the previous time steps
is considered as 𝑡 − 1, 𝑡 − 2, and so forth. This work largely
focusses on how the latent infected population, that is, the
ones which are infected at 𝑡−1, 𝑡−2, has an effect in infecting
the current set of susceptible population in a cell. This relates
to a question: how could we segregate or handle the infected
populations at 𝑡 − 1 or 𝑡 − 2?The solution is to append a stack
to each cell of the cellular automaton and call the modified
CA as pushdown cellular automaton or PCA [12]. The idea
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Table 1: Structure of the cell status word.

Cell id CPV 𝐼 value 𝑅 value 𝑀 value

is to hold the infective population at different time steps at
different levels of stack and use them for computation for the
next time step accordingly.

In this research paper we begin introducing the cellular
automata in Section 2.1, then in Section 2.2 we introduce
the usage of cellular automata in epidemic spread simulation
and the cellular automata with stack configuration would be
handled in Section 2.3 followed by various modifications in
stack configured cellular automatamodel in the next sections.
The results and discussions are dealt with in Section 3
followed by conclusion and the future scope of the model.

2. Materials and Methods

2.1. Cellular Automata. Cellular automata is a universal
Turing machine which is capable of solving many complex
problems ranging from simulating forest fire spread, land-
mine detection, robotic movements, and object avoidance
to understanding the spread of epidemics [15]. It consists of
a grid of cells, which is the basic building component of a
cellular automaton. Each cell could be in one of the finite
amount of states. The next state of each cell depends on the
state of the current cell and states of the neighboring cells.The
neighborhood configuration can be many but mostly Von-
Neumann neighborhood or Moore neighborhood is used
depending upon which of the surrounding cells we consider
for computing the next state of the current cell.

2.2. Cellular Automata for Epidemic Spread. A cellular auto-
maton can be configured for simulating an epidemic spread.
The following assumptions would be applied for configuring
the cellular automata.

A cell could be in one of the following finite number of
states: susceptible, infected, and recovered/removed (dead).
We assume the epidemic model to be of SIR type with equal
birth and death rate so the population as a whole remains
constant.

The neighborhood configuration would be of Moore’s
neighborhood which considers the top, down, left, right, and
the diagonal neighbors as well.

The population count in each cell is assumed to be
constant and no movement between the cells is permitted.
This assumption is for the very basic model whereas in
real time the movement of population between the cells is
permitted.

The initial configuration of the cellular automata and the
cellular status word for each cell is as described in our work
[9].

The cell status word (CSW) (see Table 1) has five param-
eters, namely, (1) Cell id which is the current cell denoted
by 𝐶(𝑥, 𝑦), (2) CPV (critical population value) which is the
fraction of infected population over total population in the
cell, (3) 𝐼 valuewhich takes Boolean value 0/1: 0means the cell

is free of infective population; 1means some percentage of cell
is infected so we consider that the cell is infected, (4) 𝑅 value
which will also take either 0 or 1 depending uponwhether the
population inside the cell is recovered from the disease or not,
and (5)𝑀 value which is the movement flag for a particular
cell used to control themovement of the population from one
cell to another. If the value is 0 itmeans nomovement possible
from the cell.

The critical population value is computed by

CPV =

IPC
𝑥,𝑦

TPC
𝑥,𝑦

, (1)

where IPC represents the infected population count in the cell
and TPC represents the total population count in the cell.The
critical population value for a cell at the next time step would
be the function of the CPVs of the current cell at time 𝑡 and
the CPVs of the neighboring cells; that is,

CPV𝑡+1
𝑥,𝑦

= 𝑓𝑛 (CPV𝑡
𝑥,𝑦

,CPV𝑡
𝑥+1,𝑦

,CPV𝑡
𝑥−1,𝑦

,CPV𝑡
𝑥,𝑦+1

,

CPV𝑡
𝑥,𝑦−1

,CPV𝑡
𝑥+1,𝑦+1

,CPV𝑡
𝑥+1,𝑦−1

,

CPV𝑡
𝑥−1,𝑦−1

,CPV𝑡
𝑥−1,𝑦+1

) .

(2)

Size of the grid or cellular array depends on the user and
the type of geographical area under consideration.The bigger
the cellular array is the longer it takes for the simulation to
run.

