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We have calculated forbidden transitions (M1 and E2) between fine structure levels in the ground state configuration 3s23p4
of doubly ionized argon (Ar III) using the multiconfiguration Hartree-Fock approach within the framework of the Breit-Pauli
Hamiltonian. The data for the analysis of forbidden lines in the spectrum is important for the study of the plasma in astrophysical
objects and fusion devices. The results obtained from this work have been compared with other results available in the literature.

1. Introduction

Atomic radiative transition is one of the fundamental pro-
cesses in plasmas. The numerical simulation of atomic kinet-
ics in laboratory aswell as astrophysical plasma requires accu-
rate radiative transition rates [1]. Information about the term
values and transition probabilities of highly stripped ions is
required in astrophysics and plasma diagnostics. In plasma
research, transitions in such ions can be used to determine
temperature and density distributions. Forbidden transitions
within the ground state configuration are particularly useful
since their relatively long wavelengthsmake them convenient
for spectroscopic studies [2]. Although the atomic kinetics
depend on, in particular, optical allowed transitions (E1), the
weak forbidden transitions (magnetic dipole,M1, and electric
quadrupole, E2) have been linked to dominant features in
the optical spectra of planetary nebulae and the aurora [3,
4]. Since the parity of upper and lower levels within the
ground state configuration is the same, the electric dipole (E1)
transitions are forbidden. The lowest-order metastable levels
radiatively decay correspond to M1 and E2 transitions [5].
M1 and E2 transition rates are of several orders of magnitude
smaller than those for E1 transitions with a similar energy-
level separation.

Argon is one of the most abundant rare gases in the
universe (its abundance is being 3.8 ∗ 10−6 times smaller than
that of hydrogen). Argon ion lines are observed in solar and

astrophysical plasmas as well as in the laboratory [6]. The
argon spectral lines are important in determining chemical
abundances of elements and for estimation of the radiative
transfer through stellar plasmas [7]. Argon plasma sources
are required in various fields [8–11]. For this reason, the data
on the transition parameters in multiply ionized argon ions
is important for argon plasma modeling and laser physics
[12, 13].

Some of the data for the energy levels and transition
parameters on allowed and forbidden lines in Ar III can be
found in NIST website [14]. M1 and E2 transition parameters
for Ar III in NIST were compiled from the values reported
by Czyak and Krueger [15], Naqvi [16], Bowen [17, 18],
Kelly and Lacy [19], and Feuchtgruber et al. [20]. Saloman
and Kim calculated magnetic dipole and electric quadrupole
transition rates for S-like ions between ground state terms
using multiconfiguration Dirac-Fock wave functions [2].
Calamai and Johnson measured the natural lifetimes of the
ns2np4 (1S

0
)metastable states for some rare gases (Ar2+, Kr2+,

and Xe2+) using an ion trapping technique [21]. Biémont
and Hansen calculated energy levels and radiative transition
probabilities in the ground configurations of the sulfur and
selenium isoelectronic sequences up to molybdenum and
silver, respectively, using HFR self-consistent method [22].
Prior observed M1 and E2 lines from trapped metastable Ar
III and Cu II ions [23]. Mendoza and Zeippen calculated
radiative transition probabilities for the forbidden lines in
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the ground configuration of all the members of the sulfur
isoelectronic sequence [24]. Fine structure splitting in Ar III
was calculated using the R-matrix method by Stancalie et al.
[6]. Träbert discussed some examples of measurements and
calculations of the radiative lifetime of the np41S

0
level in

Ne2+, Ar2+, Kr2+, and Xe2+ ions [25]. Pasternack reported
the transition probabilities of forbidden lines for atoms in
the p2, p3, p4, d2, and d3 configurations [26, 27]. Burger et
al. presented 38 Ar III and 14 Ar IV A values obtained on
the basis of the relative line intensity ratio method in the
wavelength interval between 240 nm and 308 nm [7]. The
weighted oscillator strengths (gf) and the lifetimes for Ar
III were presented using a multiconfiguration Hartree-Fock
relativistic (HFR) approach by Luna et al. [28]. Nandi et al.
presented a comprehensive analysis of beam-foil and beam-
gas excited spectrum of argon observed in small wavelength
region, 2965–3090 Å, using Ar+ and Ar2+ ions in the energy
range 200–650 keV [29]. Ultraviolet and visible spectra of the
symbiotic nova RR Telescopii were used to derive reference
wavelengths for many forbidden and intercombination tran-
sitions of ions +1 to +6 of elements C, N, O, Ne, Na,Mg, Al, Si,
P, S, Cl, Ar, K, andCa byYoung et al. [30].The transition prob-
abilities of spontaneous emission of eight transitions in Ar III
and seventeen transitions in Ar IV spectrum were obtained
using the relative line intensity ratios method by Djeniže
and Bukvić [31]. The radiative lifetime of the 3s23p4 1S

