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Let ℓ > 3 be a prime such that ℓ ≡ 3 (mod 4) and Q(√ℓ) has class number 1. Then Hirzebruch and Zagier noticed that the class
number of Q(√−ℓ) can be expressed as ℎ(−ℓ) = (1/3)(𝑏

1
+ 𝑏

2
+ ⋅ ⋅ ⋅ + 𝑏

𝑚
) − 𝑚 where the 𝑏

𝑖
are partial quotients in the “minus”

continued fraction expansion √ℓ = [[𝑏
0
; 𝑏

1
, 𝑏

2
, . . . , 𝑏

𝑚
]]. For an odd prime 𝑝 ̸= ℓ, we prove an analogous formula using these 𝑏

𝑖

which computes the sum of Iwasawa lambda invariants 𝜆
𝑝
(−ℓ) + 𝜆

𝑝
(−4) of Q(√−ℓ) and Q(√−1). In the case that 𝑝 is inert in

Q(√−ℓ), the formula pleasantly simplifies under some additional technical assumptions.

1. Notation and Assumptions

Let 𝐾 be a real quadratic number field of discriminant 𝐷.
Suppose

𝐷 = 𝐷
1
𝐷

2
, (1)

where 𝐷
1
, 𝐷

2
are the discriminants of quadratic number

fields 𝐾
1
, 𝐾

2
, respectively. We will frequently make the

following assumption.

Assumption A. Suppose the class number of𝐾 is 1 and that𝐷
is divisible by a prime congruent to 3modulo 4.

Remark 1. Make Assumption A. Then 𝐾 has no units of
negative norm and the factorization in (1) is unique (up to
ordering of factors) with 𝐷

1
, 𝐷

2
negative by classical genus

theory. Without loss of generality, −𝐷
1
is a prime congruent

to 3modulo 4 and −𝐷
2
is either 4, 8, or a prime congruent to

3modulo 4.

For 𝑖 = 1, 2 let ℎ(𝐷
𝑖
) denote the class number of𝐾

𝑖
. For a

prime 𝑝, let 𝜆
𝑝
(𝐷

𝑖
) denote the Iwasawa lambda invariant of

the cyclotomic Z
𝑝
-extension of 𝐾

𝑖
.

Goal. Under Assumption A, we want a formula for the sum
of lambda invariants 𝜆

𝑝
(𝐷

1
) + 𝜆

𝑝
(𝐷

2
) which is analogous

to Hirzebruch and Zagier’s formula for the product of class
numbers ℎ(𝐷

1
)ℎ(𝐷

2
) given in terms of the partial quotients

in the “minus” continued fraction expansion of (𝛿 + √𝐷)/2
where 𝛿 ∈ {0, 1} with𝐷 ≡ 𝛿 (mod 4).

To accomplish this goal, we first recall some computations
of special values of partial zeta functions obtained by Kro-
necker limit formulas at 𝑠 = 1 or by the methods of Takuro
Shintani at 𝑠 = 0. Then we relate these to special values of
𝐿-functions which can be alternatively given in terms of the
arithmetic invariants ℎ(𝐷

𝑖
) and 𝜆

𝑝
(𝐷

𝑖
).

2. Special Values of Partial Zeta Functions

Suppose m = m
0
m

∞
is a modulus of 𝐾 where we view

m
0
as an ideal in the ring of integers O

𝐾
and we will always

assumem
∞
is the product of both real places of𝐾.We denote

the narrow ray class group associated with m by 𝐶m as in
[1]. Consider the partial zeta function 𝜁(𝑠,C) associated with
some C ∈ 𝐶m, that is, the meromorphic continuation of the
sum

∑

a∈C
a⊆O𝐾

1

𝑁 (a)
𝑠
, (2)
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where 𝑁(a) denotes the absolute norm of a. We have a
Laurent expansion

𝜁 (𝑠,C) =
𝜅

𝑠 − 1
+  (C) + 

1
(C) (𝑠 − 1)

+ 
2
(C) (𝑠 − 1)

2
+ ⋅ ⋅ ⋅ ,

(3)

where 𝜅 is a constant which depends on m but not on C.
Computations of (C) are called “Kronecker limit formulas”
for real quadratic number fields because Leopold Kronecker
first computed this quantity in the context of an imaginary
quadratic number field. If 𝜒 is a nontrivial character on 𝐶m,
the 𝐿-function

𝐿 (𝑠, 𝜒) = ∑

C∈𝐶m

𝜒 (C) 𝜁 (𝑠,C) (4)

has special values at 𝑠 = 1, 0 given by

𝐿 (1, 𝜒) = ∑

C∈𝐶m

𝜒 (C)  (C) ,

𝐿 (0, 𝜒) = ∑

C∈𝐶m

𝜒 (C) 𝜁 (0,C) .
(5)

We will state some results which express (C), 𝜁(0,C) in
terms of continued fractions, and, in order to do so, we need
a couple of lemmas which we do not prove here. See [2, 3].

Lemma 2. Suppose 𝛼 ∈ R \ Q. There is a unique
“minus” continued fraction expansion (this “minus” expansion
is related to the usual “plus” continued fraction expansion
𝛼 = [𝑎

0
; 𝑎

1
, 𝑎

2
, 𝑎

3
, . . .] where 𝑎

0
∈ Z and 𝑎

1
, 𝑎

2
, . . . ∈

Z
>0
: as sequences (𝑏

0
, 𝑏

1
, 𝑏

2
, . . .) = (𝑎

0
+ 1, 2, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑎1−1

, 𝑎
2
+

2, 2, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑎3−1

, 𝑎
4
+ 2, . . .))

𝛼 = [[𝑏
0
; 𝑏

1
, 𝑏

2
, 𝑏

3
, . . .]]

:= lim
𝑘→∞

𝑏
0
−

1

𝑏
1
− (1/ (𝑏

2
− ⋅ ⋅ ⋅ − (1/𝑏

𝑘
)))

,

(6)

where 𝑏
0
∈ Z and 𝑏

1
, 𝑏

2
, . . . ∈ Z

>1
. Moreover, this expansion is

eventually periodic if and only if 𝛼 is algebraic of degree 2. In
particular, for 𝛿 ∈ {0, 1} with𝐷 ≡ 𝛿 mod 4,

𝛿 + √𝐷

2
= [[𝑏

0
; 𝑏

1
, 𝑏

2
, . . . , 𝑏

𝑚
]] , (7)

where the bar signifies the repeating block of minimal length𝑚;
moreover, 𝑏

𝑚
= 2𝑏

0
− 𝛿 and we have a palindrome

(𝑏
1
, 𝑏

2
, . . . , 𝑏

𝑚−1
) = (𝑏

𝑚−1
, 𝑏

𝑚−2
, . . . , 𝑏

1
) . (8)

Lemma 3. Let C ∈ 𝐶m. For each integral ideal a ∈ C, there
are totally positive 𝑧, 𝜛 ∈ 𝐾 such that

(𝑧) a
−1
m

0
= Z + 𝜛Z, (9)

where 𝜛 > 1 > 𝜛

> 0 with 𝜛 = Galois conjugate of 𝜛. This

condition on 𝜛 ensures that its “minus” continued fraction is
purely periodic of some minimal period𝑚:

𝜛 = [[𝑏
0
; 𝑏

1
, 𝑏

2
, . . . , 𝑏

𝑚−1
]] . (10)

Moreover, the sequence (𝑏
0
, 𝑏

1
, . . . , 𝑏

𝑚−1
) is determined up to

cyclic permutation by C.

2.1. Meyer’s Theorem. Meyer studied the case m
0
= O

𝐾
in

[4]. He expressed (C) as an integral involving a logarithm
of the Dedekind 𝜂-function using methods earlier applied
by Erich Hecke to wide ideal classes. The advantage of
considering narrow ideal classes is that if there are no units
of negative norm, every wide ideal class is the disjoint union
of two narrow ideal classes C∐C∗, and the transformation
properties of the Dedekind-𝜂 function can then be used to
explicitly evaluate the difference (C) − (C∗

) as 𝜋2
/√𝐷

multiplied times an expression involving a Dedekind sum.
Friedrich Hirzebruch and Don Zagier noticed that this
expression could be written as a sum of partial quotients in
a certain “minus” continued fraction.

