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Modulational instability of ion-acoustic waves has been theoretically investigated in an unmagnetized collisionless plasma with
nonthermal electrons, Boltzmann positrons, and warm positive ions. To describe the nonlinear evolution of the wave amplitude a
nonlinear Schrödinger (NLS) equation has been derived by usingmultiple scale perturbation technique.Thenonthermal parameter,
positron concentration, and ion temperature are shown to play significant role in the modulational instability of ion-acoustic waves
and the formation of envelope solitons.

1. Introduction

Electron-positron-ion (𝑒-𝑝-𝑖) plasmas occur in many astro-
physical environments such as active galactic nuclei [1],
pulsar magnetospheres [2], polar regions of neutron stars
[3], centres of our galaxy [4], the early universe [5, 6],
and the solar atmosphere [7]. For this, over the last two
decades there has been a great deal of interest in the study
of nonlinear wave phenomena in 𝑒-𝑝-𝑖 plasmas [8–12].
Positrons are produced by pair production in high energy
processes occurring in many astrophysical environments.
Popel et al. [9] have reported decrease in soliton ampli-
tude in the presence of positrons. Jehan et al. [13] have
shown that solitons become narrower as the concentration of
positron increases.The presence of non-Maxwellian electron
is common in space and astrophysical plasmas including the
magnetosphere [12] and auroral zones [14]. The presence of
such non-Maxwellian electrons gives rise to many interesting
characteristics in the nonlinear propagation of waves includ-
ing the ion-acoustic solitons [15, 16]. The solitary structures
with density depression in the magnetosphere observed by
the Freja satellites [17, 18] have been explained by Cairns
et al. [19] by assuming electron distribution to be nonthermal.
Nonlinear ion-acoustic solitary waves in 𝑒-𝑝-𝑖 plasma have

been considered by some authors [9, 20, 21] assuming ions
to be cold. In practice ions have finite temperature and the
ionic temperature can significantly affect the characteristics
of nonlinear ion-acoustic structures [10, 22, 23]. Chawla et al.
[24] have considered ion-acoustic waves in 𝑒-𝑝-𝑖 plasma with
warm adiabatic ions and isothermal electrons. Baluku and
Hellberg [25] have considered ion-acoustic solitary waves in
𝑒-𝑝-𝑖 plasma with cold ions and nonthermal electrons. Hence
it is interesting to study the nonlinear ion-acoustic waves in
𝑒-𝑝-𝑖 plasma assuming simultaneous presence of nonthermal
electrons, warm negative ions, and the positrons. Recently
Pakzad [11] has shown that the presence of warm ions
and nonthermal electrons can modify parametric regions of
existence of ion-acoustic solitary waves. A nonlinear theory
of ion-acoustic waves in 𝑒-𝑝-𝑖 plasma has been developed
by Dubinov and Sazonkin [26] considering polytropic laws
of compression and rarefraction for all plasma components.
Survey of the past literatures shows that a large number of
works on KdV type and large amplitude solitary structure
formation in 𝑒-𝑝-𝑖 plasmas have been reported. Nonlinear
propagation of waves in a dispersive medium is generically
subject to amplitude modulation due to carrier wave self-
interaction or intrinsic nonlinearity of the medium. Modula-
tional instability is an important phenomenon in connection
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with stablewave propagation.However, only a fewworks have
been reported in recent years on the modulational instability
and formation of envelope soliton in 𝑒-𝑝-𝑖 plasmas [20, 21,
24]. It has been shown that the presence of positrons shifts the
critical wave number separating the stability and instability
regions to higher values and for fixed amplitude, width of
envelope solitons decreases with the increase of positron
concentration. Mahmood et al. [27] have studied modu-
lational instability of ion-acoustic waves in 𝑒-𝑝-𝑖 plasma
with warm ions and isothermal electrons and positrons
at the same temperature. Chawla et al. [24] have studied
the effects of ion temperature, positron concentration, and
positron temperature on the modulational instability of ion-
acoustic waves in 𝑒-𝑝-𝑖 plasma with isothermal electrons and
positrons at different temperatures. Bains et al. [28] have
considered modulational instability of ion-acoustic waves
in 𝑒-𝑝-𝑖 plasma with dust particles. Eslami et al. [29] have
considered modulational instability of ion-acoustic waves
in 𝑒-𝑝-𝑖 plasma with electrons and positrons following q-
nonextensive distribution. Gill et al. [21] have studied mod-
ulational instability of ion-acoustic waves in 𝑒-𝑝-𝑖 plasma
with superthermal electrons and isothermal positrons. Zhang
et al. [30] have investigated modulational instability of ion-
acoustic waves in 𝑒-𝑝-𝑖 plasmawith nonthermally distributed
electrons and cold ions. Modulational instability and excita-
tion of ion-acoustic envelope solitons in 𝑒-𝑝-𝑖 plasma with
nonthermal electrons have been investigated by Gill et al. [31]
including ion temperature. The purpose of the present paper
is to make a detailed study of modulational instability of ion-
acoustic waves in 𝑒-𝑝-𝑖 plasma including simultaneously both
the effects of nonthermality of electrons and ion-temperature.