2.3. Pushdown Cellular Automata for Time Variant Infective
Population. A modified cellular automata with added stack
to each cell is termed as pushdown cellular automata. The
concept of time variant infective population comes to impor-
tance in the case of population movement across the cells. In
each time step a certain percentage of populationmoves from
one cell to another based on the configuration of the cellular
array. During themovement a certain percentage of infective,
susceptible, and recovered populationmoves from one cell to
another and the count is considered to be random across all
the three sets of populations. So some amount of infective
population moves from current cell to another, and some
remainswithin the current cell. So there can be two categories
of infective population in the current cell, that is, the ones
which remain from the previous time step and the ones which
could come from another cell to the current one.The infective
population which remain from the previous time step would
be termed as 𝐼

𝑡−1
and the infective population which come

into the current cell would be termed as 𝐼
𝑡
. The degree of

infection caused by the newly infected infective population
and the infection caused by the older ones would be different.
So the cell update rule will be modified to accommodate the
effect of these current infective population and the older ones.
Here in this researchworkwe consider three time steps 𝑡, 𝑡−1,
and 𝑡 − 2, respectively. So the stack size would be 3 (plus one
to hold the bottom symbol $ which indicates the bottom of
the stack).
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Table 2: Structure of the cell status word.

Cell id SP∗ 𝐼 value 𝑅 value 𝑀 value
$∗

Table 3: Structure of the CSW at time 𝑡 = 0.

Cell id SP∗ 𝐼 value 𝑅 value 𝑀 value
∗ ∗ $∗

Table 4: Structure of the CSW at time 𝑡 = 1.

Cell id SP∗ 𝐼 value 𝑅 value 𝑀 value
∗ 𝐼

𝑡−1

∗ $∗

Table 5: Structure of the CSW at time 𝑡 = 2.

Cell id SP∗ 𝐼 value 𝑅 value 𝑀 value
𝐼
𝑡−2

∗

𝐼
𝑡−1

∗ $∗

2.4. Modification of CSW with Stack. The cell status word is
modified to hold the stack contents for storing the critical
population values of the previous time steps. The modified
CSW will look like Table 2.

CPV part is replaced by SP (stack pointer) which points
to the top of the stack attached to the current cell. Default
value/initial value of the SP would be $ which indicates the
bottom symbol of the stack and also the emptiness of the
stack. The structure of the CSW during the three time steps
is given by Tables 3, 4, and 5.

In every time step the current cell is updated based on the
status of itself and the status of the neighboring cells.

2.5. Configuration of PDCA. The PDCA has the following
components.

Finite set of states (𝑆, 𝐼, 𝑅): neighborhood configuration
would be Moore neighborhood (all cells surrounding the
cell to be considered for update). The neighborhood status
is divided into three categories based on the number of
infected cells out of the eight neighborhood cells. The status
is minimumdenoted by “m”when the number of the infected
cells surrounding the current cell is less than 4. The status
is half denoted by “h” when the number of the infected
cells surrounding the current cell is either 4 or 5. The status
is full denoted by “f ” when the number of the infected
cells surrounding the current cell is more than 5. Given
below is the various neighborhood status. White indicates
susceptible state, red indicates infected state, and green
indicates removed or recovered state (Figure 1).

Stack of size three is attached to each CSWof the cell with
the following stack symbols:

$: special symbol to indicate the bottom of the stack,
𝐼
𝑡−1

: number of infective remaining from the previous time
step,

𝐼
𝑡−2

: number of infective population remaining from the
previous to previous time step.

Transition function (𝛿) is given by the following.

Minimum (m) status Half (h) status Full (f) status

Figure 1: Neighborhood status configuration.

Initially all the cells are assumed to be in the susceptible
state (S).

Each transition function will be of the following form:
𝛿 (⟨current state of the cell⟩, ⟨state of the neighborhood⟩,
⟨stack content before transition⟩) → (⟨state of the cell after
transition⟩, ⟨stack content after transition⟩)

(i) 𝛿(𝑆, 𝜆, 𝜆) → (𝑆, $) (pushing the $ on to the stack
before starting the computation).

The biological meaning of $ can be considered as the
residual infective population whose impact is not severe and
remains in every cell:

(ii) 𝛿(𝑆,𝑚, $) → (𝑆,𝑚, 𝐼
𝑡−1

$).