Definition 4. We denote by 1+m
0
the set of 𝛼 ∈ 𝐾× such that

ordp(𝛼 − 1) ≥ ordp(m0
) for all prime ideals p of O

𝐾
dividing

m
0
. Define Θ = [(𝜃)] ∈ 𝐶m where 𝜃 is any positive element

of 1+m
0
whose Galois conjugate 𝜃 is negative. For eachC ∈

𝐶m, we take C
∗
= CΘ.

Theorem 5 (Meyer, as restated by Hirzebruch and Zagier).
Suppose m

0
= O

𝐾
and that 𝐾 has no units of negative norm.

In the notation of Lemma 3, we have

 (C) −  (C
∗
) =

𝜋
2

6√𝐷

𝑚

∑

𝑘=1

(𝑏
𝑘
− 3) . (11)

2.2. Yamamoto’s Theorem. Meyer’s theorem is sufficient to
derive the known formula for class numbers, and there are
generalizations which compute (C), (C∗

) for an arbitrary
m

0
. For example, Yamamoto proved such a Kronecker limit

formula for narrow ray classes in [5]; he further computed
𝜁(0,C), 𝜁(0,C∗

) using the methods of Shintani in [6]. We
will find it more convenient to use these computations at 𝑠 =
0 because they are rational numbers and have considerably
simpler descriptions in the general case.

Definition 6. LetC ∈ 𝐶m. Choosea, 𝑧,𝜛 = [[𝑏
0
; 𝑏

1
, . . . , 𝑏

𝑚−1
]]

as in Lemma 3. There are unique rational numbers 𝑐
−2
, 𝑐

−1
∈

[0, 1) such that

𝑐
−2
− 𝑐

−1
𝜛 − 𝑧 ∈ Z + 𝜛Z, (12)

so if we extend 𝑏
𝑘
= 𝑏

𝑘+𝑚
by periodicity, we may recursively

define 𝑐
𝑘
∈ [0, 1) for all integers 𝑘 ≥ 0 by

𝑐
𝑘
= {𝑏

𝑘
𝑐
𝑘−1

− 𝑐
𝑘−2
} , (13)

where {𝑥} = 𝑥 − ⌊𝑥⌋ denotes the fractional part of a real
number 𝑥.
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Definition 7. Let 𝑈
+
denote the totally positive units in O

𝐾

with generator 𝜀 > 1. Take 𝜀m to be the unique generator of
𝑈

+
∩ (1 +m

0
) which is greater than 1, so 𝜀m = 𝜀

𝑟 for some
nonnegative integer 𝑟.

Theorem 8 (Yamamoto). Let C ∈ 𝐶m. Then

𝜁 (0,C) = −𝜁 (0,C
∗
)

=

𝑟𝑚

∑

𝑘=1

(
𝑏
𝑘

2
𝐵

2
(𝑐

𝑘−1
) − 𝐵

1
(𝑐

𝑘−1
) 𝐵

1
(𝑐

𝑘−2
)) ,

(14)

where 𝐵
1
(𝑥) = 𝑥 − (1/2), 𝐵

2
(𝑥) = 𝑥

2
− 𝑥 + (1/6) are Bernoulli

polynomials and 𝑏
𝑘
,𝑚, 𝑐

𝑘
, 𝑟 are as in Definitions 6, 7.

3. The Formula for Class Numbers

In this section, we use the results stated above to outline a
proof of the formula for class numbers due first in a special
case to Hirzebruch (in [7]) and then in themore general form
below to Zagier (in [2]). We do this in order to motivate the
formula for Iwasawa lambda invariants.

We say 𝜒 is a genus character when 𝜒 is a real valued
character on 𝐶m with m

0
= O

𝐾
. In this case, we can

use either Meyer’s Theorem 5 or Yamamoto’s Theorem 8 to
compute class numbers by factoring 𝐿(𝑠, 𝜒) into the product
of Dirichlet 𝐿-functions.

Theorem 9 (Kronecker). Let 𝑡 denote the number of distinct
prime factors of𝐷.Then there are exactly 2𝑡−1−1ways to factor
𝐷 = 𝐷

1
𝐷

2
up to order as in (1). Such factorizations are in

bijection with the set of nontrivial genus characters 𝜒. Under
this correspondence,

𝐿 (𝑠, 𝜒) = 𝐿 (𝑠, 𝜖
1
) 𝐿 (𝑠, 𝜖

2
) , (15)

where each 𝜖
𝑖
is the quadratic character of𝐾

𝑖
/Q = Q(√𝐷

𝑖
)/Q.

Theorem 10 (Hirzebruch). Make Assumption A. Then

ℎ (𝐷
1
) ℎ (𝐷

2
) =

𝑤
1
𝑤

2

24

𝑚

∑

𝑘=1

(𝑏
𝑘
− 3) , (16)

where (𝛿 + √𝐷)/2 = [[𝑏
0
; 𝑏

1
, 𝑏

2
, . . . , 𝑏

𝑚
]] as in Lemma 2 and

each 𝑤
𝑖
is the number of roots of unity in 𝐾

𝑖
.

Proof. Take m
0
= O

𝐾
. By Remark 1 and Theorem 9, there is

a unique nontrivial genus character 𝜒 on 𝐶m, so (15) and the
analytic class number formula imply

𝐿 (1, 𝜒) =
2𝜋ℎ (𝐷

1
)

𝑤
1
√−𝐷

1

⋅
2𝜋ℎ (𝐷

2
)

𝑤
2
√−𝐷

2

=
4𝜋

2

𝑤
1
𝑤

2
√𝐷

ℎ (𝐷
1
) ℎ (𝐷

2
)

(17)

or via functional equations

𝐿 (0, 𝜒) =
2ℎ (𝐷

1
)

𝑤
1

⋅
2ℎ (𝐷

2
)

𝑤
2

=
4

𝑤
1
𝑤

2

ℎ (𝐷
1
) ℎ (𝐷

2
) . (18)

Here we have simply 𝐶m = {Θ,Θ
∗
}. Consider the trivial class

C = Θ
∗ in the context of Lemma 3: we can choose a = O

𝐾
,

𝑧 = 1, and

𝜛 =
2𝑏

0
− 𝛿 + √𝐷

2
= [[2𝑏

0
− 𝛿, 𝑏

1
, 𝑏

2
, . . . , 𝑏

𝑚−1
]] (19)

via Lemma 2. It is also clear that 𝑐
−2

= 𝑐
−1

= 0 as in
Definition 6, so 𝑐

𝑘
= 0 for all 𝑘. Thus Meyer’s Theorem 5

implies

𝐿 (1, 𝜒) =  (Θ
∗
) −  ((Θ

∗
)
∗

) =
𝜋

2

6√𝐷

𝑚

∑

𝑘=1

(𝑏
𝑘
− 3) (20)

and Yamamoto’s Theorem 8 implies

𝐿 (0, 𝜒) = 𝜁 (0, Θ
∗
) − 𝜁 (0, (Θ

∗
)
∗

) =
1

6

𝑚

∑

𝑘=1

(𝑏
𝑘
− 3) . (21)

Combining either (20) with (17) or (21) with (18) will yield the
desired result.

4. The Formula for Iwasawa
Lambda Invariants

Fix a prime 𝑝 and number field 𝐹. Let 𝐹
∞

denote the
cyclotomic Z

𝑝
-extension of 𝐹 (we will not consider any

noncyclotomicZ
𝑝
-extensions in this paper); that is,𝐹

∞
is the

unique subfield of

⋃

𝑛≥1

𝐹 (𝜁
𝑝
𝑛) ⊆ Q (22)

such that Gal(𝐹
∞
/𝐹) is isomorphic to the groupZ

𝑝
of 𝑝-adic

integers where Q is some fixed algebraic closure and each
𝜁
𝑝
𝑛 a primitive 𝑝𝑛th root of unity. The subfields of 𝐹

∞
which

contain 𝐹 all lie in a tower

𝐹 ⊂ 𝐹
1
⊂ 𝐹

2
⊂ ⋅ ⋅ ⋅ ⊂ 𝐹

∞
, (23)

where

Gal(
𝐹
𝑛

𝐹
) ≅

Z

(𝑝𝑛)
∀𝑛 ≥ 1. (24)

The 𝑝-parts of the class numbers of these intermediate fields
become regularly behaved.