0
level

in Ar2+ ions was measured via time resolved observation
of the magnetic dipole (M1) transition to the ns2np4 3P

1

level, on ions circulating in a heavy-ion storage ring by
Träbert and Gwinner [5]. Fischer et al. investigated the fine
structure levels of 3s23p33d 3D forAr III using nonorthogonal
spline CI, multiconfiguration Hartree-Fock (MCHF), and
multiconfiguration Dirac-Hartree-Fock (MCDHF) methods
[32]. Theoretical energy levels and transition probabilities
were presented for 47 low-lying levels of sulfur-like ions for all
𝑍 ≥ 18 using the multiconfiguration Dirac-Fock method by
Chou et al. [33]. Using a compilation of experimental energy
levels, Verner et al. derived accurate wavelengths for 5599
lines of 1828 ground-term multiplets gf -values calculated in
the Opacity Project and they recalculated the Opacity Project
multiplet gf -values to oscillator strengths and transition
probabilities of individual lines [34]. The energy levels and
observed spectral lines of ionized argon atoms in all stages
of ionization were presented by Saloman [35]. Johnson and
Kingston calculated collision strengths for electron excitation
of the 3s23p4 levels of Ar III using the R-matrix method [36].
Munoz Burgos et al. calculated electron-impact excitation of
Ar2+ including excitation up to the 5s subshell usingR-matrix
method [37].

The aim of this work is to investigate the forbidden
transitions (M1 and E2) between energy levels within the
ground state configuration of doubly ionized argon (Ar
III) using multiconfiguration Hartree-Fock approach within
the framework of Breit-Pauli Hamiltonian [38]. We have
obtained the M1 and E2 transition parameters such as transi-
tion energies, line strengths, and transition probabilities (or
rates) using the MCHF atomic structure code [39]. Although
Ar is not a heavy element, the relativistic contributions to

the wave functions and energies of levels must be involved.
Also an accurate atomic structure via large configuration
interaction (CI) basis is required. Therefore, our calculations
include the relativistic contributions and correlation effects.
For considering the correlation effects in this work, the
configurations of 3s23p4, 3p6, 3s23p34p, 3p54p, 3s3p43d,
3s23p23d2, and 3p43d2 have been considered.

2. Calculation Method

Radiative properties of atoms are described with an electro-
magnetic transition between two stateswhich is characterized
by the angular momentum and parity of the corresponding
photon. They are very useful in the fields of quantum
electronic, atomic physics and laser spectroscopy, plasma
physics, and astrophysics. Hence, the reliability of the values
of these parameters ismainly based on the performance of the
calculation methods used. A detail of theoretical background
can be found in the literature [38, 39].We have here presented
some formulas. Briefly, if the emitted or observed photon has
angular momentum 𝑘 and parity 𝜋 = (−1)𝑘, the transition
is an electric multipole transition (Ek), while the transition
from absorbed photon with parity 𝜋 = (−1)𝑘+1 is magnetic
multipole transition (Mk).

The transition probability for the emission from the upper
level to the lower level is given by
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2, and O𝜋(𝑘) is transition
operator. The transition rates (or probabilities) for forbidden
transitions depend on the third (in M1 transition) or fifth (in
E2 transition) power of transition energy.

3. Results and Discussion

In this work, the transition energies, line strengths, and
transition probabilities (or rates) for forbidden transitions
(magnetic dipole, M1, and electric quadrupole, E2) between
the levels in the ground state configuration for doubly ionized
argon (Ar III) have been calculated using the multiconfig-
uration Hartree-Fock atomic structure code [39] based on
the multiconfiguration Hartree-Fock approach within the
Breit-Pauli relativistic corrections [38]. In the calculations,
the configurations of 3s23p4, 3p6, 3s23p34p, 3p54p, 3s3p43d,
3s23p23d2, and 3p43d2 are included due to considering corre-
lation effects. Table 1 displays the results including transition
energies, line strengths, and transition probabilities (or rates)
for M1 and E2 transitions in the ground state configuration
[Ne]3s23p4. In table, we have omitted the core and have only
given the levels excited of 3s23p4.
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Table 1: Transition energies, Δ𝐸 (cm−1), line strengths, 𝑆 (a.u.), and transition probabilities, 𝐴ki (s
−1), for forbidden transitions (M1 and E2)

of the ground state 3s23p4 configuration for Ar III. In table, 𝑎(𝑏) denotes 𝑎 × 10𝑏.