When the cell is in susceptible state and the neighborhood
is in the minimum status with the stack top being $ then the
cell remains in susceptible state and the neighborhood also in
minimum status and the number of infective population that
remains in the cell would be pushed as 𝐼

𝑡−1
on top of the stack.

The biological meaning would be that current location is not
infective (which means the number of infective population is
less) and surrounding is also having less number of infective
population; then in the next time step the cell is not infected
and remains in susceptible state:

(iii) 𝛿(𝑆, ℎ, $) → (𝑆, ℎ, 𝐼
𝑡−1

$) | (𝐼, 𝑓, 𝐼
𝑡−1

$).

When the cell is in susceptible state and the neighborhood
is in the half status with the stack top being $ then the cell
remains in susceptible state and the neighborhood also in half
status and the number of infective population that remains
in the cell would be pushed as 𝐼

𝑡−1
on top of the stack.

The other choice of this state to the next time step would
be changed to infective state, and the neighborhood status
changes from half to full and the 𝐼

𝑡−1
would be pushed on top

of the stack.The choice would be selected at random as in real
time cases this randomness helps us in introducing the noise
factor into the system which is very appropriate since the
epidemic situation is a nondeterministic one. As the number
of infective population increases around the surroundings
the current cell can change from susceptible state to infective
state:

(iv) 𝛿(𝑆, 𝑓, $) → (𝐼, 𝑓, 𝐼
𝑡−1

$).

When the cell is in susceptible state and the neighborhood
is in full status with stack top being $ then the cell changes
its state to infective with the neighborhood remaining in
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Figure 2: Mapping of cellular grid with map of Abu Dhabi [13, 14].

full status and 𝐼
𝑡−1

is pushed onto the stack. Likewise the
remaining transition functions for various states of the PDCA
are

(i) 𝛿(𝑆,𝑚, 𝐼
𝑡−1

$) → (𝑆,𝑚, 𝐼
𝑡−2

𝐼
𝑡−1

$),

(ii) 𝛿(𝑆, ℎ, 𝐼
𝑡−1

$) → (𝐼, ℎ, 𝐼
𝑡−2

𝐼
𝑡−1

$),

(iii) 𝛿(𝑆,𝑚, 𝐼
𝑡−2

𝐼
𝑡−1

$) → (𝐼,𝑚, 𝐼
𝑡−1

$),

(iv) 𝛿(𝐼, ℎ, 𝐼
𝑡−2

𝐼
𝑡−1

$) → (𝐼, ℎ, 𝐼
𝑡−2

𝐼
𝑡−1

$) | (𝑅,𝑚, 𝐼
𝑡−1

$),

(v) 𝛿(𝐼,𝑚, 𝐼
𝑡−1

$) → (𝐼, ℎ, 𝐼
𝑡−2

𝐼
𝑡−1

$) | (𝑅,𝑚, $),

(vi) 𝛿(𝐼, 𝑓, 𝐼
𝑡−1

$) → (𝐼, 𝑓, 𝐼
𝑡−2

𝐼
𝑡−1

$) | (𝐼, ℎ, 𝐼
𝑡−1

$).

2.5.1. Assumptions Regarding the Stack. The following as-
sumptions were taken into account with regard to the stack.

(i) Here we consider only two time steps before 𝑡−1, 𝑡−2

so the stack size becomes three along with the bottom
symbol $. If we increase the time steps to unlimited
amount, this will lead to the proportionate amount
of increase in the size of stack (memory) which will
definitely affect the efficiency of the computation.

(ii) There is no movement of the population which is
inside the stack.

2.6. Setting Up the Model. The first step in designing the
cellular automata model is defining the size of the grid. The
size of the grid would be inversely proportional to the speed
of computation [8, 9]. The grid would be taken with the
background of the city of Abu Dhabi since we would be
simulating our results with the data of H1N1 database of Abu
Dhabi (Figure 2).

After mapping the grid with the map of the city the
boundaries are drawn for the simulation area (Figure 3). We
presume that the epidemic would not spread beyond these
boundaries since it is surrounded by sea. Overlapping top
and bottom rows and left and right rows of the grid are not a
feasible assumption as the city is surrounded by the sea and
three sides.