Theorem 11 (Iwasawa’s growth formula). There are integers
𝜆

𝑝
(𝐹), 𝜇

𝑝
(𝐹), ]

𝑝
(𝐹) such that class numbers ℎ

𝑛
of 𝐹

𝑛
satisfy

ord
𝑝
(ℎ

𝑛
) = 𝜆

𝑝
(𝐹) 𝑛 + 𝜇

𝑝
(𝐹) 𝑝

𝑛
+ ]

𝑝
(𝐹) (25)

for all sufficiently large 𝑛 where ord
𝑝
denotes the 𝑝-adic order.

Here is a short list ofwhat is known and conjectured about
the Iwasawa invariants 𝜆, 𝜇, ] which appear in the growth
formula.

(i) Iwasawa conjectured that 𝜇
𝑝
(𝐹) = 0 for all 𝑝 and 𝐹.
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(ii) Ferrero andWashington proved that 𝜇
𝑝
(𝐹) = 0 for all

𝑝 when 𝐹/Q is abelian (see [8]).
(iii) If 𝐹 has only one prime lying over 𝑝 and 𝑝 does not

divide the class number of 𝐹, then 𝜆
𝑝
(𝐹) = 𝜇

𝑝
(𝐹) =

]
𝑝
(𝐹) = 0 (see [9]).

(iv) If 𝑝 splits completely in 𝐹, then 𝜆
𝑝
(𝐹) ≥ 𝑟

2
where 𝑟

2

is the number of complex places of 𝐹 (see, e.g., [10]).
(v) Greenberg conjectured that 𝜆

𝑝
(𝐹) = 0 for all primes

𝑝 when 𝐹 is a totally real number field (see [11]).

Suppose now that 𝐹 is a quadratic number field of discrimi-
nant Δ, and write

𝜆
𝑝
(Δ) := 𝜆

𝑝
(𝐹) ,

𝜇
𝑝
(Δ) := 𝜇

𝑝
(𝐹) .

(26)

Thus we always have 𝜇
𝑝
(Δ) = 0, and conjecturally 𝜆

𝑝
(Δ) = 0

when Δ > 0. Assume now that Δ < 0. Then 𝜆
𝑝
(Δ) ≥ 1 for

infinitely many primes 𝑝. Using the analogy between number
fields and function fields over finite fields, Ralph Greenberg
(after Theorem 3.3 in [10]) suggests the possibility that for
a fixed Δ the lambda invariants 𝜆

𝑝
(Δ) could be bounded as

𝑝 varies over all primes; however, neither the boundedness
nor unboundedness of the set {𝜆

𝑝
(Δ) : 𝑝 prime} is known

for any single Δ < 0. On the other hand, it is conjectured
that 𝜆

𝑝
(Δ) is unbounded for fixed 𝑝 as Δ ranges over all

discriminants of imaginary quadratic number fields. Ferrero
(see [12]) and Kida (see [13]) proved that for −4 ̸= Δ ̸= −8 we
have

𝜆
2
(Δ) = −1 + ∑

ℓ|Δ

ℓ ̸=2

2
ord2(ℓ

2
−1)−3

, (27)

where the sum ranges over all odd primes ℓ dividing Δ. In
particular, this shows that 𝜆

2
(Δ) is unbounded. For odd 𝑝,

there seems to be no simple formula like (27) to compute
𝜆

𝑝
(Δ). We will derive a formula for 𝜆

𝑝
(𝐷

1
) + 𝜆

𝑝
(𝐷

2
) under

AssumptionAwhich is analogous to the formula (16) for class
numbers. We first need to recall how the lambda invariant
in the growth formula (25) is related to special values of 𝐿-
functions. We assume here that 𝑝 ∤ Δ and 𝑝 is odd for
simplicity. Let 𝜖 denote the quadratic character for 𝐹/Q =

Q(√Δ)/Q. For each integer 𝑛 ≥ 1, choose a Dirichlet
character 𝜓

𝑛
of conductor 𝑝𝑛+1 and order 𝑝𝑛; equivalently,

𝜓
𝑛
generates the 𝑛th level Q

𝑛
⊆ Q(𝜁

𝑝
𝑛+1) in the cyclotomic

Z
𝑝
-extension of Q. By a theorem of Kubota and Leopoldt,

there is a 𝑝-adic analytic function 𝐿
𝑝
(𝑠, 𝜖𝜓

𝑛
𝜔) on the disk

|𝑠| < 𝑝
(𝑝−2)/(𝑝−1) in C

𝑝
such that

𝐿
𝑝
(1 − 𝑚, 𝜖𝜓

𝑛
𝜔)

= (1 − 𝜖𝜓
𝑛
𝜔

1−𝑚
(𝑝) 𝑝

𝑚−1
) 𝐿 (1 − 𝑚, 𝜖𝜓

𝑛
𝜔

1−𝑚
)

(28)

for all integers𝑚 ≥ 1where𝜔 is the Teichmüller character. In
fact, there is an interpolating power series𝑓(𝑇, 𝜖𝜔) ∈ Z

𝑝
[[𝑇]]

such that

𝐿
𝑝
(𝑠, 𝜖𝜓

𝑛
𝜔) = 𝑓 (𝜁

𝑝
𝑛 (1 − 𝑝Δ)

𝑠

− 1, 𝜖𝜔) (29)

for all 𝑠 ∈ Z
𝑝
where 𝜁

𝑝
𝑛 = 𝜓

𝑛
(1−𝑝Δ)

−1 is a primitive𝑝𝑛th root
of unity. Setting 0 = 1 − 𝑚 = 𝑠 in the previous two equations
gives

𝑓 (𝜁
𝑝
𝑛 − 1, 𝜖𝜔) = 𝐿

𝑝
(0, 𝜖𝜓

𝑛
𝜔) = 𝐿 (0, 𝜖𝜓

𝑛
) . (30)

We define lambda and mu invariants of the power series

𝑓 (𝑇, 𝜖𝜔) = 𝑎
0
+ 𝑎

1
𝑇 + 𝑎

2
𝑇

2
+ 𝑎

3
𝑇

3
+ ⋅ ⋅ ⋅ (31)

as follows:

𝜇 (𝑓) := min {ord
𝑝
(𝑎

𝑖
) : 𝑖 ≥ 0} ,

𝜆 (𝑓) := min {𝑖 ≥ 0 : ord
𝑝
(𝑎

𝑖
) = 𝜇 (𝑓)} .

(32)

On can use (30) to prove the growth formula (25) for 𝐹 =

Q(√Δ) (see, e.g., [14] or much earlier [15]), and, in fact,

𝜇 (𝑓) = 0,

𝜆 (𝑓) = 𝜆
𝑝
(Δ) .

(33)

Here we are using the assumption that 𝑝 is odd; we get a
different computation for 𝜇(𝑓) when 𝑝 = 2. We compute

ord
𝑝
𝐿 (0, 𝜖𝜓

𝑛
)

= ord
𝑝
(𝑎

0
+ 𝑎

1
(𝜁

𝑝
𝑛 − 1) + 𝑎

2
(𝜁

𝑝
𝑛 − 1)

2

+ ⋅ ⋅ ⋅ )

≥ min {ord
𝑝
(𝑎

𝑖
(1 − 𝜁

𝑝
𝑛)

𝑖

) : 𝑖 ≥ 0}

= min{ord
𝑝
(𝑎

𝑖
) +

𝑖

𝜑 (𝑝𝑛)
: 𝑖 ≥ 0} ,

(34)

where 𝜑 is the Euler totient function. The inequality is an
equality if the minimum is assumed by exactly one member
of the set. In particular,

ord
𝑝
𝐿 (0, 𝜖𝜓

𝑛
) =

𝜆
𝑝
(Δ)

𝜑 (𝑝𝑛)
(35)

whenever 𝜑(𝑝𝑛
) > 𝜆

𝑝
(Δ). Note that we always have

ord
𝑝
(𝑎

0
+ 𝑎

1
(𝜁

𝑝
𝑛 − 1) + ⋅ ⋅ ⋅

+ 𝑎
𝜆𝑝(Δ)−1

(𝜁
𝑝
𝑛 − 1)

𝜆𝑝(Δ)−1

) ≥ 1,

ord
𝑝
(𝑎

𝜆𝑝(Δ)
(𝜁

𝑝
𝑛 − 1)

𝜆𝑝(Δ)

+ 𝑎
𝜆𝑝(Δ)+1

⋅ (𝜁
𝑝
𝑛 − 1)

𝜆𝑝(Δ)+1

+ ⋅ ⋅ ⋅ ) =

𝜆
𝑝
(Δ)

𝜑 (𝑝𝑛)
.

