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An independence test based on symbolic time series analysis (STSA) is developed. Considering an independent symbolic time
series there is a statistic asymptotically distributed as a CHI-2 with 𝑛 − 1 degrees of freedom. Size and power experiments for small
samples were conducted applying Monte Carlo simulations and comparing the results with BDS and runs test. The introduced test
shows a good performance detecting independence in nonlinear and chaotic systems.

1. Introduction

Economics presents a variety of dynamical processes. Linear-
ity, nonlinearity, deterministic chaos, and stochastic models
have been applied when modeling a complex reality. Even
more as highlighted byGabr and Fathey [1] the increasing use
of time series data has initiated a great deal of research and
developing attempts in the field of data mining. Classification
of time series data has a wide range of applications and
has attracted researches from a wide range of disciplines.
Detecting dependence in time series is an essential task for
econometricians and applied economists. In particular, as
highlighted by Brooks [2], testing for nonlinearity depen-
dence has become a relevant area of research due to its impli-
cations for model adequacy and predictability. Moreover, the
importance of testing randomness also at a microeconomic
level is already asserted by Wald and Wolfowitz [3]. They
designed a runs test and remarked that the problem of
testing randomness arises frequently in quality control of
manufactured products.

As mentioned by Shahwan and Said [4] obtaining
accurate stock prices forecast is one of the main goals
of finance and academic research institutions. Therefore,
finding evidence of nonlinearity in time series means that
forecasting can be improved by switching from a linear to
a nonlinear model. Furthermore, detecting dependence in
the residual of a linear model is considered as evidence
of nonaccuracy representation of the data. As Granger et
al. [5] assert, even though economics is rich in dynamical
processes, most commonly used test statistics are functions of

correlation motivated by linear relations involving contin-
uous variables and/or Gaussian process. They remark that
numerous diagnostics are used to examine model residuals
for departure from “independence,” i.i.d., reversibility, mar-
tingale difference, and other properties.

There is extensive literature about testing independence
and nonlinearity. Correlation tests are widely applied (see
King [6] for a survey), but as highlighted by [7] correlation
tests are not consistent against alternatives with zero autocor-
relation. ARCH model, bilinear, nonlinear moving average
(NLMA) process, and iterative logistic maps are examples
of serially dependent processes with zero correlation. The
Durbin-Watson (DW) test proposed by Durbin and Watson
[8, 9] is by far the most common test for first-order autocor-
relatedAR(1) errors and extended by [10, 11]. However, DW is
a test specialized in linear dependence, having low sensitivity
to nonlinear dependent processes (see Azzalini and Bowman
[12]).

Reference [13] makes a bibliography of a series of non-
parametric tests based on instruments such as runs, signs,
ranks, permutations, frequency counts, records, and quotas.
The well-known runs test was proposed by Wald and Wol-
fowitz [3] and is based on the repeated occurrence of the same
value or category of a variable such as the sign. Runs test of
randomness assumes that themean and variance are constant
and the probability is independent.

Reference [14] conducts a competition among the best
of the available tests for nonlinearity and chaos. The one
proposed by Hinich [15] has zero power against some forms
of nonlinearity. The Lyapunov exponent test suggested by
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[16] is a test of chaos and it does not detect other types of
nonlinearity. White test (see [17]) is a test of nonlinearity
under the hypothesis of linearity in the mean. For instance,
it correctly accepts linearity in the mean of the ARCH and
GARCH processes, even if they are nonlinear processes. The
null hypothesis of Kaplan’s test [18] is linearity of the process.

Reference [19] proposes the BDS test to detect chaotic
processes. However, it also serves as an independence test or
nonlinear test showing a high power against a vast class of
nonlinear alternatives.

Entropy has also been applied to test independence.
References [20–22] suggest measures of serial dependence
based on entropy. A normalized smoothed nonparametric
entropymeasure of serial dependence is proposed byGranger
and Liu [23]. Granger et al. [5] introduce transformed
metric entropy of dependence. A Kernell-based nonpara-
metric entropy estimator of serial dependence is suggested
by Hong and White [24]. Reference [7] constructs a test of
independence by using symbolic dynamics and permutation
entropy commented and criticized by Elsinger [25].

Reference [26] presents a method based on observable
ordinal patterns to discriminate white noise from determin-
istic time series corrupted with high levels of white noise.
Reference [27] introduces amultiscale symbolic information-
theory approach for discriminating nonlinear deterministic
and stochastic dynamics from time series associated with
complex systems. References [28–30] suggest a test for dis-
tinguishing regular from chaotic dynamics in deterministic
dynamical systems. In [31] the authors present a theoretical
justification of the 0-1 test for chaos. In [32] the authors
applied the 0-1 test to detect numerically the chaos in the
proposed fractional order financial system.

Recently, Cánovas et al. [33] have made a comparative
study of tests to detect whether a time series comes from an
IID random variable or not. They have found that BDS and
permutation type tests fail in detecting dependence. Accord-
ing to the authors testing independence is very complicated
and, in their opinion, the combination of several tests is
necessary.

In the present paper, a new simple and powerful test is
proposed based on symbolic time series analysis (STSA).The
STSA approach considered in the present work is extensively
explained in [34–37]. The introduced test shows a good
performance detecting dependence in nonlinear and chaotic
systems.

The paper is organized as follows. The next section
presents the symbolic time series analysis approach. Section 3
proposes and derives the symbolic random test. Size and
power tests are conducted in Section 4. Independence and
nonlinearity in financial time series are tested in Section 5.
Finally, Section 6 draws some conclusions and further line of
research.

2. Symbolic Time Series Analysis

As mentioned by Finney et al. [38] the concept of symboliza-
tion has its roots in dynamical-systems theory, particularly in
the study of nonlinear systems which can exhibit bifurcation

and chaos. Besides the computational efficiency, symbolic
methods are also robust when noise is present. Williams [39]
highlights that symbolic dynamics is a method for study-
ing nonlinear discrete-time systems by taking a previously
codified trajectory using sequences of symbols from a finite
set also called alphabet. However, as Piccardi [35] remarks
symbolic dynamics should be differentiated from symbolic
analysis. The former denotes theoretical investigation on
dynamical systems. The latter is suggested when data are
characterized by lowdegree of precision.The idea in symbolic
analysis is that by discretizing the data with the right partition
we obtain a symbolic sequence.This sequence is able to detect
the very dynamic of the process when data are highly affected
by noise.

Data symbolization implies transforming an original
series of measurements into a limited number of discrete
symbols. The resulting symbolic series can be analyzed for
nonrandom temporal patterns. It means that, given a time
series {𝑥

𝑡
}
𝑡=1,2,...,𝑇

∗ , we study the dependence by translating
the problem into a symbolic time series {𝑠

𝑡
}
𝑡=1,2,...,𝑇

∗ .
Let us consider a time series {𝑥

𝑡
}
𝑡=1,2,...,𝑇

∗ where 𝑇
∗

is the sample size. Symbolic time series analysis (STSA)
approach suggests as first step to take a partition such that the
individual occurrence of each symbol is equiprobable with all
others.The result is {𝑠

𝑡
}
𝑡=1,2,...,𝑇

∗ , a symbolized time series. For
instance, imagine that {𝑥

𝑡
}
𝑡=1,2,...,𝑇

∗ is a time series generated
by a Gaussian white noise; we can define a discretization of
two regions by establishing 𝑠

𝑡
= 0 when 𝑥

𝑡
takes a value

in the first 50% of the density function and 𝑠
𝑡

= 1 in the
other case. The new discrete time series of events {𝑠

𝑡
}
𝑡=1,2,...,𝑇

∗

would be similar to a series generated by tossing a coin. Of
course, different discretization could be applied; for example,
six equally likely symbols could be interpreted as tossing a die.

Theory calls the set of 𝑎 symbols alphabet (𝐴) and the
sequences of length 𝑤 words. As a second step, symbol
sequences of different lengths should be computed generating
new symbolic time series for each 𝑤. The first symbolization
𝑤 = 1 is the trivial one, the symbolization of the original
time series. A second symbolization is applied for 𝑤 = 2

and so on. Consider the last example about the symbolized
Gaussian variable in two symbols (𝑎 = 2); the sequence of
two consecutive symbols (𝑤 = 2) produces four possible
events (𝑎𝑤 = 4), the sequence of three consecutive symbols
(𝑤 = 3) produces eight (𝑎𝑤 = 8), and so on. Because of an
equiprobable partition, the relative frequency of each possible
sequence for truly random data will be equal. Following the
example, for 𝑎 = 2 and 𝑤 = 2 we know that each event from
{(0,0), (0,1), (1,0), (1,1)} has probability 1/4 and for 𝑎 = 2

and 𝑤 = 3 we have {(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0),
(1,0,1), (1,1,0), (1,1,1)} with probability 1/8 for each event. In
general, for a symbolized random process the probability of
each sequence of length𝑤 is 𝑎−𝑤; let us call these total possible
events 𝑛.