2. Basic Formulation

We consider an unmagnetized collisionless plasma consisting
of warm positive ions, Boltzmann positrons, and nonthermal
electrons. The normalized basic equations governing ion
dynamics for one-dimensional propagation in such plasma
in dimensionless form are as follows [28]:
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In aforementioned equations, the parameters 𝑛
𝑖
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respectively, the concentration and velocity of the positive
ions; 𝑛

𝑒
and 𝑛
𝑝
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and positrons; 𝜙 denotes the electrostatic potential; other
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the Boltzmann’s constant.The nonthermal electron density is
given by [19]

𝑛
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= (1 − 𝛽𝜙 + 𝛽𝜙

2
) exp (𝜙) , (2)

where 𝛽 = 4𝛿/(1 + 3𝛿) measures the deviation from the
thermalized state and 𝛿 determines the presence of nonther-
mal electrons inside the plasma. The density of Boltzmann
positrons is given by

𝑛
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= 𝜒 exp (−𝜎

𝑝
𝜙) , (3)

where 𝜒 = 𝑛
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is the ratio between the unperturbed
positron and electron number densities and 𝜎

𝑝
= 𝑇
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/𝑇
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the ratio between electron and positron temperatures. The
equilibrium charge neutrality condition in normalized form
is given by

𝜒 + 𝑛
𝑖0
= 1, (4)

in which 𝑛
𝑖0
is the equilibrium ion density normalized by the

equilibrium electron density.
Using (2) and (3), Poisson’s equation in (1) is rewritten as
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3. Derivation of the Evolution Equation

Following the usual procedure wemake the following Fourier
expansions for the field quantities [28, 32–34]:
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where 𝐹 stands for the field quantities 𝑛
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velocity; 𝜓 = 𝑘𝑥 − 𝜔𝑡 (𝜔, 𝑘 being two constants satisfying
linear dispersion relation). Substituting the expansion (6) in
(1) and (5) and then equating from both sides the coefficients
of exp(𝑖𝜓), exp(2𝑖𝜓), and terms independent of 𝜓 we obtain
three sets of equationswhichwe call, respectively, I, II, and III.
To solve these equations we make the following perturbation
expansion for the field quantities, 𝐹󸀠

0
and 𝐹
𝑠
, which we denote

by𝑋:
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Solving the lowest order equations obtained from the set of
equations I after substituting the expansion (7) we get the
following solutions for the first harmonic quantities in the
lowest order:
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where

𝛼 = 𝜙
(1)

1
. (9)

The linear dispersion relation is obtained as
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The wave frequency is found to increase with the increase
in the nonthermal parameter 𝛽 and the ion temperature. On
the other hand, increase in positron concentration decreases
the wave frequency. In this connection it is pertinent to
mention that Pakzad [35] reported an incorrect result and it
was pointed out and corrected by Baluku andHellberg [25]. If
we put 𝛽 = 0, 𝜒 = 0, and 𝜎

𝑖
= 0, we get the linear dispersion

relation for ion-acoustic waves in 𝑒-𝑖 plasma as obtained by
Kakutani and Sugimoto [36]. In the limit 𝑘 → 0 (10) leads
to the normalized ion-acoustic speed (𝑉

𝑠
) modified by the

presence of positrons, ion-temperature, and non-Maxwellian
electron distribution:
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It agrees with the results obtained by Baluku and Hellberg
[25] for the case of cold ions (𝜎

𝑖
= 0). Equation (11)

shows that, for the case of cold ions, increase in positron
concentration decreases the phase speed [15], increase in
the nonthermal parameter (𝛽) leads to an increase in phase
speed, and also increase in ion temperature increases the
phase speed.