(36)

Thus letting p
𝑛
= (1−𝜁

𝑝
𝑛) denote the unique prime ideal lying

above 𝑝 in Z[𝜁
𝑝
𝑛], we get

𝜆
𝑝
(Δ) = 𝜑 (𝑝

𝑛
) ord

𝑝
𝐿 (0, 𝜖𝜓

𝑛
) = ordp𝑛𝐿 (0, 𝜖𝜓𝑛

) (37)
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whenever ordp𝑛𝐿(0, 𝜖𝜓𝑛
) < 𝜑(𝑝

𝑛
). There is a partial converse

to this statement which follows from the same observations;
namely, if ordp𝑛𝐿(0, 𝜖𝜓𝑛

) ≥ 𝜑(𝑝
𝑛
), then we must also have

𝜆
𝑝
(Δ) ≥ 𝜑(𝑝

𝑛
).

At this point, we should remark that the special values
𝐿(0, 𝜖𝜓

𝑛
) can be computed with generalized Bernoulli num-

bers via the formula

𝐿 (1 − 𝑚, 𝜖𝜓
𝑛
) = −

𝐵
𝑚,𝜖𝜓𝑛

𝑚
∀ integers 𝑚 ≥ 1. (38)

In particular,

𝐿 (0, 𝜖𝜓
𝑛
) = −𝐵

1,𝜖𝜓𝑛
= −

1

f

f

∑

𝑎=1

𝜖 (𝑎) 𝜓
𝑛
(𝑎) 𝑎, (39)

where f = −Δ𝑝
𝑛+1 is the conductor of 𝜖𝜓

𝑛
. This shows that

𝐿(0, 𝜖𝜓
𝑛
) is an algebraic integer by the work of Carlitz in [16].

However, we will compute this special value in a different way
by using Yamamoto’s Theorem 8.

Factor 𝐷 = 𝐷
1
𝐷

2
as in (1), and suppose each 𝐷

𝑖
< 0. As

above, let 𝜖
𝑖
denote the quadratic character for Q(√𝐷

𝑖
)/Q.

Then (37) implies that for sufficiently large 𝑛 (which we fix
for the following discussion) we have

𝜆
𝑝
(𝐷

1
) + 𝜆

𝑝
(𝐷

2
) = ordp𝑛𝐿 (0, 𝜖1𝜓𝑛

)

+ ordp𝑛𝐿 (0, 𝜖2𝜓𝑛
)

= ordp𝑛𝐿 (0, 𝜒𝑛
)

= ordp𝑛 ∑
C∈𝐶m

𝜒
𝑛
(C) 𝜁 (0,C) ,

(40)

where

𝐿 (𝑠, 𝜒
𝑛
) = 𝐿 (𝑠, 𝜖

1
𝜓

𝑛
) 𝐿 (𝑠, 𝜖

2
𝜓

𝑛
) (41)

is the 𝐿-function for a character 𝜒
𝑛
on the narrow ray class

group 𝐶m of the real quadratic number field 𝐾 = Q(√𝐷)

withmodulusm = (𝑝
𝑛+1
)m

∞
. For a prime ideal q ofO

𝐾
with

q ∩ Z = (𝑞) and 𝑞 ̸= 𝑝 we have

𝜒
𝑛
(q) = 𝜒 (q) 𝜓

𝑛
(𝑞

𝑓
) , (42)

where 𝜒 is the nontrivial genus character associated with
the factorization 𝐷 = 𝐷

1
𝐷

2
and 𝑓 is the residue degree

of q over 𝑞. Thus for a nonzero ideal 𝐼 in O
𝐾

we have
𝜒
𝑛
(𝐼) = 𝜒(𝐼)𝜓

𝑛
(𝑁(𝐼)) where 𝑁(𝐼) is the absolute norm of

𝐼, so 𝜒
𝑛
((𝑎)) = 𝜓

𝑛
(𝑎

2
) for all 𝑎 ∈ Z. Suppose now that

𝐷 is divisible by a prime congruent to 3 modulo 4. Then
the narrow ray class group 𝐶m is an internal direct product
𝐶

+

m × ⟨Θ⟩ where Θ is as in Definition 4 and 𝐶+

m is the kernel
of the natural homomorphism 𝐶m → 𝐶m∞

≅ Z/(2). We
have 𝜒

𝑛
(Θ) = −1, so 𝜒

𝑛
(C)𝜁(0,C) = 𝜒

𝑛
(C∗

)𝜁(0,C∗
) for all

C ∈ 𝐶m. Thus since ordp𝑛(2) = 0 we get

𝜆
𝑝
(𝐷

1
) + 𝜆

𝑝
(𝐷

2
) = ordp𝑛 ∑

C∈𝐶
+

m

𝜒
𝑛
(C) 𝜁 (0,C) . (43)

Suppose, in addition, that the class number of𝐾 is 1.We claim
there is an exact sequence

𝑈
+
= ⟨𝜀⟩ → (

O
𝐾

(𝑝𝑛+1)
)

×

→ 𝐶
+

m → 0, (44)

where the first map sends the fundamental unit 𝜀 to its
congruence class 𝜀 modulo 𝑝𝑛+1 and the second map sends
the congruence class 𝛼 modulo 𝑝𝑛+1 of a totally positive 𝛼 ∈
O

𝐾
to the class [(𝛼)] ∈ 𝐶

+

m of the principal ideal (𝛼) ⊆ O
𝐾
.

(Note that every congruence class modulo 𝑝𝑛+1 has a totally
positive representative, and any two such representatives for
the same congruence class will generate the same narrow ray
class.) It is clear that the second map in (44) onto since every
class in 𝐶+

m ⊆ 𝐶m is represented by an integral ideal 𝐼 prime
to m

0
= (𝑝

𝑛+1
), but such an ideal must be principal 𝐼 = (𝛼)

(since𝐾 has class number 1) with totally positive generator 𝛼
(since the class of 𝐼 is trivial in 𝐶m∞

). Suppose [(𝛼)] is trivial
in 𝐶+

m for some totally positive 𝛼 ∈ O
𝐾
relatively prime to

𝑝. Then (𝛼) = (𝛽) for some totally positive 𝛽 ∈ 1 + m
0
=

1 + (𝑝
𝑛+1
), but we can write 𝛽 = 𝑎/𝑏 for some 𝑎, 𝑏 ∈ O

𝐾

relatively prime to 𝑝. Since both 𝛼, 𝛽 are totally positive, we
have 𝛼 = 𝜀𝑘𝛽 = 𝜀𝑘𝑎/𝑏 for some 𝑘 ≥ 0. Hence 𝑏 ⋅ 𝛼 = 𝜀𝑘 ⋅ 𝑎 in
(O

𝐾
/(𝑝

𝑛+1
))

×, but 𝑎 = 𝑏 since 𝛽 = 𝑎/𝑏 ∈ 1 + (𝑝𝑛+1
), so 𝛼 = 𝜀𝑘

is in the image of the first map. This proves exactness of the
sequence in (44) as claimed.