Once the symbolized time series is obtained, the third
step implies computing all the relative frequencies for all
the computed symbol sequences in the data. Note that in
the present case, since the partition is defined by dividing
the frequency in equally probable regions, analyzing the
frequency for𝑤 = 1 is trivial.The interest of the present work
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will be for 𝑤 > 1; it is considering subsequences of two or
more symbols.

Since in practice we do not have infinite time series, we
have to work with finite sample and the differences between
relative frequencies and theoretical probability can be due
to finite sample. Therefore it is worthy to obtain statistics in
order to test the independence null hypothesis and to analyze
the finite sample problem.

3. Symbolic Independence Test

The purpose of the present section is to derive a simple statis-
tic and its asymptotic distribution when the process under
study is independent. In particular, the statistic performance
is analyzed for finite sample.

Let us consider a finite time series generated by an
independent or random process sized 𝑇

∗
{𝑥
𝑡
}
𝑡=1,2,...,𝑇

∗ . Define
a partition in the series in “𝑎” equiprobable regions obtaining
the symbolized time series {𝑠

𝑡
}
𝑡=1,2,...,𝑇

∗ where each sym-
bol 𝑠
𝑡
takes a symbolic value from the alphabet 𝐴 =

{𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑎
}.

Since we want to derive a general statistic for different
alphabet sizes 𝑎 and different subsequences lengths 𝑤, we
have to make two considerations. (1) 𝑛 is the quantity of
possible events. That is, 𝑛 = 𝑎

𝑤, where for the simplest case
(𝑤 = 1) implies 𝑛 = 𝑎 and then the quantity of events is equal
to the symbol set size. (2) In practice, we have a finite sample
size 𝑇∗; there is no problem for𝑤 = 1, but when we compute
subsequences or time windows 𝑤 of consecutive symbols
we lose observations. For example, when we compute the
frequency for 2 consecutive symbols, we have a total sample
size 𝑇

∗
− 1. In general, we can define the sample size 𝑇 =

𝑇
∗
+ 𝑤 − 1; again for the trivial case 𝑤 = 1, 𝑇∗ = 𝑇.
Note that, defining 𝑆

𝑖
for 𝑖 = 1, 2, . . . , 𝑛 as the sum

of the total 𝑖 events in the time series, we can derive the
multidimensional variable 𝑆 = {𝑆

𝑖
/𝑇} being distributed as

a multinomial with (𝑆
𝑖
/𝑇) = (1/𝑛), Var(𝑆

𝑖
/𝑇) = (1/𝑛)(𝑛 −

1)/𝑛𝑇, and Cov(𝑆
𝑖
, 𝑆
𝑗
) = −(1/𝑛)(1/𝑛𝑇) for all 𝑖 ̸= 𝑗. In the

example of tossing a coin we have two symbols for the two
events 𝑆

1
and 𝑆

2
(𝑛 = 2) and 𝑆 is a distributed binomial

withmean 1/2 and variance (1/4𝑇). However, for consecutive
events of length 𝑤 = 2 we have a variable 𝑆 distributed
multinomial with mean 1/4 and variance (3/16𝑇).

As we will see, frequencies of the events should be impor-
tant in the statistic and the vector of the 𝑛 frequencies 𝑆

𝑖
/𝑇

could be approximated by a multivariate normal distribution
𝑁(1/𝑛, 𝜎

2
Σ) where 𝜎

2 is (1/𝑛𝑇) and Σ is an idempotent
matrix as

Σ
𝑛×𝑛

≡

[

[

[

[

[

[

[

[

[

(𝑛 − 1)

𝑛

−

1

𝑛

⋅ ⋅ ⋅ −

1

𝑛

−

1

𝑛

(𝑛 − 1)

𝑛

⋅ ⋅ ⋅ −

1

𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

−

1

𝑛

−

1

𝑛

⋅ ⋅ ⋅

(𝑛 − 1)

𝑛

]

]

]

]

]

]

]

]

]

. (1)

For convenience we can define the vector variable {𝜀
𝑖
} =

{(𝑆
𝑖
/𝑇) − (1/𝑛)}

𝑖=1,2,...,𝑛
having a multivariate normal distri-

bution 𝑁(𝜙, 𝜎
2
Σ), 𝜙 being the null vector. Then the statistic

can be defined as

{

∑
𝑖=𝑛

𝑖=1
𝜀
2

𝑖

𝜎
2

} . (2)

The term in brackets in (2) is a quadratic form in random
normal variables. As Mathai and Provost [40] assert, the
distribution of quadratic forms in normal variables has been
extensively studied by many authors. Various representations
of the distribution function have been derived and several
different procedures have been given for computing the
distribution and preparing appropriate tables. Approximated
distributions have been proposed by [41–45]. In the present
paper the following theorem in [40, page 197] is applied.

Consider the vector 𝑋 distributed as a multivariate
normal distributionwithmean vector 𝜙 and possibly singular
covariancematrixΣ. A quadratic form𝑋

󸀠
𝐴𝑋 is distributed as

a CHI-2 with 𝑟 degrees of freedom if the following necessary
and sufficient conditions are satisfied:

(i) (𝐴Σ)
2
= (𝐴Σ)

3 and tr(𝐴Σ) = 𝑟

(ii) tr(𝐴Σ)
2
= tr(𝐴Σ) = 𝑟 and 𝜌(Σ𝐴Σ) = 𝑟.

Note that the theorem can be applied in the present case
where vector 𝑋 = (𝜀

1
/𝜎, 𝜀
2
/𝜎, . . . , 𝜀

𝑛
/𝜎) is distributed

multivariate normal 𝑁(𝜙, Σ). In this case 𝐴 is the identity
matrix 𝐼 and Σ is symmetric, singular, and idempotent. Since
tr(𝐴Σ) = 𝑛 − 1,𝑋󸀠𝐴𝑋 distributes CHI-2 with (𝑛 − 1) degrees
of freedom.

Considering that 𝜎
2

= (1/𝑛𝑇), we obtain that the
distribution of the symbolic randomness statistic (SRS) as

SRS ≡ 𝑇𝑛{

𝑖=𝑛

∑

𝑖=1

(

𝑆
𝑖

𝑇

−

1

𝑛

)

2

}

asymptotically distributes 𝜒
2

𝑛−1
.

(3)

Note that computing the statistic is very simple. We just
have to know the sample size (𝑇), the symbols (𝑎), and
subsequences or length (𝑤) and compute the frequencies for
each event (𝑛 = 𝑎

𝑤
) in the time series (𝑆

𝑖
).

In summary, the test works as follows.

Step 1. Considering time series {𝑥
𝑡
}
𝑡=1,2,...,𝑇

∗ , compute the
empirical distribution and define equiprobable regions
according to the quantity of symbols or the alphabet size.

Step 2. According to the partition, translate {𝑥
𝑡
}
𝑡=1,2,...,𝑇

∗ into
{𝑠
𝑡
}
𝑡=1,2,...,𝑇

∗ , the symbolic time series when 𝑤 = 1.

Step 3. Compute different symbolic time series for different
lengths 𝑤; remember that the obtained series in Step 2
corresponds to 𝑤 = 1.

Step 4. For each 𝑤, compute the frequency of the 𝑛 different
events 𝑆

𝑖
/𝑇 for 𝑖 = 1, 2, . . . , 𝑛.
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Step 5. For each 𝑤, compute the SRS(𝑎, 𝑤) =

𝑇𝑛{Σ(𝑆
𝑖
/𝑇 − 1/𝑛)

2
} as shown in (3).

Step 6. Compare the SRS(𝑎, 𝑤) with the CHI-2 with 𝑛 −

1 degrees of freedom at 0.05 of significance, under the
independence null hypothesis. When SRS(𝑎, 𝑤) is larger than
the critical value, we reject the null hypothesis.

As an example consider a time series sized 𝑇 = 50 of
tossing a coin (𝑛 = 2 events), the SRS is computed as 50 ⋅ 2 ⋅

{[(𝑆
1
/50) − (1/2)]

2
+ [(𝑆
2
/50) − (1/2)]

2
} where 𝑆

1
and 𝑆
2
are

the times event 1 (cross) and event 2 (pile) appearing in the
time series, respectively. In this case SRS should be compared
with the critical value 3.84 from a Chi2 with 1 degree of
freedom (alpha = 0.05). Since the process is random, SRS
should be less than the critical value. For consecutive symbols
of length 𝑤 = 2, we have (50 − 1) ⋅ 4 ⋅ {[(𝑆

1
/50) − (1/4)]

2
+

[(𝑆
2
/50) − (1/4)]

2
+ [(𝑆
3
/50) − (1/4)]

2
+ [(𝑆
4
/50) − (1/4)]

2
}

compared with the critical value 7.81 from a Chi2 with 3
degrees of freedom (alpha = 0.05).