First harmonic quantities in the second order are
obtained from the solutions (8) by replacing −𝑖𝜔 by −𝑖𝜔 −
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The second harmonic quantities in the lowest order obtained
from the set of equations II after substituting the expansion
(7) are as follows:
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The zeroth harmonic components generated through nonlin-
ear self-interaction of the finite amplitude wave are obtained
from the set of equations III after substituting the expansion
(7):
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Now in order to derive the NLS equation, we need to con-
sider first harmonic quantities in the third order. Collecting
coefficients of 𝜀3 from both sides of the set of equations I
after substituting perturbation expansion (7), we get a set
of equations for first harmonic quantities in the third order
from which after proper elimination we obtain the following
desired NLS equation:
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4. Modulational Instability and
Envelope Solitons

NLS equation (17) describes the nonlinear evolution of the
amplitude of IAWs in 𝑒-𝑝-𝑖 plasma with warm ions, non-
thermal electrons, and Boltzmann positrons. NLS equation
(17) has been studied extensively in connection with the
nonlinear propagation of different wave modes. It is well
known that a uniform wave train may be modulationally
stable or unstable depending on the sign of the product of the
group dispersive and the nonlinearity coefficient, that is, 𝑃𝑄.
As the coefficients depend on the plasma parameters such as
nonthermal parameter 𝛽, ion temperature 𝜎

𝑖
, and positron

concentration 𝜒, the product of 𝑃𝑄 can have both positive
and negative values over different parametric regions. The
wave is modulationally unstable if 𝑃𝑄 < 0 and the growth
rate of instability has a maximum value 𝑔

𝑚
given by

𝑔
𝑚
= |𝑄| 𝛼

2

0
, (21)

where 𝛼
0
is the constant real amplitude of the carrier wave.

For 𝑃𝑄 > 0, the IAW ismodulationally stable. As the product
can have both positive and negative signs for different values
of 𝛽, 𝜎

𝑖
, and 𝜒, there are accordingly two types of localized

solitary wave solutions of the NLS equation (17). To obtain
the soliton profile we let

𝛼 = 𝜌 exp (𝑖𝜃) , (22)
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where 𝜌 and 𝜃 are two real variables. Solving the resulting
equations for 𝜌 and 𝜃with𝑃𝑄 < 0we get the following bright
envelope soliton solution:

𝜌 =

√2 |𝑃/𝑄|

𝐿

sech(

𝜉 − 𝑈𝜏

𝐿

) , (23)

where 𝑈 is the envelope speed and 𝐿 is the spatial width of
the pulse. It encloses high frequency carrier oscillations and
vanishes at infinity. On the other hand, if 𝑃𝑄 > 0, a stable
gray or dark soliton (a potential hole or a localized region of
deceased amplitude) is obtained:

𝜌 =

√2𝑃/𝑄

𝐿𝑑

√1 − 𝑑
2sech2 (𝜉 − 𝑈𝜏

𝐿

), (24)

where the parameter 𝑑 determines the depth of the modula-
tion. For 𝑑 = 1 we get a dark soliton:

𝜌 =

√2𝑃/𝑄

𝐿𝑑

tanh(

𝜉 − 𝑈𝜏

𝐿

) . (25)

Thus the sign of the product 𝑃𝑄 determines the stabil-
ity/instability profile of IAWs as well as the type of soliton
structure.The soliton width is determined by the ratio |𝑃/𝑄|.

We have numerically examined different parametric
regionswhere someof the above excitationsmay occur.As the
coefficients𝑃 and𝑄 depend on nonthermal parameter𝛽, ion-
to-electron temperature ratio 𝜎

𝑖
, and positron-to-electron

concentration ratio 𝜒, these parameters would definitely
determine the modulational instability and the formation
of envelope solitons. Numerical plots in Figures 1–3 show
𝑃/𝑄 as a function of 𝑘 for different values of 𝛽, 𝜎

𝑖
, and 𝜒.

It shows that the IAWs remain modulationally stable for 𝑘

less than certain critical value 𝑘
𝑐
and for 𝑘 > 𝑘

𝑐
the wave is

modulationally unstable.
In Figure 1 the variation of 𝑃/𝑄 with wave number has

been plotted for different values of nonthermal parameter (𝛽),
keeping positron concentration (𝜒) and ion temperature (𝜎

𝑖
)

fixed. It shows that as 𝛽 increases the value of critical wave
number separating stable and unstable regions decreases. It is
also noticed that as 𝛽 increases the width of the dark solitons
increases, but that of the bright solitons decreases.