Now consider a fixed class [(𝛼)] for some totally positive
𝛼 ∈ O

𝐾
relatively prime to 𝑝𝑛+1. In the context of Lemma 3

with m
0
= (𝑝

𝑛+1
), we may take a = (𝛼) and 𝑧 = 𝛼/𝑝

𝑛+1 so
that

(𝑧) a
−1
m

0
= O

𝐾
= Z + 𝜛Z (45)

with

𝜛 =
2𝑏

0
− 𝛿 + √𝐷

2
= [[2𝑏

0
− 𝛿, 𝑏

1
, 𝑏

2
, . . . , 𝑏

𝑚−1
]] , (46)

where (𝛿 + √𝐷)/2 = [[𝑏
0
, 𝑏

1
, . . . , 𝑏

𝑚
]] as in Lemma 2. Write

𝛼 = 𝑥 + 𝑦
𝛿 + √𝐷

2

(47)

with 𝑥, 𝑦 ∈ Z. Define

𝑐
−2
= {

𝑥 − (𝑏
0
− 𝛿) 𝑦

𝑝𝑛+1
} ,

𝑐
−1
= {

−𝑦

𝑝𝑛+1
} ,

(48)

so that condition (12) is satisfied. As per (13), we have

𝑐
0
= {(2𝑏

0
− 𝛿) 𝑐

−1
− 𝑐

−2
} = {

− (𝑥 + 𝑏
0
𝑦)

𝑝𝑛+1
} , (49)

and it follows that for all 𝑘 ≥ −1

𝑐
𝑘
= {

− (𝑥𝑞
𝑘
+ 𝑦𝑝

𝑘
)

𝑝𝑛+1
} , (50)
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where 𝑝
𝑘
and 𝑞

𝑘
are the numerator and denominator, respec-

tively, of the 𝑘th convergent [[𝑏
0
; 𝑏

1
, . . . , 𝑏

𝑘
]] for (𝛿 + √𝐷)/2

with 𝑝
−1

= 1, 𝑞
−1

= 0 by convention. Then Yamamoto’s
Theorem 8 implies

𝜁 (0, [(𝛼)])

=

𝑟𝑛𝑚

∑

𝑘=1

(
𝑏
𝑘

2
𝐵

1
(𝑐

𝑘−1
)
2

− 𝐵
1
(𝑐

𝑘−1
) 𝐵

1
(𝑐

𝑘−2
)) + 𝐶,

(51)

where 𝑟
𝑛
= log(𝜀m)/ log(𝜀) is the order of 𝜀modulo 𝑝𝑛+1 and

𝐶 = −
𝑟
𝑛

24

𝑚

∑

𝑘=1

𝑏
𝑘 (52)

does not depend on the class [(𝛼)].
Let 𝑔 ∈ Z be a primitive root modulo all powers of 𝑝, so,

in particular, 𝑔 has order 𝑝𝑛
(𝑝 − 1) in (O

𝐾
/(𝑝

𝑛+1
))

×. Let 𝑟
0

denote the order of 𝜀 modulo 𝑝. Then 𝑟
0
| 𝑝 ± 1 where the

sign is + or − when 𝑝 is inert or split, respectively, in 𝐾. We
have an isomorphism of abelian groups

(
O

𝐾

(𝑝𝑛+1)
)

×

≅

{{{

{{{

{

Z

(𝑝𝑛 (𝑝2 − 1))
⊕

Z

(𝑝𝑛)
𝑝 inert in 𝐾

Z

(𝑝𝑛 (𝑝 − 1))
⊕

Z

(𝑝𝑛 (𝑝 − 1))
𝑝 split in 𝐾.

(53)

Note that if 𝜀𝑎 ≡ 𝑏 (mod 𝑝𝑛+1
) for some integers 𝑎, 𝑏, then

we get a congruence of norms 𝑏2 = 𝑁(𝑏) ≡ 𝑁(𝜀)𝑎 = 1 (mod
𝑝

𝑛+1
), so 𝑏 is either 1 or −1modulo 𝑝𝑛+1. Hence the subgroup

⟨𝜀⟩ ∩ ⟨𝑔⟩ ⊆ (O
𝐾
/(𝑝

𝑛+1
))

× has order 2 or 1 depending on
whether there does or does not, respectively, exist an integer
𝑐 such that −1 ≡ 𝜀

𝑐
(mod 𝑝𝑛+1

); the existence of such a 𝑐 is
equivalent to the statement that 2 | 𝑟

0
. We will oftenmake the

following simplifying assumption.

Assumption B. Suppose that 𝑝2
∤ 𝜀

𝑟0 − 1. (Of course, the
statement in the assumption does not always hold; e.g., if
𝑝 = 7 and𝐷 = 23 ⋅ 4, then 𝜀 = 24 + 5√23 has order 3modulo
7, and, in fact, 72 | 𝜀3 − 1.)

Making Assumption B implies 𝑟
𝑛

= 𝑝
𝑛
𝑟
0

is the
order of 𝜀 modulo 𝑝

𝑛+1, and thus the quotient group
(O

𝐾
/(𝑝

𝑛+1
))

×
/⟨𝜀, 𝑔⟩ is cyclic of𝑝-prime order V = 2𝑢(𝑝±1)/𝑟

0

where 𝑢 = 1 if 2 | 𝑟
0
and 𝑢 = 0 otherwise. Choose a totally

positive 𝜂 ∈ O
𝐾
whose congruence class 𝜂 generates this

quotient. In fact, we may choose any 𝜂 whose congruence
class generates this quotient since the quantities ℎ

𝑗,𝑘
can be

modified modulo 𝑝𝑛+1. Then we have a surjection

{(𝑖, 𝑗) : 1 ≤ 𝑖 ≤ 𝑝
𝑛
(𝑝 − 1) , 0 ≤ 𝑗 ≤ V − 1} → 𝐶

+

m (54)

given by (𝑖, 𝑗) → [(𝑔
𝑖
𝜂
𝑗
)] which is either one-to-one or two-

to-one depending on whether 𝑢 = 0 or 𝑢 = 1, respectively.
For each 𝑗 write

𝜂
𝑗
= 𝑥

𝑗
+ 𝑦

𝑗

𝛿 + √𝐷

2
, (55)

where 𝑥
𝑗
, 𝑦

𝑗
∈ Z, and then define

ℎ
𝑗,𝑘
= − (𝑥

𝑗
𝑞
𝑘
+ 𝑦

𝑗
𝑝
𝑘
) (56)

for each 𝑘. Note that 𝜒
𝑛
([(𝑔

𝑖
𝜂
𝑗
)]) = 𝜓

𝑛
(𝑔

2𝑖
) since 𝜂 has prime-

to-𝑝 order modulo 𝑝𝑛+1, so (43) and (51) imply that

𝜆
𝑝
(𝐷

1
) + 𝜆

𝑝
(𝐷

2
)

= ordp𝑛

𝑝
𝑛
(𝑝−1)

∑

𝑖=1

V−1

∑

𝑗=0

𝑟𝑛𝑚

∑

𝑘=1

𝜓
2

𝑛
(𝑔

𝑖
)

⋅ (
𝑏
𝑘

2
𝐵

1
({

ℎ
𝑗,𝑘−1

𝑔
𝑖

𝑝𝑛+1
})

2

− 𝐵
1
({

ℎ
𝑗,𝑘−1

𝑔
𝑖

𝑝𝑛+1
})

⋅ 𝐵
1
({

ℎ
𝑗,𝑘−2

𝑔
𝑖

𝑝𝑛+1
})) .

(57)

To ease notationwe define a twisted, homogeneousDedekind
sum for an arbitrary Dirichlet character 𝜓 of modulus f:

𝐷
𝜓
(𝑎, 𝑏) =

f

∑

𝑡=1

𝜓 (𝑡) ({
𝑎𝑡

f
} −

1

2
)({

𝑏𝑡

f
} −

1

2
) . (58)

Since the character 𝜓2

𝑛
also generates the 𝑛th level in the

cyclotomic Z
𝑝
-extension of 𝐾 and since 𝑡 = 𝑔𝑖 runs through

the units modulo 𝑝𝑛+1 as 𝑖 runs through {1, 2, . . . , 𝑝𝑛
(𝑝 − 1)},

we have proved the following.

Theorem 12. Make Assumption A. Suppose 𝑝 ∤ 𝐷 is an odd
prime satisfying Assumption B. Then for sufficiently large 𝑛

𝜆
𝑝
(𝐷

1
) + 𝜆

𝑝
(𝐷

2
)

= ordp𝑛∑
𝑗,𝑘

(
𝑏
𝑘

2
𝐷

𝜓𝑛
(ℎ

𝑗,𝑘−1
, ℎ

𝑗,𝑘−1
) − 𝐷

𝜓𝑛
(ℎ

𝑗,𝑘−1
, ℎ

𝑗,𝑘−2
)) ,

(59)

where (𝛿 + √𝐷)/2 = [[𝑏
0
; 𝑏

1
, 𝑏

2
, . . . , 𝑏

𝑚
]] as in Lemma 2 and

the rest of the notation is as above.