It could be shown that the SRS coincides with the Pearson
independence statistic applied to the symbolic time series.
Even more, this statistic is related to the Shannon entropy. In
order to see the latter, let us consider 𝐻 as the normalized
Shannon entropy (𝐻) where 𝐻 = 0 for a certain process and
𝐻 = 1 for a random process. Substituting the probabilities
in𝐻 for the frequencies corresponding to the symbolic series
(𝑆
𝑖
/𝑇), we have

𝐻 ≡

−1

log
2
(𝑛)

𝑖=𝑛

∑

𝑖=1

(

𝑆
𝑖

𝑇

) log
2
(

𝑆
𝑖

𝑇

) . (4)

The distribution of (𝑆
𝑖
/𝑇) is known, but the logarithmic

function introduces some difficulty to obtain the exact dis-
tribution of𝐻. However, we can take a linear approximation
when the variable is less than 1 in absolute value. In the
present case, we have defined the multinomial distributed
vector {𝜀

𝑖
} = {(𝑆

𝑖
/𝑇) − (1/𝑛)}

𝑖=1,2,...,𝑛
substituting (𝑆

𝑖
/𝑇) for

𝜀
𝑖
+ (1/𝑛) for all 𝑖 = 1, 2, . . . , 𝑛 in𝐻, we have

𝐻 ≡

−1

log
2
(𝑛)

𝑖=𝑛

∑

𝑖=1

(𝜀
𝑖
+

1

𝑛

) log
2
(𝜀
𝑖
+

1

𝑛

) . (5)

Note that |𝜀
𝑖
| ≤ 1, its mean is 0, and the variance is (𝑛−1)/𝑇𝑛

2

which is decreasing with the sample size and the number of
events. Given that log

2
(𝜀
𝑖
+ 1/𝑛) = log

2
(1 + 𝑛𝜀

𝑖
) − log

2
(𝑛),

a linear approximation for 𝜀
𝑖
= 0 of log

2
(1 + 𝑛𝜀

𝑖
) ≈ 𝑛𝑐𝜀

𝑖

and then log
2
(𝜀
𝑖
+ 1/𝑛) = 𝑛𝑐𝜀

𝑖
− log
2
(𝑛) where 𝑐 = 1/ ln(2).

Equation (6) develops 𝐻 when the expressions mentioned
before are introduced:

𝐻 ≈

−1

log
2
(𝑛)

{

𝑖=𝑛

∑

𝑖=1

(

𝑛𝜀
𝑖
+ 1

𝑛

) (𝑛𝑐𝜀
𝑖
− log
2
(𝑛))} ,

𝐻 ≈

−1

𝑛 ⋅ log
2
(𝑛)

{𝑛
2
𝑐

𝑖=𝑛

∑

𝑖=1

𝜀
2

𝑖
− 𝑛 ⋅ log

2
(𝑛)

𝑖=𝑛

∑

𝑖=1

𝜀
𝑖

+ 𝑛𝑐

𝑖=𝑛

∑

𝑖=1

𝜀
𝑖
− 𝑛 ⋅ log

2
(𝑛)} .

(6)

Note that Σ𝜀
𝑖

= 0 since Σ𝜀
𝑖

= Σ{Σ(𝑆
𝑖
/𝑇) − Σ(1/𝑛)} =

Σ{(𝑇/𝑇) − (𝑛/𝑛)} = 0 and multiplying and dividing by 𝜎
2 the

𝐻 is expressed in

𝐻 ≈ 1 −

𝑛𝑐

log
2
(𝑛)

𝜎
2
{

∑
𝑖=𝑛

𝑖=1
𝜀
2

𝑖

𝜎
2

} . (7)

4. Size and Power of the Symbolic
Randomness Test

Once the statistic and its asymptotic distribution were
obtained, we can proceed to study the performance in finite
small samples and the power detecting different forms of
dependency (stochastic and deterministic).

As shown, SRS(𝑎, 𝑤) is asymptotically distributed as a
CHI-2 with 𝑛 − 1 = 𝑎

𝑤
− 1 degrees of freedom, where 𝑎 is the

number of symbols and𝑤 represents the subsequence length
of consecutives symbols in the time series.

In practice, the SRS can be applied to residual series of a
fitted model to detect independence or nonlinearity, similar
to the BDS test. For instance, to test nonlinearity it can be
applied to the residuals of a fitted linear model such as an
ARMA (𝑝, 𝑞)model.

Experiments were conducted in order to show the size
and power of the introduced SRS test. The BDS test was
applied in order to compare the results. As known, BDS test
depends on two parameters: embedding dimension (𝑚) and
epsilon (𝜀). We applied combinations of 𝑚 and 𝜀 suggested
by Kanzler [46] who after conducting a series experiments
obtains that 𝑚 = 2 and 𝜀 = 1.5 appear to give the best
approximation. Liu et al. [47] conduct experiments of size and
power obtaining a combination of 𝑚 = 3 and 𝜀 around 0.26
as the best size. In addition, critical values simulated for small
sample by Kanzler [46] were applied.

The following experimentwas conducted to study the SRS
size. 10,000MonteCarlo simulationswere conducted for time
series of a pseudorandom Gaussian i.i.d. (0,1) for different
sample sizes (𝑇 = 50,𝑇 = 200,𝑇 = 500, and𝑇 = 2, 000). Note
that, at first, our interest is the performance in small sample
as is common in economic time series. The BDS test, runs
test and the present SRS test were applied considering critical
values with significance levels 𝛼 = 0.01, 𝛼 = 0.05, and 𝛼 =

0.10. Therefore we computed the percent of rejection of the
independence null hypothesis over the 10,000 Monte Carlo
simulations for each test, sample size, and significance level.
If the critical values are unbiased, the percentage of rejection
of null hypothesis of independence when the process is truly
independent should be near the significance levels. It means
that for 𝛼 = 0.05 the percentage of null hypothesis rejection
should be near 5% for a truly random process.

Table 1 shows the percentage of the null hypothesis
rejection for a random process. Note that the columns
indicate the different applied symbols (2, 3, 4, and 5) and the
significance levels (𝛼 = 1%, 5%, and 10%). The rows show the
different sample sizes (𝑇= 50,200,500,2000) and lengths (2, 3,
4, and 5). Two general comments can be mentioned: (1) for a
time series size less than 2,000 it is not advisable to applymore
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than 4 symbols; (2) the smaller the sample size, the smaller
the number of symbols and length than should be applied.

In general the test seems to be conservative rejecting the
null hypothesis less times than expected. Being a conservative
test, it should be contrastedwith its power detecting indepen-
dence in nonlinear and chaotic systems as will be shown later.

Considering the four sample sizes, selecting 2 symbols
and length of 4 presents decent results in most of the cases.

Selecting 3 symbols seems to be a relative good option for
size of 200 or larger and 4 symbols for a sample size of 500 or
larger.

There is not a best measure of the deviation from alpha in
practice. However, note that, from the set of results presented
in Table 1, the best results are given for a sample of 2,000
applying 3 symbols and length of 4 (SRS(3,4)) and for 2
symbols and length of 5 (SRS(2,5)). In the case of SRS(3,4)
the results are conservative since the percentages of rejections
(1.14%, 4.19%, and 6.94%) are the best deviation from below
1%, 5%, and 10%. On the other hand, SRS(2,5) shows the best
deviation (2.41, 5.79, and 8.64) from above. We consider that
combination showing the best results from below (SRS(3,4))
is better because it reduces the risk of accepting nonrandom
process when the process is truly random. This will be
important when power tests detecting different processes
were conducted.

To obtain comparable results, the same Monte Carlo
simulations applied to the SRS test were considered when
computing the BDS test and runs test. Table 2 shows the
percentage of null hypothesis rejection for the runs and the
BDS tests. Note that the columns indicate different significant
levels (𝑎 = 1%, 5%, 10%) for different sample sizes (𝑇 = 50,
200, 500 and 2000).The rows indicate the different tests, three
versions of BDS test and the runs test.The results suggest that
both tests are also conservative.

In the case of the BDS test three suggested combinations
of 𝑚 and 𝜀 were applied as mentioned before. In this case
for a sample size of 50 the simulated critical values for small
samples conducted by Kanzler [46] present the best results.
For a sample size of 200, simulated critical values suggested
by Kanzler [46] are the best. Parameters suggested by Liu
et al. [47] also indicate acceptable results. For samples of
500 and 2,000 parameters suggested by Kanzler [46] and his
simulated critical values for small samples present results near
the significance levels.