In Figure 2 𝑃/𝑄 is plotted as function of 𝑘 for different
values of ion temperature (𝜎

𝑖
) taking other plasmaparameters

such as positron concentration (𝜒) and nonthermal parame-
ter (𝛽) as constant. It is seen that as 𝜎

𝑖
increases critical wave

number decreases; the width of dark solitons increases but
that of bright solitons decreases.

Figure 3 is a 𝑃/𝑄 versus wave number plot for different
values of positron concentration (𝜒), keeping the values of
nonthermal parameter (𝛽) and ion temperature (𝜎

𝑖
) constant.

It shows that as the value of 𝜒 increases the critical wave
number increases. The width of dark solitons decreases and
that of bright solitons increases as 𝜒 increases.

Qualitatively these results agree with those obtained by
Gill et al. [31] but quantitatively there are differences. We
find that the critical wave number is more sensitive to the
variation in 𝛽, 𝜎

𝑖
, and 𝜒 than that predicted by Gill et al. [31].
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Figure 1: Plot of 𝑃/𝑄 versus wave number 𝑘 for different values of
nonthermal parameter (𝛽). Curves labelled a, b, and c correspond
to 𝛽 = 0, 0.055, and 0.11, respectively. 𝜒 = 0.22, 𝜎

𝑝
= 0.01, and

𝜎
𝑖
= 0.02.
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Figure 2: Plot of 𝑃/𝑄 versus wave number 𝑘 for different values of
ion temperature (𝜎

𝑖
). Curves labelled a, b, and c correspond to 𝜎

𝑖
=

0.0145, 0.0155, and 0.0165, respectively. 𝜒 = 0.2, 𝜎
𝑝

= 0.015, and
𝛽 = 0.022.

In addition, we have numerically studied the dependence of
growth rate of instability on all the plasma parameters 𝛽, 𝜎

𝑖
,

and 𝜒.The results are shown in Figures 4, 5, and 6. It is shown
that the growth rate of instability increases with increase in
the nonthermality of electrons and ion temperature but the
increase of positron concentration reduces instability growth
rate.
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Figure 4: Plot of growth rate versus wave number 𝑘 for different
values of nonthermal parameter (𝛽). Curves labelled a, b, and c
correspond to 𝛽 = 0, 0.055, and 0.11, respectively. 𝜒 = 0.02, 𝜎

𝑝
=

0.01, and 𝜎
𝑖
= 0.002.

5. Conclusions

In the present work, we have investigated modulational
instability and envelope excitations of IAWs in the 𝑒-𝑝-
𝑖 plasma in detail including simultaneously the effects of
nonthermality of electrons and temperatures of ions. Our
main findings are summarized below.
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Figure 5: Plot of growth rate versus wave number 𝑘 for different
values of ion temperature (𝜎

𝑖
). Curves labelled a, b, and c correspond

to 𝜎
𝑖
= 0.0012, 0.0024, and 0.0036, respectively. 𝜒 = 0.001, 𝜎

𝑝
=

0.01, and 𝛽 = 0.001.
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Figure 6: Plot of growth rate versus wave number 𝑘 for different
values of positron concentration (𝜒). Curves labelled a, b, and c
correspond to 𝜒 = 0, 0.02, and 0.04, respectively. 𝛽 = 0.01, 𝜎

𝑝
=

0.01, and 𝜎
𝑖
= 0.01.

(i) The wave frequency increases with increase in
nonthermality of electrons and the temperature of
ions whereas the increase in positron concentration
decreases the wave frequency.

(ii) There exists a critical wave number 𝑘
𝑐
below which

thewave ismodulationally stable and abovewhich the
wave is modulationally unstable.
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(iii) The value of the critical wave number and the char-
acteristics of bright/dark envelope solitons depend
significantly on the nonthermal parameter (𝛽), ion
temperature (𝜎

𝑖
), and positron concentration (𝜒).

Finally we would like to mention that the results pre-
sented in this paper may be useful to explain modulational
instability and envelope soliton excitations of IAWs in some
astrophysical and space environments where 𝑒-𝑝-𝑖 plasmas
with nonthermal electrons are present.
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