Remark 13. Wecan compute theDedekind sums𝐷
𝜓𝑛
(𝑎, 𝑎) for

any integer 𝑎 as follows. Write 𝑎 = 𝑝
𝑚
𝑎
 where 𝑝 ∤ 𝑎


∈ Z

and 0 ≤ 𝑚 ∈ Z. If 𝑚 ≥ 𝑛 + 1, then 𝐷
𝜓𝑛
(𝑎, 𝑎) = 0 since
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{𝑎𝑡/𝑝
𝑛+1
} = 0 for all 𝑡 ∈ Z. Thus we may assume 0 ≤ 𝑚 ≤ 𝑛.

Choose 𝑏 ∈ Z with 𝑎𝑏 ≡ 1 (mod 𝑝
𝑛+1−𝑚

). Then

𝐷
𝜓𝑛
(𝑎, 𝑎) =

𝑝
𝑛+1

∑

𝑡=1

𝜓
𝑛
(𝑏𝑡) ({

𝑎

𝑏𝑡

𝑝𝑛+1−𝑚
} −

1

2
)

2

= 𝜓
𝑛
(𝑏)

𝑝
𝑛+1−𝑚

−1

∑

𝑟=1

𝑝∤𝑟

(
𝑟

𝑝𝑛+1−𝑚
−
1

2
)

2

⋅

𝑝
𝑚
−1

∑

𝑞=0

𝜓
𝑛
(𝑞𝑝

𝑛+1−𝑚
+ 𝑟) .

(60)

If𝑚 = 0 (i.e., 𝑝 ∤ 𝑎), then 𝑎 = 𝑎 and 𝑎𝑏 ≡ 1 (mod 𝑝
𝑛+1
), so

𝐷
𝜓𝑛
(𝑎, 𝑎) = 𝜓

𝑛
(𝑎)

𝑝
𝑛+1

∑

𝑡=1

𝜓
𝑛
(𝑡)

𝑡
2

𝑝2𝑛+2
(61)

since

𝑝
𝑛+1

∑

𝑡=1

𝜓
𝑛
(𝑡) {

𝑡

𝑝𝑛+1
} =

𝑝
𝑛+1

−1

∑

𝑡=1

𝜓
𝑛
(𝑝

𝑛+1
− 𝑡) {

𝑝
𝑛+1

− 𝑡

𝑝𝑛+1
}

=

𝑝
𝑛+1

−1

∑

𝑡=1

𝜓
𝑛
(𝑡) (1 − {

𝑡

𝑝𝑛+1
})

= −

𝑝
𝑛+1

∑

𝑡=1

𝜓
𝑛
(𝑡) {

𝑡

𝑝𝑛+1
} = 0.

(62)

On the other hand, if 𝑚 > 0 (i.e., 𝑝 | 𝑎), then for 𝑔 ∈ Z a
primitive root modulo all powers of 𝑝 as above, we have

𝑝
𝑚
−1

∑

𝑞=0

𝜓
𝑛
(𝑞𝑝

𝑛+1−𝑚
+ 𝑟)

=

𝑝
𝑚
−1

∑

𝑗=0

𝜁
𝑖+𝑗𝑝
𝑛−𝑚

(𝑝−1)

𝑝
𝑛 = 𝜁

𝑖

𝑝
𝑛

𝑝
𝑚
−1

∑

𝑗=0

𝜁
𝑗(𝑝−1)

𝑝
𝑚 = 0,

(63)

where 𝑔𝑖
= 𝑟 and 𝜓

𝑛
(𝑔) = 𝜁

𝑝
𝑛 is a primitive 𝑝𝑛th root of

unity. Thus 𝐷
𝜓𝑛
(𝑎, 𝑎) = 0, so (61) holds in this case as well

since 𝜓
𝑛
(𝑎) = 0 when 𝑝 | 𝑎. We summarize the results of this

remark in the following proposition.

Proposition 14. One has for all 𝑎 ∈ Z

𝐷
𝜓𝑛
(𝑎, 𝑎) =

𝜓
𝑛
(𝑎)

𝑝2𝑛+2

𝑝
𝑛+1

−1

∑

𝑡=1

𝜓
𝑛
(𝑡) ⋅ 𝑡

2
. (64)

In light of the above, one might hope to also evaluate the
sums

𝐷
𝜓𝑛
(ℎ

𝑗,0
, ℎ

𝑗,−1
) + 𝐷

𝜓𝑛
(ℎ

𝑗,1
, ℎ

𝑗,0
) + ⋅ ⋅ ⋅

+ 𝐷
𝜓𝑛
(ℎ

𝑗,𝑟𝑛𝑚−1
, ℎ

𝑗,𝑟𝑛𝑚−2
)

(65)

using a reciprocity law for Dedekind sums with characters,
but the author is presently unaware of how this can be
done. Nonetheless, Theorem 12 provide us with a means of
computing lambda invariants.

Example 15. Take 𝑝 = 3 and let ℓ ≡ 11 (mod 12) be a
prime such that the number field𝐾 = Q(√ℓ) of discriminant
𝐷 = 4ℓ has class number one. Then the totally positive
fundamental unit 𝜀 > 1 in 𝐾 has order dividing 4 in
(O

𝐾
/(3))

×. Suppose this order is exactly 4 and that 32 ∤ 𝜀4−1.
Then for any positive integer 𝑛 we have that 2 is a primitive
root modulo 3

𝑛+1 and that (O
𝐾
/(3

𝑛+1
))

×
/⟨𝜀, 2⟩ is cyclic of

order 2 since the order 𝑟
𝑛
of 𝜀modulo 3𝑛+1 will be 𝑟

𝑛
= 4 ⋅ 3

𝑛.
We want a generator 𝜂 ∈ O

𝐾
of this quotient, and it clearly

suffices to choose 𝜂 to be an element of order 8 in

(
O

𝐾

(3𝑛+1)
)

×

≅
Z

(3𝑛)
⊕

Z

(3𝑛)
⊕

Z

(8)
. (66)

Alternatively, we may regard 𝜂 as an eighth root of unity in
Q

3
(√ℓ), and in that case, a fixed choice of 𝜂 will suffice for

all 𝑛. We can construct such an 𝜂 by using Hensel lifting on
1 + √ℓ since

(1 + √ℓ)
4

= (1 + ℓ + 2√ℓ)
2

≡ (−√ℓ)
2

= ℓ ≡ −1 (mod 3) .
(67)

Let us consider nowa concrete case. Take ℓ = 239 ≡ 11 ( mod
12). Then
√ℓ = √239 = [[16, 2, 7, 4, 2, 2, 2, 17, 2, 2, 2, 4, 7, 2, 32]] ,

(68)
so

𝜀 = 𝑝
14−1

+ 𝑞
14−1

√239 = 6195120 + 400729√239. (69)

It is easy to check that 𝜀 has order 4modulo 3 since

𝜀 ≡ 0 + 1√239 (mod 3) (70)

and 239 ≡ −1 (mod 3). We also easily verify that 9 ∤ 𝜀4 − 1
since

𝜀
4
≡ (6 + 4√239)

4

≡ (8 + 3√239)
2

≡ 1

+ 3√239 (mod 9) .
(71)

For 𝑛 = 1, we compute the right hand side of (59) and get

ordp1 (−12𝜁3 − 24) = ordp1 (3 (𝜁3 − 1 + 3)) = 2 + 1 = 3 > 2

= 𝜑 (3) ,

(72)

where p
1
= (𝜁

3
− 1). Of course, 𝜆

3
(−4) = 0 since 3 remains

inert in Q(𝑖), so we must have 𝜆
3
(−ℓ) ≥ 2 by the comments

following (37). Likewise, for 𝑛 = 2 we get

ordp2 (72𝜁
5

3
2 + 12𝜁

4

3
2 + 72𝜁

3

3
2 + 84𝜁

2

3
2 − 12𝜁32 + 12)

= 6 = 𝜑 (3
2
) ,

(73)
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where p
2
= (𝜁

3
2 − 1), so 𝜆

3
(−ℓ) ≥ 6. For 𝑛 = 3, we find

ordp3 (−60𝜁
17

3
3 + 140𝜁

16

3
3 + 212𝜁

15

3
3

+ 112𝜁
14

3
3 − 40𝜁

13

3
3 + 8𝜁

11

3
3

− 36𝜁
10

3
3 + 40𝜁

9

3
3 + 184𝜁

7

3
3

+ 68𝜁
6

3
3 − 16𝜁

5

3
3 − 128𝜁

4

3
3

− 92𝜁
3

3
3 + 136𝜁

2

3
3 + 96𝜁33 + 36)

= 6 < 18 = 𝜑 (3
3
) ,

(74)

where p
3
= (𝜁

3
3 − 1). Thus 𝜆

3
(−239) = 6. This and other

similar computations (with the help of gp/pari) agree with
known results as found in [17], for example.