Although runs test is also conservative, the rejection
percentages are nearer to the expected. Note also that as the
sample size increases, rejection percentages are better.

The next experiment of power will try to show how
powerful these tests are detecting independence in nonlinear
and chaotic systems.

At this point some generator processes suggested by the
literature were considered (see, e.g., [7, 12, 14, 25, 47, 48]).The
next 20 generator processes were applied.

(1) Normal. Randomprocess generated by aNormal(0,1).
(2) CHI-2(4). Random process generated by a Chi2 with

4 degrees of freedom.
(3) 𝑡-Student(4). Random process generated by a 𝑡-

student(4).

(4) TruncatedNormal Distribution. Randomprocess gen-
erated by a truncated normal distribution (0,1) at the
range [−1.75, +1.75].

(5) Beta(1/2, 1/2). Random process generated by a Beta
distribution(1/2, 1/2).

(6) Uniform(0,1). Random process generated by a Uni-
form(0,1).

(7) AR(1). Consider 𝑋
𝑡
= 0.45𝑋

𝑡−1
+ 𝜀
𝑡
.

(8) MA(2). Consider 𝑋
𝑡
= 𝜀
𝑡
− 0.1𝜀

𝑡−1
+ 0.2𝜀

𝑡−2
.

(9) Logistic. Consider 𝑋
𝑡
= 4𝑋
𝑡−1

(1 − 𝑋
𝑡−1

).
(10) Henon. Consider 𝑋

𝑡
= 1 + 𝑌

𝑡−1
− 1.4𝑋

2

𝑡−1
and

𝑌
𝑡

= 0.3𝑋
𝑡−1

, with initial conditions 𝑌
1
generated

randomly by |𝑁(0, 0.01)| and 𝑋
1
= 1. Time series 𝑋

𝑡

is considered in the study.
(11) Anosov. Consider 𝑋

𝑡
= mod(𝑋

𝑡−1
+ 𝑌
𝑡−1

)
1
and 𝑌

𝑡
=

mod (𝑥
𝑡−1

+ 2𝑌
𝑡−1

)
1
, with initial conditions𝑋

1
and𝑌
1

generated randomly. Time series 𝑋
𝑡
is considered in

the study.
(12) Lorenz. Consider 𝑋

𝑡
= (1 + (1.2 ∗ 0.8))𝑋

𝑡−1
−

0.8𝑋
𝑡−1

𝑌
𝑡−1

and 𝑌
𝑡
= (1 − 0.8)𝑌

𝑡−1
+ 0.8𝑋

2

𝑡−1
, with

initial conditions𝑋
1
and𝑌
1
generated randomly.This

is a discrete version of the Lorenz process and time
series𝑋

𝑡
is considered in the study.

(13) TAR (Threshold Autoregressive). Consider 𝑋
𝑡

=

0.9𝑋
𝑡−1

+ 𝜀
𝑡
for |𝑋

𝑡−1
| ≤ 1 and 𝑋

𝑡
= −0.3𝑋

𝑡−1
+ 𝜀
𝑡

for |𝑋
𝑡−1

| > 1.
(14) NLSIGN (Nonlinear Sign). Consider 𝑋

𝑡
=

0.45 sign(𝑋
𝑡−1

) + 𝜀
𝑡
.

(15) Bilinear. Consider 𝑋
𝑡
= 0.7𝑋

𝑡−1
𝜀
𝑡−2

+ 𝜀
𝑡
.

(16) NLAR (Autoregressive Nonlinear). Consider 𝑋
𝑡

=

(0.7|𝑋
𝑡−1

|)/(2 + |𝑋
𝑡−1

|) + 𝜀
𝑡
.

(17) NLMA (Nonlinear Moving Average). Consider 𝑋
𝑡
=

𝜀
𝑡
− 0.4𝜀

𝑡−1
+ 0.3𝜀

𝑡−2
+ 0.5𝜀

𝑡
𝜀
𝑡−2

.
(18) BLMA (Bilinear Moving Average). Consider 𝑋

𝑡
=

0.4𝑋
𝑡−1

− 0.3𝑋
𝑡−2

+ 0.5𝑋
𝑡−1

𝜀
𝑡−1

+ 0.8𝜀
𝑡−1

+ 𝜀
𝑡
.

(19) Modular. Consider 𝑋
𝑡
= |(mod(𝑡)

3
− 1)(−1)

𝑡
|(−1)
𝑡
+

1 + 𝜀
𝑡
.

(20) EGARCH. Consider ℎ
𝑡
= 0.25 + 0.5𝑋

2

𝑡−1
+ 0.6ℎ

𝑡−1

when 𝜀
𝑡
< 0 or ℎ

𝑡
= 0.25 + 0.5𝑋

2

𝑡−1
+ 0.6ℎ

𝑡−1
for 𝜀
𝑡
> 0

and𝑋
𝑡
= 𝜀
𝑡
√ℎ
𝑡
is an exponential GARCH.

Processes (1)–(6) indicate different distribution func-
tions; (7)-(8) are two linear stationary processes; (9)–(12)
are deterministic chaotic processes; (13)–(20) are nonlinear
stochastic processes. As suggested, the tests were applied to
the raw series in the cases of (1)–(6) and the chaotic processes
(9)–(12). However, the tests are conducted on the residual
of autoregressive processes in the cases of (7)-(8) and (13)–
(20) to eliminate the linear dependence.These processes were
produced using MatLab R2010a.

Tables 3 to 6 show the percentage of null hypothesis
rejection for the different sample sizes. The first five rows
are the results for the random processes. Since the results
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Table 1: Size of the symbolic random test. Percentage of the null hypothesis rejection.

Length 2 symbols 3 symbols 4 symbols 5 symbols
𝛼 = 1% 𝛼 = 5% 𝛼 = 10% 𝛼 = 1% 𝛼 = 5% 𝛼 = 10% 𝛼 = 1% 𝛼 = 5% 𝛼 = 10% 𝛼 = 1% 𝛼 = 5% 𝛼 = 10%

𝑇 = 50 𝑇 = 50 𝑇 = 50 𝑇 = 50

2 0.01 0.41 1.03 0.28 0.47 0.97 24.68 24.68 24.75 24.68 24.68 24.68
3 0.89 1.95 3.27 98.00 98.00 98.00 100.00 100.00 100.00 100.00 100.00 100.00
4 40.10 40.39 40.68 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 99.80 99.80 99.80 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

𝑇 = 200 𝑇 = 200 𝑇 = 200 𝑇 = 200

2 0.05 0.59 1.14 0.06 0.42 1.06 0.05 0.32 0.82 0.00 0.00 0.00
3 0.54 1.97 3.64 1.18 2.44 3.76 89.67 89.67 89.69 89.67 89.67 89.67
4 1.31 3.74 6.17 99.84 99.84 99.84 100.00 100.00 100.00 100.00 100.00 100.00
5 7.84 10.57 13.06 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

𝑇 = 500 𝑇 = 500 𝑇 = 500 𝑇 = 500

2 0.06 0.54 1.27 0.09 0.47 1.03 0.05 0.31 0.80 0.01 0.01 0.03
3 0.52 1.91 3.49 0.52 1.86 3.69 1.89 3.27 4.73 1.52 1.52 1.52
4 1.28 3.55 6.16 12.23 14.02 16.02 100.00 100.00 100.00 100.00 100.00 100.00
5 2.15 5.65 8.93 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

𝑇 = 2000 𝑇 = 2000 𝑇 = 2000 𝑇 = 2000

2 0.08 0.44 1.25 0.06 0.33 0.90 0.02 0.42 1.05 0.00 0.00 0.00
3 0.50 2.03 3.45 0.44 1.88 3.79 0.34 1.72 3.51 0.00 0.00 0.00
4 1.32 3.77 6.32 1.14 4.19 6.94 8.78 11.22 13.88 8.01 8.01 8.01
5 2.41 5.79 8.64 8.13 11.63 14.97 100.00 100.00 100.00 100.00 100.00 100.00
Note: 10,000 Monte Carlo simulations were conducted applying the normally distributed pseudorandom numbers fromMatLab R2010a.
Bold values refer to reasonable percentage of rejections considering the process and the critical values.

Table 2: Size of the BDS and runs tests.