Figure 3: Mapped grid with boundaries blocked used for simula-
tion.

Initial conditions are as follows:

(i) cellular array size → defined by the user,

(ii) number of persons in each cell → 100,

(iii) 𝐼 value → 0 for all cells,

(iv) 𝑅 value → 0 for all cells,

(v) infection period → defined by the user as per the type
of disease,

(vi) 𝑀 value → 0 no movement in initial configuration.

The critical population value (CPV) would be now calcu-
lated by the following way:

CPV =

IPC𝑡
𝑥,𝑦

+ IPC𝑡−1
𝑥,𝑦

+ IPC𝑡−2
𝑥,𝑦

TPC
𝑥,𝑦

. (3)

TheCPVof a cell in the next time stepwould be calculated
in the same way after transition into a new state based on the
transition function.

2.7. Homogeneous PDCA without Movement of Population.
In this configuration the number of persons in each cell is
kept the same and the movement of population between
the cells is also restricted by giving the 𝑀 value in CSW
to 0. This configuration is not the right one to model the
real time environment but necessary to understand the basic
parameters during the simulation.

2.7.1. The Algorithm for Homogeneous PDCA (Equal
Population in Each Cell with No Movement)

Step 0. Get the input from the user: the value of tr (time period
for recovery), tg (number of generations), and ti (time period
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for immunity). Block the boundary cells so as to control the
infection spread.

Step 1. Initialize the generation counter to 0 and push $ on to
the stack for all the cells.

Step 2. Initialize all the cells with equal number of popula-
tions.

Step 3. Initialize the 𝑀 value of the CSW of all cells to 0 to
control the movement of population.

Step 4. Infect the desired cell.

Step 5. Increment the generation counter by 1.

Step 6. Find out the region of cells which are infected and the
region of cells which are not infected by checking the 𝑅 value
and 𝐼 value.

Step 7. Based on the top symbol of the stack and the status
of the neighborhood change the state of the current cell
and modify the stack according to appropriate transition
function.

Step 8. If 𝑅 value is 1 then go to 9.

Else calculate the CPV value based on the cellular
automata update rule to find the fraction of infected popu-
lation.

Step 9. If the number of generations is less than tg then go to
step 4.

Step 10. Stop.

2.8. Heterogeneous Population with Movement. In this con-
figuration, the population in each cell varies and moreover
themovement of population between the cells is also possible.
Themovement of population from a particular cell is possible
only if the cell’s CSW-M value is 1; otherwise movement
cannot be done from that cell. If we consider a geographical
area (city or town) to which the grid is mapped then all those
cells which are in line with the streets or bridges of the city are
enabled for movement. After deciding which cells allow the
movement of population, we need to identify the amount of
population that would be moving from the cell and the time
of movement.

The amount of population which can move from one cell
to another cell would be 5% to 7% and we can deploy two
techniques to trigger the movement of the population. First
one is that after some random amount of time or when the
infected fraction of population reaches more than 15% of the
total population the movement is done. The second choice
would be more natural in the sense that the people tend to
move from one place to another when there would be more
infection around.

2.8.1. Algorithm for Heterogeneous Population withMovement

Step 0. Get the input from the user: the value of tr (time period
for recovery), tg (number of generations), and ti (time period
for immunity).

Step 1. Initialize the generation counter to 0 and set enable
field of CSW to 1 for all those cells except the boundary cells.

Step 2. Initialize all the enabled cells with variable popula-
tions.

Step 3. Initialize the𝑀 value of the CSW of all cells which are
in the pathway to 1 in order to enable the movement.

Step 4. Push $ on the stack and infect the desired cells.

Step 5. Increment the generation counter by 1.

Step 6. Find out the region of enabled cells which are infected
and the region of cells which are not infected by checking the
𝑅 value and 𝐼 value.

Step 6.1. Based on the top symbol of the stack and the status
of the neighborhood change the state of the current cell
and modify the stack according to appropriate transition
function.

Step 7. Check if the infected percentage is greater than 15%. If
yes then go to step 8; else go to step 9.

Step 8. Check whether the cell is movement enabled or not by
checking 𝑀 value to be 1. If yes then go to step 8.1; else go to
9.