Under additional assumptions, we can compute lambda
invariants without having to compute an 𝜂 ∈ O

𝐾
as above. In

particular, the invariants can be computed using only a choice
of primitive root 𝑔 and themod 𝑝𝑛+1 data from the continued
fraction expansion of √ℓ.

Corollary 16. Suppose ℓ ≡ 3 (mod 4) is a prime such that
Q(√ℓ) has class number 1. For each 𝑘 let 𝑝

𝑘
and 𝑞

𝑘
denote

the numerator and denominator, respectively, of the 𝑘th con-
vergent in the “minus” continued fraction expansion √ℓ =

[[𝑏
0
; 𝑏

1
, . . . , 𝑏

𝑚
]] where 𝑚 is minimal period and 𝑝

−1
= 1,

𝑞
−1

= 0 by convention. Let 𝑝 ̸= ℓ be an odd prime such
that 𝑝 is inert in Q(√−ℓ) and that the fundamental unit 𝜀 =
𝑝
𝑚−1

+ 𝑞
𝑚−1

√ℓ has order 𝑟 modulo 𝑝 satisfying the following
technical assumptions:

(1) 𝑝2
∤ 𝜀

𝑟
− 1,

(2) 𝑟 = 𝑝 + 1 if 𝑝 ≡ 1 (mod 4),
(3) 𝑟 = (𝑝 − 1)/2 if 𝑝 ≡ 3 (mod 4).

Choose 𝑔 ∈ Z to be a primitive root modulo all powers of
𝑝, so there are integers 𝑒

1
, 𝑒

2
with ℓ ≡ 𝑔

𝑒1 (mod 𝑝𝑛+1
) and

2𝑒
2
≡ 𝑒

1
(mod 𝑝𝑛

). For all 𝑖, 𝑘 take 𝑝(𝑖)

𝑘
, 𝑞(𝑖)

𝑘
to be the least

nonnegative residues of 𝑔𝑖
𝑝
𝑘
, 𝑔𝑖

𝑞
𝑘
modulo 𝑝𝑛+1, and let 𝑠(𝑖)

𝑘
,

𝑡
(𝑖)

𝑘
denote the unique integers such that 𝑏

𝑘
𝑝

(𝑖)

𝑘−1
− 𝑝

(𝑖)

𝑘−2
= 𝑝

(𝑖)

𝑘
+

𝑠
(𝑖)

𝑘
𝑝

𝑛+1 and 𝑏
𝑘
𝑞
(𝑖)

𝑘−1
− 𝑞

(𝑖)

𝑘−2
= 𝑞

(𝑖)

𝑘
+ 𝑡

(𝑖)

𝑘
𝑝

𝑛+1. Then for sufficiently
large 𝑛,

𝜆
𝑝
(−ℓ) + 𝜆

𝑝
(−4)

= ordp𝑛
𝑝
𝑛
(𝑝−1)

∑

𝑖=1

𝜁
𝑖

𝑝
𝑛

𝑝
𝑛
𝑟𝑚

∑

𝑘=1

𝑡
(𝑖)

𝑘
𝑞
(𝑖)

𝑘−1
+ 𝜁

𝑒2

𝑝
𝑛𝑠

(𝑖)

𝑘
𝑝

(𝑖)

𝑘−1

2𝑝𝑛+1
,

(75)

where 𝜁
𝑝
𝑛 is a primitive 𝑝𝑛th root of unity.

Proof. Obviously, Assumptions A, B hold for 𝐾 = Q(√4ℓ)

and 𝑟
0

= 𝑟, so we may apply all of the ideas which
culminated in Theorem 12. In particular, we will exhibit
a set of representatives for (O

𝐾
/(𝑝

𝑛+1
))

× modulo 𝜀. The

assumption that 𝑝 is inert in Q(√−ℓ) is equivalent to the
statement that −ℓ is not a square modulo 𝑝. Thus for 𝑡 =

1, 2, . . . , 𝑝
𝑛+1

− 1 with 𝑝 ∤ 𝑡 we know that 𝑡√ℓ is a unit
modulo𝑝𝑛+1 which is never congruent to a power of 𝜀modulo
𝑝

𝑛+1 since otherwise −𝑡2ℓ = 𝑁(𝑡√ℓ) ≡ 1 (mod 𝑝𝑛+1
), a

contradiction. Nowwe use our technical assumptions on 𝜀. In
the case that 𝑝 ≡ 1 (mod 4), we have assumed that 𝑟 = 𝑝+1,
so 𝑝 is inert in 𝐾 = Q(√ℓ) and there is a unique element of
order two in (O

𝐾
/(𝑝

𝑛+1
))

×
≅ Z/(𝑝𝑛

(𝑝
2
− 1)) ⊕Z/(𝑝𝑛

) which
corresponds to −1 and is a power of 𝜀modulo 𝑝𝑛+1. Consider
the map

{𝑡, 𝑡√ℓ : 𝑡 = 1, 2, . . . , 𝑝
𝑛+1

− 1, 𝑝 ∤ 𝑡} → 𝐶
+

m (76)

given by the restriction of the map (O
𝐾
/(𝑝

𝑛+1
))

×
→ 𝐶

+

m

in (44). This map is two-to-one in the case just described.
Similarly, in the case that 𝑝 ≡ 3 (mod 4), we have assumed
that 𝑟 = (𝑝 − 1)/2 is odd, so 𝑝 is split in𝐾 = Q(√ℓ) and now
the map in (76) is one-to-one since −1 is not congruent to a
power of 𝜀 modulo 𝑝𝑛+1 in this case. By (43), (50), and (51),
we get for 𝑛 sufficiently large that 𝜆

𝑝
(−ℓ) + 𝜆

𝑝
(−4) is

ordp𝑛
𝑝
𝑛+1

∑

𝑡=1

𝑝∤𝑡

(𝜓
𝑛
(𝑡

2
) 𝜁 (0, [(𝑡)])

+ 𝜓
𝑛
(−𝑡

2
ℓ) 𝜁 (0, [(𝑡√ℓ)]))

= ordp𝑛

𝑝
𝑛
(𝑝−1)

∑

𝑖=1

𝜓
𝑛
(𝑔

2
)
𝑖

(𝜁 (0, [(𝑔
𝑖
)]) + 𝜓

𝑛
(𝑔)

𝑒1

⋅ 𝜁 (0, [(𝑔
𝑖√ℓ)]))

= ordp𝑛

𝑝
𝑛
(𝑝−1)

∑

𝑖=1

𝜁
𝑖

𝑝
𝑛

2

⋅

𝑝
𝑛
𝑟𝑚

∑

𝑘=1

(𝑏
𝑘
{
𝑔
𝑖
𝑞
𝑘−1

𝑝𝑛+1
}

2

− 2{
𝑔
𝑖
𝑞
𝑘−1

𝑝𝑛+1
}{

𝑔
𝑖
𝑞
𝑘−2

𝑝𝑛+1
}

+ 𝜁
𝑒2

𝑝
𝑛 (𝑏𝑘 {

𝑔
𝑖
𝑝
𝑘−1

𝑝𝑛+1
}

2

− 2{
𝑔
𝑖
𝑝
𝑘−1

𝑝𝑛+1
}{

𝑔
𝑖
𝑝
𝑘−2

𝑝𝑛+1
}))

= ordp𝑛

𝑝
𝑛
(𝑝−1)

∑

𝑖=1

𝜁
𝑖

𝑝
𝑛

2𝑝2(𝑛+1)

⋅

𝑝
𝑛
𝑟𝑚

∑

𝑘=1

((𝑏
𝑘
𝑞
(𝑖)

𝑘−1
− 𝑞

(𝑖)

𝑘−2
) 𝑞

(𝑖)

𝑘−1
− 𝑞

(𝑖)

𝑘−2
𝑞
(𝑖)

𝑘−1

+ 𝜁
𝑒2

𝑝
𝑛 ((𝑏𝑘𝑝

(𝑖)

𝑘−1
− 𝑝

(𝑖)

𝑘−2
) 𝑝

(𝑖)

𝑘−1
− 𝑝

(𝑖)