Test 𝛼 = 1% 𝛼 = 5% 𝛼 = 10% 𝛼 = 1% 𝛼 = 5% 𝛼 = 10% 𝛼 = 1% 𝛼 = 5% 𝛼 = 10% 𝛼 = 1% 𝛼 = 5% 𝛼 = 10%
𝑇 = 50 𝑇 = 200 𝑇 = 500 𝑇 = 2000

BDS [36] 9.30 19.83 27.83 2.57 8.82 15.55 1.27 6.16 12.07 1.22 5.56 10.55
BDS [37] 4.07 10.80 16.79 1.12 4.86 8.95 0.58 3.53 7.36 0.61 3.05 6.30
BDS [36] small sample 0.76 4.69 9.45 1.03 4.74 9.99 0.83 4.82 10.37 1.25 5.33 10.48
Runs test 0.59 3.25 6.65 0.93 4.23 8.99 0.95 4.41 9.31 0.88 4.50 9.38
Note: 10,000 Monte Carlo simulations were conducted applying the normally distributed pseudorandom numbers fromMatLab R2010a.
Bold values refer to reasonable percentage of rejections considering the process and the critical values.

of these five models work as a size test for an 𝛼 = 5% and
a conservative approach will be considered, a percentage of
rejection equal to or less than 5%will be considered as a good
result. For the nonlinear model we will follow the approach
by Liu et al. [47]; a rejection percentage larger than 90%when
the process is not independent suggests a very good power,
and a percentage less than 50% means that the test does not
easily detect nonlinearity.

Table 3 shows the results of the power experiment when
a very small sample size 𝑇 = 50 is considered and computing
5,000 Monte Carlo simulations. SRS test presents the best
results considering 3 symbols and a length of 2, SRS(3,2).The
five processes generated by the randomdistribution functions
show a percentage of rejection less than 5% showing the
conservative character of the test. However, consider that
it is able to detect three of the four deterministic chaotic
processes with a percentage of rejection larger than 95% for
Lorenz, Logistic, and Henon. The BDS test performance is

worse than SRS. Note that simulated critical values for small
samples have good performance for three of the five random
distributions, but it is not able to detect truncated normal
distribution, Uniform, and Beta(1/2,1/2) for this sample size.
BDS test is able to detect two of the chaotic processes. On the
other hand, runs test has the best performance detecting the
five random distributions, but it just detects one of the four
chaotic processes.

In summary, no test with a good size is able to detect
the stochastic nonlinear processes when the sample size is
50 with a percentage larger than 50%. SRS(3,2) detects 11/20
processes, BDS 5/20, and runs test 8/20.

Table 4 shows the results for the experiment when 𝑇 =

200. As expected with a sample larger than 50 the results
improve. For the SRS the best results are obtained with
3 symbols and a length of 3. The six random processes
and the residuals of AR(1) and MA(1) are detected by the
test. Four of five chaotic processes are correctly rejected at
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Table 3: Power test for a time series size of 50.

Generator process SRS(2,2) SRS(2,3) SRS(3,2) SRS(4,2) SRS(5,2) BDS (a) BDS (b) BDS (s) Runs test
Normal 0.32 1.66 0.46 24.72 91.02 20.48 11.14 5.28 3.40
CHI-2(4) 0.46 2.14 0.44 25.36 91.36 15.26 7.56 3.04 4.12
𝑡-Student(4) 0.48 1.86 0.42 24.58 91.44 14.72 7.80 3.32 3.72
Truncated norm. 0.28 1.62 0.50 24.92 91.62 32.94 18.30 13.30 3.06
Beta(1/2,1/2) 0.30 1.80 0.46 24.12 91.06 35.12 18.16 14.38 3.40
Uniform(0,1) 0.34 1.68 0.52 24.42 91.26 32.70 18.10 12.88 3.26
AR(1) 0.10 0.60 0.26 22.34 90.90 21.22 11.16 5.16 0.90
MA(2) 0.02 0.44 0.32 20.54 90.18 12.40 7.30 2.40 0.86
Logistic 10.54 40.20 100.00 100.00 100.00 59.36 68.42 37.94 22.88
Henon 53.94 77.84 100.00 100.00 100.00 99.18 82.34 96.44 22.38
Anosov 0.98 2.14 0.96 24.50 89.82 31.12 17.78 12.60 4.80
Lorenz 90.72 96.84 95.84 99.78 100.00 96.82 95.82 88.08 98.94
TAR 0.24 1.44 0.50 33.80 95.42 24.32 14.28 6.76 5.04
NLSIGN 0.06 0.94 0.40 23.10 90.28 21.50 12.44 5.32 2.40
Bilinear 0.16 5.38 0.48 28.50 93.30 63.08 60.18 44.64 1.54
NLAR 0.02 0.28 0.40 21.28 90.30 21.50 11.44 5.32 0.58
NLMA 0.14 1.18 0.26 20.80 89.56 15.88 7.56 2.82 1.58
BLMA 0.76 2.34 1.44 39.74 96.46 57.24 51.62 35.58 10.56
Modular 0.00 20.18 0.06 55.68 96.02 70.28 66.10 47.84 19.60
GARCH 0.10 0.88 3.12 37.40 93.52 59.14 58.42 38.22 3.24
Note: 5,000 Monte Carlo simulations were conducted applying the pseudorandom numbers from MatLab R2010a. SRS(a,w) indicates the SRS test for a
symbolization of a symbols and a length of w. BDS (a), (b), and (s) applied the Kanzler [46] optimal parameters, the Liu et al. [47] best parameters, and the
Kanzler [46] simulated critical values for small sample.
Bold values refer to reasonable percentage of rejections considering the process and the critical values.
𝑎 is the alphabet size or number of symbols, 𝑤 is known as the word or a subsequence of symbols.

Table 4: Power test for a time series size of 200.

Generator process SRS(2,3) SRS(2,4) SRS(3,3) SRS(4,2) SRS(5,2) BDS (a) BDS (b) BDS (s) Runs test
Normal 1.92 3.70 2.40 0.28 0.32 8.42 4.92 4.60 3.72
CHI-2(4) 1.62 3.34 2.22 0.20 0.32 7.26 3.54 3.56 3.74
𝑡-Student(4) 1.72 3.50 2.18 0.18 0.30 6.56 3.16 3.30 4.04
Truncated norm. 2.02 3.66 2.42 0.26 0.30 12.86 7.48 7.96 3.96
Beta(1/2,1/2) 1.96 3.26 2.36 0.24 0.28 13.52 6.66 7.92 4.02
Uniform(0,1) 1.88 3.64 2.74 0.38 0.30 12.22 6.64 7.56 4.20
AR(1) 0.76 2.00 1.74 0.14 0.26 8.88 4.62 4.72 1.36
MA(2) 0.36 1.28 1.30 0.14 0.14 6.54 3.72 3.22 0.76
Logistic 20.62 33.74 100.00 100.00 100.00 69.00 62.80 64.26 15.22
Henon 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 83.36
Anosov 2.66 5.32 7.32 1.10 1.02 14.36 7.92 9.20 5.38
Lorenz 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
TAR 17.16 21.50 6.26 15.04 40.02 17.42 10.16 11.46 38.44
NLSIGN 2.74 4.98 4.12 0.82 1.28 9.70 5.24 5.26 8.78
Bilinear 67.50 84.08 81.76 11.52 15.66 99.02 99.02 98.50 7.20
NLAR 0.36 1.42 3.40 0.50 0.20 9.14 4.96 5.30 1.08
NLMA 4.68 12.94 32.72 0.58 0.70 7.94 5.46 4.38 5.60
BLMA 17.38 30.90 60.06 39.26 42.48 98.74 98.68 97.78 39.66
Modular 84.48 100.00 96.64 79.66 61.44 77.48 80.82 71.18 91.84
GARCH 5.04 7.60 64.18 59.30 63.22 99.54 99.62 99.18 15.30
Note: 5,000 Monte Carlo simulations were conducted applying the pseudorandom numbers from MatLab R2010a. SRS(a,w) indicates the SRS test for a
symbolization of a symbols and a length of w. BDS (a), (b), and (s) applied the Kanzler [46] optimal parameters, the Liu et al. [47] best parameters, and the
Kanzler [36] simulated critical values for small sample.
Bold values refer to reasonable percentage of rejections considering the process and the critical values.
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Table 5: Power test for a time series size of 500.