Step 8.1. If the cell is within the boundary limits transfer the
0 to 5% amount of population taken at random to the next
cell in the neighborhood to the direction in which there is a
pathway available.

Step 9. If 𝑅 value is 1 then go to 10.
Else calculate the CPV value by (3) based on the cellular

automata update rule to find the fraction of infected popula-
tion.

Step 10. If the number of generations is less than tg then go to
step 4.

Step 11. Stop.

The PDCA could be slightly modified for considering
the movement factor. The modification would be in terms
of the neighborhood configuration; instead of using the
traditional Moore neighborhood we can use the extended
neighborhood concept so as to realistically model the situ-
ation. The extended neighborhood combines the traditional
Moore neighborhood and randomly selects the cells across
the neighborhood cells.

As we extend the neighborhood to broader radius say
to 2 or 3 then the region of neighborhood increases for 8
to 16 or 24 cells, so the more the radius the less the proba-
bility of contact and infection. So the radius is confined to
1.
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If the current cell is 𝐶
𝑖,𝑗
, 𝑀
𝑖𝑗
refers to the Moore neigh-

borhood and 𝐸
𝑖,𝑗
refers to the cells that are chosen randomly;

then the extended neighborhood of

𝐶
𝑖,𝑗

= 𝑀
𝑖,𝑗

+ 𝐸
𝑖,𝑗

(4)

and accordingly the cell update rule will also change for the
extended neighborhood [16]:

CPV𝑡+1
𝑥,𝑦

= 𝑓𝑛 (CPV𝑡
𝑥,𝑦

,CPV𝑡
𝑥+1,𝑦

,CPV𝑡
𝑥−1,𝑦

,CPV𝑡
𝑥,𝑦+1

,

CPV𝑡
𝑥,𝑦−1

,CPV𝑡
𝑥+1,𝑦+1

,CPV𝑡
𝑥+1,𝑦−1

,

CPV𝑡
𝑥−1,𝑦−1

,CPV𝑡
𝑥−1,𝑦+1

) + 𝐸
𝑖,𝑗
.

(5)

This random choosing of cells in the neighborhood part
and the random selection of individual for themovement give
us the source for the noise addition in themodel as themodel
we are considering is of nature which is not a deterministic
one. The stack rules will remain the same and the transition
functions based on stack will also be maintained similar to
the previous one.

2.9. Important Parameters in the Epidemic Spread. Suscepti-
ble population denoted by 𝑆 is the population which is not
infected but prone to infection when it is around the infected
set of population. In this simulation environmentwe consider
all the population initially to be susceptible. There may be
many cases where certain population can be immune to the
disease under consideration, so they may not be part of the
susceptible set.

Infected population denoted by 𝐼 is the population which
is actually infected by the disease under consideration. Cer-
tain amount of individuals from the susceptible set is infected
by the infection rate denoted by “𝛽.” Here in our model we
consider three different types of infective population; those
are the ones present in the cell at current time 𝐼

0
, the ones

which remain from the previous time step 𝐼
𝑡−1

, and the ones
from 𝐼

𝑡−2
time step.The current ones are considered in the cell

and in the next time step it is pushed onto the stack as 𝐼
𝑡−1

.
Sincewe have three different types of infective population, the
infection rate also would be different for them; the infection
rate will increase for the infected population if not treated or
vaccinated.

We define three different infection rates for the three sets
of infected population.They are 𝛽

0
, 𝛽
1
, and 𝛽

2
for 𝐼
0
, 𝐼
𝑡−1

, and
𝐼
𝑡−2

, respectively.We can define the relation between the three
types of infection rates by

𝛽
0
≤ 𝛽
1
≤ 𝛽
2
. (6)

The above equation is valid in case there is no treatment
or vaccination. So the infection rate increases as the time
progresses and the infected individuals would be capable of
infecting more numbers of susceptible population:

𝛽
0
≤ 𝛽
1
≥ 𝛽
2
. (7)

The above equation is applicablewhen there is a treatment
or vaccination strategy is underway to the infected set of

population. Initially when the treatment starts the effect will
not be visible but after certain time period the infection rate
starts reducing.That is the reason why 𝛽

1
is greater than both

𝛽
0
and 𝛽

2
.