𝑘−2
𝑝

(𝑖)

𝑘−1
))
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= ordp𝑛

𝑝
𝑛
(𝑝−1)

∑

𝑖=1

𝜁
𝑖

𝑝
𝑛

2𝑝2(𝑛+1)

⋅

𝑝
𝑛
𝑟𝑚

∑

𝑘=1

(𝑝
𝑛+1
𝑡
(𝑖)

𝑘
𝑞
(𝑖)

𝑘−1
+ 𝑞

(𝑖)

𝑘
𝑞
(𝑖)

𝑘−1
− 𝑞

(𝑖)

𝑘−1
𝑞
(𝑖)

𝑘−2

+ 𝜁
𝑒2

𝑝
𝑛 (𝑝

𝑛+1
𝑠
(𝑖)

𝑘
𝑝

(𝑖)

𝑘−1
+ 𝑝

(𝑖)

𝑘
𝑝

(𝑖)

𝑘−1
− 𝑝

(𝑖)

𝑘−1
𝑝

(𝑖)

𝑘−2
)) ,

(77)

where p
𝑛
= (1 − 𝜁

𝑝
𝑛) with 𝜁

𝑝
𝑛 = 𝜓

2

𝑛
(𝑔) and 𝜓

𝑛
(𝑔)

𝑒1 =

𝜓
𝑛
(𝑔)

2𝑒2 = 𝜁
𝑒2

𝑝
𝑛 .

We have the formula 𝜀𝑗(𝑝
𝑘
+ 𝑞

𝑘
√ℓ) = 𝑝

𝑗𝑚+𝑘
+ 𝑞

𝑗𝑚+𝑘
√ℓ

for all integers 𝑗 ≥ 0, 𝑘 ≥ −1, so the sequences 𝑝
𝑘
, 𝑞

𝑘
are

periodic modulo 𝑝𝑛+1 with period 𝑝𝑛
𝑟𝑚. Thus for all 𝑖 ≥ 0,

the sequences 𝑝(𝑖)

𝑘
, 𝑞(𝑖)

𝑘
are periodic with period 𝑝𝑛

𝑟𝑚, so

𝑝
𝑛
𝑟𝑚

∑

𝑘=1

(𝑞
(𝑖)

𝑘
𝑞
(𝑖)

𝑘−1
− 𝑞

(𝑖)

𝑘−1
𝑞
(𝑖)

𝑘−2
)

= 0 =

𝑝
𝑛
𝑟𝑚

∑

𝑘=1

(𝑝
(𝑖)

𝑘
𝑝

(𝑖)

𝑘−1
− 𝑝

(𝑖)

𝑘−1
𝑝

(𝑖)

𝑘−2
) .

(78)

The result follows.

Remark 17. Also, we note that the periodicity also implies that
𝑝

(𝑖)

𝑘
, 𝑞(𝑖)

𝑘
are “palindromic” in the following sense:

𝑝
(𝑖)

𝑘−1
= 𝑝

(𝑖)

𝑝
𝑛
𝑟𝑚−𝑘−1

,

𝑞
(𝑖)

𝑘−1
= −𝑞

(𝑖)

𝑝
𝑛
𝑟𝑚−𝑘−1

.

(79)

As remarked above, the sequence 𝑏
𝑘
for 𝑘 ≥ 1 is periodic with

period 𝑚 and is “palindromic” with 𝑏
𝑘
= 𝑏

𝑚−𝑘
for 1 ≤ 𝑘 < 𝑚

while 2𝑏
0
= 𝑏

𝑚
= 𝑏

2𝑚
= 𝑏

3𝑚
= ⋅ ⋅ ⋅ . Hence if 1 ≤ 𝑘 ≤ 𝑝𝑛

𝑟𝑚/2,
then 𝑏

𝑘
= 𝑏

𝑝
𝑛
𝑟𝑚−𝑘

, so

𝑝
𝑛+1
𝑠
(𝑖)

𝑘
= 𝑏

𝑘
𝑝

(𝑖)

𝑘−1
− 𝑝

(𝑖)

𝑘−2
− 𝑝

(𝑖)

𝑘

= 𝑏
𝑝
𝑛
𝑟𝑚−𝑘

𝑝
(𝑖)

𝑝
𝑛
𝑟𝑚−𝑘−1

− 𝑝
(𝑖)

𝑝
𝑛
𝑟𝑚−𝑘

− 𝑝
(𝑖)

𝑝
𝑛
𝑟𝑚−𝑘−2

= 𝑝
𝑛+1
𝑠
𝑝
𝑛
𝑟𝑚−𝑘

(80)

and similarly 𝑡(𝑖)
𝑘
= −𝑡

(𝑖)

𝑝
𝑛
𝑟𝑚−𝑘

. This implies that we can replace
the upper index of the sum on 𝑘 with 𝑝

𝑛
𝑚𝑘/2 and still

maintain the same p
𝑛
-adic order. Of course, we could for the

same reason ignore the 2 in the denominator of our sum in
the corollary, but it is natural to include this factor of 2 since

𝑝
𝑛
(𝑝−1)

∑

𝑖=1

𝜁
𝑖

𝑝
𝑛

𝑝
𝑛
𝑟𝑚/2

∑

𝑘=1

𝑡
(𝑖)

𝑘
𝑞
(𝑖)

𝑘−1
+ 𝜁

𝑒2

𝑝
𝑛𝑠

(𝑖)

𝑘
𝑝

(𝑖)

𝑘−1

2𝑝𝑛+1
∈ Z [𝜁

𝑝
𝑛] . (81)

In fact, since themap in (76) is two-to-one when 𝑝 ≡ 1 (mod
4), we can replace the upper index on 𝑖 with 𝑝𝑛

(𝑝 − 1)/2 in
this case and still conclude the sum is inZ[𝜁

𝑝
𝑛]with the same

p
𝑛
-adic order.

Example 18. Let 𝑝 ≥ 5 be a Fermat prime and let ℓ ≡

3 (mod 4) be a prime such that 𝑝 is inert in Q(√−ℓ) and
Q(√ℓ) has class number 1. Then ℓ is quadratic nonresidue
modulo𝑝, so herewe can choose𝑔 = ℓ assuming additionally
that 𝑝2

∤ ℓ
𝑝−1

− 1. In this case 𝜁
𝑝
𝑛 = 𝜓

𝑛
(ℓ) is a primitive

𝑝
𝑛th root of unity with 𝜓

𝑛
(𝑔)

2
= 𝜁

2

𝑝
𝑛 , so we do not have to

worry about computing 𝑒
2
here. For 𝑝 fixed, these conditions

on ℓ are just congruence conditions modulo 4𝑝
2 plus the

assumption thatQ(√ℓ) has class number 1, so there should be
many such examples.We just need to check the conditions on
the fundamental unit in these cases in order for the corollary
to apply.

Let us consider the concrete case of 𝑝 = 5 and ℓ = 47.
Then 5 is inert in both 𝐾 = Q(√ℓ) (class number 1) and
Q(√−ℓ). We have

√47 = [[7; 7, 14]] (82)

so𝑚 = 2, the class number ofQ(√−ℓ) is (4−3+17−3)/3 = 5,
and the fundamental unit of𝐾 is

𝜀 = 𝑝
2−1

+ 𝑞
2−1
√ℓ = 48 + 7√47. (83)

It is easy to check that 𝜀 has order 6 = 𝑝 + 1 modulo 5 and
that 25 ∤ 𝜀6 − 1. For 𝑛 = 1, we compute

ordp1
10

∑

𝑖=1

𝜁
2𝑖

5

30

∑

𝑘=1

𝑡
(𝑖)

𝑘
𝑞
(𝑖)

𝑘−1
+ 𝜁

5
𝑠
(𝑖)

𝑘
𝑝

(𝑖)

𝑘−1

50

= ordp1 (6𝜁
3

5
+ 𝜁

2

5
+ 5𝜁

5
− 2) = 2 < 𝜑 (5) .

(84)

Hence 𝜆
5
(−47) + 𝜆

5
(−4) = 2. Since 5 divides the class

number ofQ(√−47) and 5 is split inQ(𝑖), we must have both
𝜆

5
(−47) ≥ 1 and 𝜆

5
(−4) ≥ 1, so 𝜆

5
(−4) = 1 = 𝜆

5
(−47).
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