Generator process SRS(2,3) SRS(2,4) SRS(3,3) SRS(4,3) SRS(5,2) BDS (a) BDS (b) BDS (s) Runs test
Normal 2.32 3.94 1.98 3.22 0.22 6.32 3.30 5.12 4.72
CHI-2(4) 2.18 4.28 2.06 3.00 0.30 5.72 3.24 4.70 4.90
𝑡-Student(4) 1.90 3.62 1.84 2.78 0.40 5.84 3.26 4.78 4.12
Truncated norm. 1.64 3.44 1.32 2.84 0.16 8.28 4.46 6.84 4.50
Beta(1/2,1/2) 1.82 3.64 1.94 3.38 0.32 8.16 4.02 6.84 4.18
Uniform(0,1) 1.42 3.30 1.64 2.94 0.32 7.58 4.08 6.50 3.80
AR(1) 0.56 1.78 1.48 2.30 0.14 6.02 3.14 4.88 1.44
MA(2) 0.34 1.46 0.92 2.38 0.04 5.84 3.50 4.60 1.08
Logistic 17.84 31.28 100.00 100.00 100 84.90 65.48 84.02 13.84
Henon 100.00 100.00 100.00 100.00 100 100.00 100.00 100.00 99.92
Anosov 3.18 6.22 6.30 93.46 0.82 11.04 6.02 9.16 6.04
Lorenz 100.00 100.00 100.00 100.00 100 100.00 100.00 100.00 100.00
TAR 70.60 72.10 20.32 86.56 97.7 23.08 13.94 21.54 88.74
NLSIGN 11.04 14.56 8.38 17.48 3.84 7.18 4.00 6.18 25.24
Bilinear 99.72 99.94 100.00 100.00 66.48 100.00 100.00 100.00 13.22
NLAR 0.46 1.82 6.24 6.30 1.34 7.16 4.34 5.86 1.34
NLMA 13.68 42.06 95.60 97.22 1.32 8.32 7.56 7.02 14.90
BLMA 61.44 85.64 99.40 99.90 98.98 100.00 100.00 100.00 77.34
Modular 99.98 100.00 100.00 100.00 99.8 94.42 96.52 93.88 100.00
GARCH 14.44 17.06 97.42 99.60 99.2 100.00 100.00 100.00 32.58
Note: 5,000 Monte Carlo simulations were conducted applying the pseudorandom numbers from MatLab R2010a. SRS(a,w) indicates the SRS test for a
symbolization of a symbols and a length of w. BDS (a), (b), and (s) applied the Kanzler [46] optimal parameters, the Liu et al. [47] best parameters, and the
Kanzler [46] simulated critical values for small sample.
Bold values refer to reasonable percentage of rejections considering the process and the critical values.

Table 6: Power test for a time series size of 2,000.

Generator process SRS(2,4) SRS(3,3) SRS(3,4) SRS(4,3) SRS(5,3) BDS BDS Liu BDS small Runs test
Normal 3.72 1.90 3.78 2.06 1.84 4.86 2.76 4.64 4.78
CHI-2(4) 3.32 2.08 4.38 1.80 2.02 5.10 2.88 4.92 4.30
𝑡-Student(4) 3.76 1.76 3.86 1.98 1.76 4.78 2.90 4.62 4.60
Truncated norm. 3.76 1.70 3.68 1.88 1.80 5.62 3.12 2.72 5.32
Beta(1/2,1/2) 3.70 1.80 4.12 1.72 1.88 5.44 2.96 5.18 5.32
Uniform(0,1) 3.66 2.14 4.08 1.74 2.10 6.32 3.64 6.18 5.06
AR(1) 1.78 1.20 2.82 1.36 1.22 5.32 2.92 5.08 1.72
MA(2) 2.20 0.86 3.16 1.22 1.34 5.20 2.94 4.94 1.50
Logistic 29.84 100.00 100.00 100.00 100.00 99.74 79.36 99.72 11.38
Henon 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Anosov 6.50 8.08 100.00 100.00 100.00 7.92 3.94 7.62 6.12
Lorenz 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
TAR 100.00 98.52 97.42 100.00 100.00 57.44 41.62 56.56 100.00
NLSIGN 69.70 73.22 83.50 92.74 92.72 8.04 4.56 7.54 84.84
Bilinear 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 21.20
NLAR 2.94 37.30 36.76 34.64 27.62 6.54 3.72 6.30 3.36
NLMA 99.64 100.00 100.00 100.00 100.00 14.04 14.36 13.78 48.36
BLMA 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.98
Modular 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
GARCH 40.58 100.00 100.00 100.00 100.00 100.00 100.00 100.00 61.86
Note: 5,000 Monte Carlo simulations were conducted applying the pseudorandom numbers from MatLab R2010a. SRS(a,w) indicates the SRS test for a
symbolization of a symbols and a length of w. BDS (a), (b), and (s) applied the Kanzler [46] optimal parameters, the Liu et al. [47] best parameters, and the
Kanzler [46] simulated critical values for small sample.
Bold values refer to reasonable percentage of rejections considering the process and the critical values.
𝑎 is the alphabet size or number of symbols, 𝑤 is known as the word or a subsequence of symbols.
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100% as random. The Anosov process seems to be the more
difficult process to be detected. In the case the nonlinear
stochastic process detection of dependence improves, SRS
is able to detect nonlinearity in Bilinear, BLMA, Modular,
and exponential GARCH at a rate larger than 60%. The
BDS still has problem to detect some random processes;
truncated normal, Uniform, and Beta(1/2,1/2) are rejected
at a percentage larger than 7%. As in the case of SRS, it is
difficult to detect the Anosov process. The Logistic process
is detected with a rate of 64% in the case of BDS, but
SRS detects at 100%. The BDS detects the same nonlinear
stochastic process as SRS but with a rate larger than 80%.
Runs test presents the worst performance; even if it is able
to detect the six random processes, it is not able to detect
chaotic processes such as Logistic and Anosov. Moreover,
runs test is able to detect just one nonlinear stochastic
process.

In summary, for a sample size of 200 with a good size, SRS
detects 15/20 processes, BDS 12/20, and runs test 11/20.

Table 5 shows the power results for a size of 500. Even if
SRS for 3 symbols and a length of 3 still presents good results,
applying 4 symbols and a length of 3 improves the results.
Remember that a larger symbolization has acceptable results
if the sample is large. In this casemore processes are detected.
Note that the chaotic Anosov process is rejected at 93.46%
as a random process, and six over eight nonlinear stochastic
processes are detected. BDS test applying the parameters
suggested by Liu et al. [47] is finally able to detect all the
random process but still has problem detecting nonlinearity
in the chaotic Anosov process. In addition, it is able to detect
dependence in four over eight nonlinear stochastic processes.
Runs test still has problem detecting chaotic Logistic model
and is able to detect three over eight nonlinear stochastic
processes. NLSIGN and NLAR are the more difficult pro-
cesses to be detected by the three tests at the sample size of
500. Note also that Anosov is only detected by BDS applying
a symbolization of four symbols at a rate of 93.46%. The
other tests are able to detect the process less than 12% of the
time.

In summary, for a sample size of 500 with a good size,
SRS is able to detect 18/20 processes, BDS 15/20, and runs test
13/20.

Finally, Table 6 shows the results for a sample size of
2,000. BDS test presents the best results when considering
4 symbols and a length of 3. However, other symbolizations
present good results, such as 3 symbols and 𝑤 = 3 or 4.
In the present case the only process that is not detected
by SRS is the nonlinearity generated by the NLAR; maybe
this process requires a larger sample size. The BDS test
cannot detect nonlinearity in 4 processes: chaotic Anosov
and the stochastic processes NLSIGN, NLAR, and NLMA.
The runs test cannot detect five nonlinear processes: Logistic,
Anosov, Bilinear, NLAR and NLMA. However, note that it
is able to detect NLSIGN which is not detected by BDS.
The proposed SRS is the only one able to detect chaotic
Anosov and nonlinear process NLMA when 𝑇 = 2000. In
summary, for 𝑇 = 2000 with a good size the SRS test is
able to detect 19/20, the BDS test 15/20, and the runs test
12/20.

5. Detecting Independence and Nonlinearity
in Financial Time Series

As asserted by Brooks [2] testing for nonlinear dependence
is important in financial econometrics due to its profound
implications for model adequacy, market efficiency, and
predictability. For instance, Shahwan and Said [4] find that
modelization with artificial neural networks (ANN) is more
relevant to fit a high-dimensional chaotic process than the
Bayesian and ARIMA methods. They mention that most
recent empirical work implies that the presence of low-
dimensional deterministic chaos increases the complexity of
the financial time series behavior. Therefore it is important
in financial time series to determine the existence of depen-
dence.

The test is applied to financial time series studying the
performance in practice. Four asset prices from theNewYork
Stock Exchange, six stock indices, and five exchange rates
were considered at different frequencies (daily, weekly, and
monthly). Table 7 summarizes some statistics related to the
returns of the series.

Test of normality proposed by Jarque and Bera [49] is
applied to the returns and null hypothesis of normality is
widely rejected for almost all the series. The exchange rate
betweenUS dollar and euro at amonthly level is not detected.
The latter could be related to the small sample size 𝑇 = 171.

The next step is to apply the different tests to the raw
returns of financial time series and to the residuals of a
GARCH model. Considering the results obtained in the size
and power experiment and the sample size of the financial
series, the SRS(2,4), SRS(3,3), SRS(3,4), and SRS(4,3) were
selected. In addition, BDS test and runs test are applied in
order to compare the results.