Transitions Δ𝐸 𝑆 𝐴ki

This work Other works This work Other works This work Other works
M1 transitions

3P1-
1S0 33734.36

32153.53a
32135d
32155e
30688g
30122.89h

3.36 (−3) 4.48 (−3)a 3.48
4.02a
3.972d
3.91f

3P2-
1D2 —

14010.0a
13972d
14010e

17305.26g
16328.91h

— 2.16 (−3)a —

3.21 (−2)a
4.5 (−1)b
3.2 (−1)c
3.23 (−1)d
3.13 (−1)f

3P1-
1D2 14914.19

12897.83a
12865d
12898e

17647.36g
15275.43h

4.70 (−3) 7.2 (−3)a 8.41 (−2)

8.3 (−2)a
12 (−2)b
8.5 (−2)c
8.43 (−2)d
8.22 (−2)f

3P2-
3P1 1008.28

1112.17a
1107d
1112e

1131.74g
1053.41h

2.50 2.50a 2.30 (−2)

3.1 (−2)a
3.1 (−2)c

3.054 (−2)d
3.08 (−2)f

3P1-
3P0 428.35

458.06a
463d
458e

468.96g
449.92h

2.00 2.00a 4.23 (−3)

5.19 (−3)a
5.2 (−3)c

5.354 (−3)d
5.17 (−3)f

E2 transitions

3P2-
1S0 34742.64

33265.7a
33242d
33267e
31819.69g
31176.37h

4.46 (−3) 9.4 (−3)a 2.53 (−2)
4.3 (−2)a
3.493 (−2)d
4.17 (−2)f

1D2-
1S0 18820.16

19255.7a
19271d
19257e

14514.43g
14847.46h

0.87 (1) 1.05 (1)a 2.30
3.10a
2.693d
2.59f

3P2-
1D2 —

14010.0a
13972d
14010e

16328.91h
— 1.2 (−1)a —

1.4 (−3)a
2.9(−3)c

1.362 (−3)d
1.14 (−3)f

3P1-
1D2 14914.19

12897.83a
12865d
12898e

15704.55g
15275.43h

1.08 (−2) 1.6 (−2)a 1.78 (−4)

1.3 (−4)a
2.7 (−4)c
1.349 (−4)d
1.14 (−4)f

3P0-
1D2 14485.85

12439.77a
12402d
12440e
14825.51h

3.17 (−3) 4.3 (−3)a 4.52 (−5)

2.9 (−5)a
7.0 (−5)b
5.8 (−5)c

2.038 (−5)d
2.21 (−5)f
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Table 1: Continued.

Transitions Δ𝐸 𝑆 𝐴ki

This work Other works This work Other works This work Other works

3P2-
3P0 1436.63

1570.23a
1570d
1570e

1600.70g
1503.41h

2.46 2.54a 1.69 (−6)

2.72 (−6)a
5.6 (−5)c

2.784 (−6)d
2.37 (−6)f

3P2-
3P1 1008.28

1112.17a
1107d
1112e

1131.74g
1053.48h

5.50 5.7a 2.14 (−7)

3.6 (−7)a
7.4 (−7)c
3.617 (−7)d
3.13 (−7)f

aRef. [14], bRef. [27], cRef. [26], dRef. [22], eRef. [40], fRef. [24], gRef. [6], and hRef. [37].

The results obtained from this work are generally in
agreement with other works. In M1 transitions, the transition
energies for 3P

1
-1D
2
, 3P
2
-3P
1
, and 3P

1
-3P
0
are in agreement

with the values reported in [37]. 3P
1
-1S
0
transition energy is

in agreement with [14, 22, 40]. We have compared our line
strength valueswith those inNIST [14]. Only the line strength
for 3P

1
-1D
2
transition is somewhat poor. There is also good

agreement in transition probabilities. In E2 transitions, the
transition energies for 3P

2
-1S
0
, 1D
2
-1S
0
, 3P
1
-1D
2
, 3P
0
-1D
2
,

3P
2
-3P
0
, and 3P

2
-3P
1
are in good agreement with [6, 14, 22,

37].The line strengths are also in agreement with the values of
NIST.Moreover, the transition probabilities for this transition
type are in agreement with other works. It is noted that the
values reported by Pasternack within the other works are
somewhat poor. It is seen in first column that there is no
values for M1 transition of 3P

2
-1D
2
and E2 transition of 3P

2
-

1D
2
. We have not obtained these transitions in this work due

to the forbiddenness of 𝐽−𝐽󸀠 = 0 transitions in this computer
code.

In conclusion, the aim of this work is to investigate the
transitions between excited levels of ground state configu-
ration in doubly ionized argon (Ar III) using the approach
within the framework of the Breit-Pauli Hamiltonian. Such
excited states, known as metastable states, perform weak
spectral lines, and they decay via magnetic dipole (M1)
and electric quadrupole (E2) transitions. The values for
transition energies, line strengths, and transition probabilities
are fundamental quantities for many scientific applications.
Especially, forbidden transitions such as M1 and E2 are of
great interest for plasma diagnostics and modeling. There-
fore, we hope that our results on M1 and E2 transitions in
Ar III will provide the supports to further researches for this
ion.
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