Recovered populations denoted by 𝑅 are those which
are recovered from the infected population and become
immune to the disease.The rate of recovery from the infected
population is given by 𝛾. The recovery rate would be directly
proportional to the level of vaccination strategy used for the
infected population.

Reproduction number denoted by 𝑅
0
which is the impor-

tant component in the epidemic environment denotes the
amount of individuals infected by a single infected individual
in a cell placed along with fully susceptible population:

𝑅
0
=

𝛽

𝜇 + 𝛾
, (8)

where 𝛽 is the infection rate, 𝜇 is the birth and death rate
considered to be equal which means that the amount of birth
is equal to the amount of death, and 𝛾 represents the recovery
rate. When 𝑅

0
is less than 1 then the system is in infection-

free stable state. When 𝑅
0
is greater than 1 the system is

in endemic stable state. Always the objective is to reduce
the 𝑅
0
to less than one by increasing the recovery rate. The

above given equation is the general one and for estimating
𝑅
0
in the cellular automata paradigm with various radius of

neighborhood the solution is given by

𝑅
0
= 2𝑚(1 −

1

4𝑟 (𝑟 + 1)
)

𝑚−1

(1 − 𝑒
−𝑘

) , (9)

where 2𝑚 is the average number of connections per cell, (1 −

𝑒
−𝑘

) is the probability that susceptible cells become infected,
and 𝑟 is the neighborhood radius.

2.10. Controlling the Spread of Epidemics. There are various
strategies for controlling the epidemics; quarantine and
vaccination stand out amongst them.

2.10.1. Quarantine. There are two terms in the world of
epidemic which needs to be clarified before dealing with
quarantine. The terms are isolation and quarantine; what is
the difference between these two? The clarification rightly
given by Center for Disease Control (CDC-USA) [17] is as
follows.

𝐼𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛. It applies to person who is known to be ill with a
contagious disease.

𝑄𝑢𝑎𝑟𝑎𝑛𝑡𝑖𝑛𝑒. It applies to those who have been exposed to a
contagious disease but who may or may not become ill.

Quarantine strategy is implemented by blocking 9 cells
with a boundary and stating that the population outside the
cell is susceptible to infection.The probability of the infection
would be 1 − (1 − 𝛽)

𝑟𝑛 where 𝑟 is the escape rate, which
means number of personswho can go through the quarantine
defense [11].This could be more realistic because we consider
no quarantine system is full proof.The quarantine is analyzed
with 10% and 25% escape rate.
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Quarantine area

Boundary

Figure 4: Quarantine setup.

The area to be quarantined can be identified using the
full status of the stack given in the figure (Figure 4). The
stack full status indicates that more numbers of infective
population with different infection rates are accumulated
when compared to the other region.

2.10.2. Vaccination. The most common and effective tech-
nique in dealing with control of epidemics is the vaccination
technique. There can be many methods of vaccination: one
is to continuously vaccinate for particular amount of time
and the other one is to vaccinate for a small amount of
time in intervals which is known as pulse vaccination. Here
continuous vaccination after the 30th generation is done
for another 10 generations. The epidemic spread simulation
techniques help to reach cost effective technique in imple-
menting the vaccination. The areas where the disease spread
is more have to be identified and vaccinated accordingly.
The important concept in vaccination is the efficacy of the
vaccine; vaccine efficacy is defined as the reduction in effect of
disease among people who have been vaccinated compared to
the effect in unvaccinated people [18]. The influenza vaccine
efficacy rate is considered to be 85% [19]. The probability
of infection spread in the vaccinated area is (1 − 𝑟)(1 − 𝛽)

𝑛

where 𝑟 is the efficacy rate. Randomly selected cells which
have large number of infective population starting from the
30th generation are being vaccinated and the results have
been found.

Simulation environment: simulation is done using MAT-
LABVer. 2013 (64 bit).The processor used is Intel Core-i5 and
RAM capacity is 8GB.

3. Results and Discussion

3.1. Homogeneous Model. Homogeneous model is the model
in which there is a fixed amount of population in every cell. A
50 × 50 cellular grid (optimal grid size is the tradeoff between
time, size, and accuracy) is used to simulate the epidemic
spread as per the available surveillance data of H1N1 infection
in Abu Dhabi [13, 14].The black colored blocks in the grid are
the boundary which is traced out from the Abu Dhabi city
map. We have infected certain cells randomly in the left side
of the grid and started the simulation and the snapshots of

Table 6: Number of infected population in Abu Dhabi over 12
months [13, 14].