Table 8 shows the results of the tests for the different
financial returns. Note that the BDS test rejects randomness
for almost all the cases but the NIKKEI index at a monthly
frequency and the exchange rate between US dollar and euro
for a monthly frequency. The SRS rejects randomness in
less cases than the BDS test, in particular for the monthly
frequency, maybe due to considering few data. This is clear
for Coca Cola, IBM, Caterpillar, S&P 500, FTSE, DAX, and
NIKKEI. Note that Coca Cola for a daily frequency and the
exchange rate between dollar and yuan highlight a strong
dependency. In the case of the exchange rate between US
dollar and Chinese yuan the economic monetary policy
should be considered. China has controlled the exchange rate
and just in the last years it has introduced some flexibility.
In the same way, the SHANGHAI index presents the largest
degree of dependency and it is due to controls and constraints
that have been presented in the Chinese stock market. The
runs test rejects only 16 over 40 time series as generated by an
independent process.

Table 9 shows the results for the different tests after
applying a GARCH(1,1) model to the financial returns. The
runs test does not reject independence in 28 over 40 cases.
BDS test does not reject independence in residuals in 26 over
40 cases. However, note that the conservative SRS test in
this case only rejects independence in 13 over 40 cases. This
indicates that after applying a GARCHmodel to the financial
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Table 7: Summary of the returns of financial time series.

Series Frequency 𝑇 Mean Variance Skewness Kurtosis Normality test statistic

Citigroup
Daily 9170 0.0536% 0.0007 1.2025 53.4066 973018.60∗

Weekly 1895 0.2794% 0.0040 3.7869 89.8884 600633.18∗

Monthly 436 1.0121% 0.0119 0.1130 10.5866 1046.54∗

Coca Cola
Daily 12926 0.0570% 0.0003 −2.9897 90.2182 4116265.26∗

Weekly 2678 0.2620% 0.0013 −1.7079 26.7327 64150.50∗

Monthly 616 1.0907% 0.0047 −1.3229 13.1023 2799.09∗

IBM
Daily 12926 0.0470% 0.0003 0.0294 13.0155 54027.14∗

Weekly 2678 0.2226% 0.0012 0.0999 6.1514 1112.62∗

Monthly 616 0.9686% 0.0049 0.2140 4.8790 95.32∗

Caterpillar
Daily 12927 0.0517% 0.0004 −1.2125 37.7400 653214.89∗

Weekly 2678 0.2534% 0.0019 −0.2678 10.9607 7103.35∗

Monthly 616 1.0656% 0.0076 −0.1546 6.0064 234.43∗

S&P 500
Daily 15940 0.0335% 0.0001 −0.6504 24.2393 300735.36∗

Weekly 3304 0.1601% 0.0004 −0.3453 7.9369 3421.03∗

Monthly 760 0.6904% 0.0018 −0.4240 4.7084 115.20∗

FTSE
Daily 7350 0.0305% 0.0001 −0.2089 10.9092 19211.26∗

Weekly 1518 0.1467% 0.0006 −0.7059 11.0775 4252.88∗

Monthly 349 0.6105% 0.0021 −0.8005 6.1044 177.41∗

DAX
Daily 5684 0.0413% 0.0002 0.0486 7.8679 5614.43∗

Weekly 1171 0.1987% 0.0010 −0.3384 7.1055 844.73∗

Monthly 270 0.8400% 0.0038 −0.5284 4.9958 57.38∗

BOVESPA
Daily 4955 0.1856% 0.0006 0.9411 16.2854 37171.74∗

Weekly 1045 0.8837% 0.0029 0.5525 6.6351 628.51∗

Monthly 241 4.1075% 0.0198 2.0642 12.5057 1078.50∗

NIKKEI
Daily 7213 0.0155% 0.0002 −0.0492 11.0987 19715.15∗

Weekly 1520 0.0650% 0.0008 −0.4998 7.7195 1473.98∗

Monthly 352 0.2828% 0.0037 −0.2933 3.7348 12.97∗

SHANGHAI
Daily 5756 0.0844% 0.0007 12.2275 456.4849 49464803.30∗

Weekly 1160 0.4507% 0.0052 10.5452 189.3924 1700702.47∗

Monthly 269 2.1082% 0.0301 5.6259 52.8034 29219.85∗

Ex. Canada/USA Daily 10644 0.0008% 0.0000 −0.0052 15.2475 66525.07∗

Monthly 507 0.0111% 0.0002 0.8962 13.9378 2595.15∗

Ex. China/USA Daily 8133 0.0190% 0.0000 55.8492 3703.1319 4643757374.76∗

Monthly 387 0.3930% 0.0009 13.0613 211.0026 708653.19∗

Ex. US dollar/euro Daily 1680 −0.0540% 0.0006 −37.1096 1471.7500 151391452.12∗

Monthly 171 0.0994% 0.0006 0.0775 2.9535 0.19

Ex. USA/UK Daily 10644 −0.0022% 0.0000 −0.1398 7.7514 10046.90∗

Monthly 507 −0.0605% 0.0006 −0.1249 4.5997 55.38∗

Ex. Japan/USA Daily 10644 −0.0099% 0.0000 −0.5942 12.1587 37827.76∗

Monthly 507 −0.2199% 0.0007 −0.3986 3.8298 27.97∗

Note: own computations. ∗Denotes rejection of the Jarque-Bera null hypothesis of normality at 5% of significance.

series SRS still detects some dependence or nonlinearity. As
an example, after applying GARCH(1,1) to the S&P 500 at
different frequencies (daily, weekly, and monthly) the BDS
test does not reject the fact that the residuals are independent
and so GARCH(1,1) is a good model. However, the SRS test
still detects some dependence in residuals and GARCH(1,1)
is not the best model.

6. Conclusions

In the present study a new independence test is derived;
it can be also applied to detect nonlinearity in time series.
The test has the advantage of being easy to compute and it
is powerful in detecting dependence generated by different
nonlinearity and chaotic systems.The introduced test is based



International Journal of Statistical Mechanics 11

Table 8: SRS, BDS, and runs tests on the raw returns of assets, stock indices, and exchange rates.