Months Confirmed cases Recovered cases
9-May 1 1
9-Jun 11 11
9-Jul 172 172
9-Aug 233 228
9-Sep 134 128
9-Oct 194 189
9-Nov 178 171
9-Dec 16 14
10-Jan 8 7
10-Feb 12 12
10-Mar 5 5
10-Apr 2 2
Total 966 940

each of the 30 generations are provided here which clearly
depicts how the infection spreads out in the beginning and is
erased out in the end. The last two parts of the figure provide
information about the cells in which the augmented stack is
full and empty. The epidemic spread is simulated using the
data of H1N1 infection in Abu Dhabi [13, 14] over the period
of twelve months with the parameters of 𝜇 = 1/12; 𝛽

0
= 1.32;

𝛽
1
= 1.46;𝛽

2
= 1.78. Average𝛽 comes out to be 1.52, 𝛾 = 1.39,

and 𝑅
0
= 1.0319.

The average infection period of a cell as a whole is around
15 to 20 generations (Table 6).

Figure 6 shows the curve of SIR model which matches
with the ideal epidemic SIR curve and the number of infective
population peak during the 4th and 5th month, respectively.
Figure 7 gives us the picture of how the number of infective
population increases during the 4-5th month along with the
increase in the number of stacks getting full by 𝐼

𝑡−2
, 𝐼
𝑡−1

, 𝐼
𝑡
.

Figure 8 shows us the number of confirmed cases with
the effect of no quarantine, quarantine with 25% escape
rate, and quarantine with 10% escape rate. 10% escape rate
is considered to be optimum. Figure 9 gives the picture of
how the number of infective population decreases with the
random vaccination done every 30 generations across the
cells in the grid.

3.2. Heterogeneous Population with Movement. Population
movement is enabled in those CSWs where the stacks
were full which is identified from Figure 5(k) (Figure 10).
Simulation is done for another 300 generations and the
infection spread reach is calculated from the start location
to the various identified locations in the grid (Table 7). This
analysis helps us in planning the vaccination, quarantine, and
evacuation procedure which is a very important phase in
epidemic situation.

4. Conclusion and Future Scope

The epidemic spread model using pushdown cellular auto-
mata has been considered here in this work to examine the
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(a) Initial status (b) Generation 1 (c) Generation 30

(d) Generation 60 (e) Generation 90 (f) Generation 120

(g) Generation 150 (h) Generation 180 (i) Generation 210

(j) Generation 240 (k) Generation 270 (l) Generation 300

(m) Generation 330 (n) Areas where stacks were full (o) Areas where stacks were empty

Figure 5: ((a) to (m)) Simulation results showing the geographical spread of infection. (n) and (o) shows full and empty stack regions.
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Figure 6: SIR curve for the simulated data.
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Figure 7: Variation of number of infective population over stack
fullness.

Table 7: Number of generations for the infection to reach from start
to specified position.

Position Infection reaches in generation
Start 0
A 64
B 92
C 123
D 197

effects of the time variant infective population that remain
in a cell for a certain time period. The effective use of
the stack to hold these infective population of the previous
time periods and effect of these infective population on the
infection spread in the coming time steps are studied with
two models: one with the homogeneous population across
all the cells with no movements between the cells and the
other one with different sizes of population in each cell with
movement between the cells across the desired locations.
The effect of quarantine and the vaccination process is also
being investigatedwith the homogeneousmodel.The analysis
helps us to understand the nature of the epidemic spread
across the geographical region and to plan the quarantine
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Figure 8: Effect of quarantine.
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Figure 9: Effect of vaccination.
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Figure 10: Movement enabled cells and start position.

and evacuation strategy in case of a pandemic. This model
has been tested with the H1N1 data for Abu Dhabi over
the period of twelve months from May 2009 to April 2010.
Future work can be carried out in this area by considering
3D cellular automata which can take care of the population
density like the people living in buildings on multiple floors.
The other variation of considering two different types of
influenza infection which has got two different recovery rates
also can be explored.
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