Generator process 𝑇 (a) SRS(2,4) SRS(3,3) SRS(3,4) SRS(4,3) (b) BDS (c) Runs test (d)
Citigroup (daily) 9170 1.98 539.28∗ 1039.33∗ 1223.32∗ 0.00∗ No rejection
Citigroup (weekly) 1895 19.83 64.39∗ 148.24∗ 405.51∗ 0.00∗ No rejection
Citigroup (monthly) 436 5.87 40.55∗ 125.77∗ 67.09 0.00∗ No rejection
Coca Cola (daily) 12926 13253.99∗ 694795.51∗ 20514840.97∗ 24089.11∗ 0.00∗ Rejection
Coca Cola (weekly) 12678 797.78∗ 86.03∗ 182.59∗ 782.92∗ 0.00∗ Rejection
Coca Cola (monthly) 616 8.86 32.50 84.82 60.40 0.00∗ No rejection
IBM (daily) 12926 207.11∗ 205.26∗ 430.68∗ 547.90∗ 0.00∗ No rejection
IBM (weekly) 2678 24.50 26.60 98.89 104.22∗ 0.00∗ No rejection
IBM (monthly) 616 4.16 23.71 85.61 70.61 0.00∗ No rejection
Caterpillar (daily) 12927 829.84∗ 338.36∗ 617.75∗ 1029.65∗ 0.00∗ Rejection
Caterpillar (weekly) 2678 86.68∗ 34.33 95.75 84.37∗ 0.00∗ Rejection
Caterpillar (monthly) 616 14.34 14.21 49.93 50.18 0.01∗ No rejection
S&P 500 (daily) 15940 245.05∗ 513.09∗ 979.56∗ 883.17∗ 0.00∗ Rejection
S&P 500 (weekly) 3304 10.13 100.03∗ 228.23∗ 186.48∗ 0.00∗ No rejection
S&P 500 (monthly) 760 10.30 25.50 78.15 49.01 0.00∗ No rejection
FTSE (daily) 7350 25.64∗ 116.49∗ 272.55∗ 209.85∗ 0.00∗ No rejection
FTSE (weekly) 1518 11.82 53.53∗ 129.33∗ 93.12∗ 0.00∗ No rejection
FTSE (monthly) 349 14.23 20.50 54748.54 (N) 63.01 0.01∗ No rejection
DAX (daily) 5684 13.04 105.82∗ 248.25∗ 286.08∗ 0.00∗ No rejection
DAX (weekly) 1171 11.67 81.25∗ 194.02∗ 152.88∗ 0.00∗ No rejection
DAX (monthly) 270 6.92 21.95 84432.94 (N) 16661.79 (N) 0.03∗ No rejection
BOVESPA (daily) 4955 19.27 139.95∗ 328.87∗ 166.32∗ 0.00∗ No rejection
BOVESPA (weekly) 1045 20.94 45.83∗ 141.13∗ 81.08 0.00∗ No rejection
BOVESPA (monthly) 241 21.23 41.05∗ 56522.63 (N) 29754.49 (N) 0.00∗ Rejection
NIKKEI (daily) 7213 17.00 184.61∗ 468.53∗ 363.29∗ 0.00∗ No rejection
NIKKEI (weekly) 1520 14.26 77.85∗ 196.49∗ 119.78∗ 0.00∗ No rejection
NIKKEI (monthly) 352 9.46 14.58 27634.89 (N) 70.57 0.17 No rejection
SHANGHAI (daily) 5756 194.96∗ 396.92∗ 1064.22∗ 854.35∗ 0.00∗ Rejection
SHANGHAI (weekly) 1160 176.95∗ 58.17∗ 153.21∗ 178.04∗ 0.00∗ Rejection
SHANGHAI (monthly) 269 25.13∗ 40.72∗ 63142.02 (N) 33166.27 (N) 0.00∗ Rejection
Ex. Canada/USA (daily) 10644 40.12∗ 700.20∗ 1645.48∗ 1296.32∗ 0.00∗ Rejection
Ex. Canada/USA (monthly) 507 25.97∗ 64.03∗ 39963.21∗ 109.02∗ 0.00∗ Rejection
Ex. China/USA (daily) 8133 14387.35∗ 3913576.79∗ 41867540.66∗ 8623222.42∗ 0.00∗ Rejection
Ex. China/USA (monthly) 387 809.75∗ 837.29∗ 366410.86 (N) 384311.27 (N) 0.00∗ Rejection
Ex. US dollar/euro (daily) 1680 9.22 14.31 60.32 53.36 0.00∗ No rejection
Ex. US dollar/euro (monthly) 171 22.10 8508.98 (N) 278836.18 (N) 94399.98 (N) 0.08 Rejection
Ex. USA/UK (daily) 10644 4.29 1311.28∗ 3392.54∗ 782.87∗ 0.00∗ No rejection
Ex. USA/UK (monthly) 507 66.98∗ 98.78∗ 159444.32 (N) 31462.36∗ 0.00∗ Rejection
Ex. Japan/USA (daily) 10644 74.14∗ 1802.25∗ 4770.12∗ 1066.80∗ 0.00∗ No rejection
Ex. Japan/USA (monthly) 507 87.75∗ 92.69∗ 79848.32 (N) 137.91∗ 0.00∗ Rejection
Note: own calculations. ∗Indicate rejection of the independence null hypothesis at 5% of significance. (a) Number of observations. (b) SRS test applying
selected number of symbols and length according to the power of size experiments. (c) 𝑃 value of the BDS test. (d) Rejection or no rejection of randomness
null hypothesis. (N) Not enough sample size for the SRS test.

on the symbolic time series analysis usually considered when
studying series highly contaminated by noise.

There are many tests of independence, randomness, and
nonlinearity in the literature and the topic is a growing area
of investigation due to the necessity generated by applied
economics and statistics.

The present paper suggests that the test can be applied
to detect nonlinear dependence in time series through trans-
forming the series to a symbolic one and computing a statistic
that is asymptotically distributed as a Chi-square with 𝑛 − 1

degrees of freedom, where 𝑛 is the quantity of possible events.
Moreover, the test is related to the Pearson independence test
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Table 9: SRS, BDS, and runs tests on the residuals of a GARCH(1, 1) model applied to assets, stock indices, and exchange rates.

Generator process 𝑇 (a) SRS(2,4) SRS(3,3) SRS(3,4) SRS(4,3) (b) BDS (c) runs test (d)
Citigroup (daily) 9170 1.98 99.98∗ 210.67∗ 426.33∗ 0.00∗ No rejection
Citigroup (weekly) 1895 19.83 31.22 93.44 279.40∗ 0.43 No rejection
Citigroup (monthly) 436 7.06 20.15 76.76 51.16 0.18 No rejection
Coca Cola (daily) 12926 11512.60∗ 694785.94∗ 23577565.97∗ 23719.11∗ 0.00∗ Rejection
Coca Cola (weekly) 2678 797.78∗ 82.32∗ 168.36∗ 715.33∗ 0.39 No rejection
Coca Cola (monthly) 616 8.96 29.07 88.52 48.51 0.26 No rejection
IBM (daily) 12926 207.11∗ 27.22 88.28 230.90∗ 0.02∗ No rejection
IBM (weekly) 2678 25.24∗ 28.80 107.19∗ 62.37∗ 0.96 No rejection
IBM (monthly) 616 4.37 23.80 91.42 66.03 0.93 No rejection
Caterpillar (daily) 12927 829.84∗ 205.44∗ 384.42∗ 1350.71∗ 0.00∗ Rejection
Caterpillar (weekly) 2678 86.68∗ 33.22 85.21 78.68 0.81 No rejection
Caterpillar (monthly) 616 13.82 19.49 65.52 56.64 0.74 No rejection
S&P 500 (daily) 15940 224.88∗ 402.18∗ 695.57∗ 595.81∗ 0.27 Rejection
S&P 500 (weekly) 3304 9.34 85.07∗ 187.74∗ 178.62∗ 0.80 No rejection
S&P 500 (monthly) 760 11.36 39.53∗ 101.26∗ 72.82 0.47 No rejection
FTSE (daily) 7350 6.85 60.06∗ 152.68∗ 163.52∗ 0.00∗ No rejection
FTSE (weekly) 1518 10.09 52.96∗ 123.77∗ 85.27∗ 0.18 No rejection
FTSE (monthly) 349 16.73 10.85 54732.62 (N) 62.64 0.47 No rejection
DAX (daily) 5684 11.08 101.52∗ 197.55∗ 186.67∗ 0.00∗ No rejection
DAX (weekly) 1171 10.63 59.21∗ 131.33∗ 69.67 0.18 No rejection
DAX (monthly) 270 4.16 24.57 42260.90 (N) 50.57 0.91 No rejection
BOVESPA (daily) 4955 15.99 134.38∗ 279.73∗ 212.50∗ 0.10 No rejection
BOVESPA (weekly) 1045 17.62 36.40∗ 111.90∗ 85.99∗ 0.06 No rejection
BOVESPA (monthly) 241 19.88 20.27 75278.34 (N) 58.51 0.42 No rejection
NIKKEI (daily) 7213 11.96 106.49∗ 245.12∗ 160.36∗ 0.00∗ No rejection
NIKKEI (weekly) 1520 8.84 41.13∗ 127.62∗ 71.46 0.71 No rejection
NIKKEI (monthly) 352 9.46 20.13 27638.60 (N) 58.50 0.59 No rejection
SHANGHAI (daily) 5756 194.96∗ 206.46∗ 582.42∗ 506.30∗ 0.18 Rejection
SHANGHAI (weekly) 1160 176.95∗ 62.92∗ 174.07∗ 149.97∗ 0.01∗ Rejection
SHANGHAI (monthly) 269 18.03 33.44 84149.32 (N) 16620.42 (N) 0.37 No rejection
Ex. Canada/USA (daily) 10644 40.12∗ 62.44∗ 140.98∗ 109.43∗ 0.42 Rejection
Ex. Canada/USA (monthly) 507 24.76∗ 45.10∗ 39926.89∗ 74.55 0.03∗ Rejection
Ex. China/USA (daily) 8133 14387.35∗ 3913576.79∗ 41867540.66∗ 8623222.42∗ 0.00∗ Rejection
Ex. China/USA (monthly) 387 809.75∗ 826.35∗ 366368.25 (N) 503663.60 (N) 0.00∗ Rejection
Ex. US dollar/euro (daily) 1680 9.22 24.74 77.71 82.80∗ 0.00∗ No rejection
Ex. US dollar/euro (monthly) 171 22.10 4291.65 (N) 252306.64(N) 104887.07∗ 0.80 Rejection
Ex. USA/UK (daily) 10644 3.56 344.80∗ 955.78∗ 216.87∗ 0.07 No rejection
Ex. USA/UK (monthly) 507 66.98∗ 104.24∗ 119642.14 (N) 31433.72 (N) 0.03∗ Rejection
Ex. Japan/USA (daily) 10644 74.14∗ 689.43∗ 1832.69∗ 509.97∗ 0.29 No rejection
Ex. Japan/USA (monthly) 507 87.75∗ 86.49∗ 79840.61 (N) 137.41∗ 0.05∗ Rejection
Note: own calculations. ∗Indicate rejection of the independence null hypothesis at 5% of significance. (a) Number of observations. (b) SRS test applying
selected number of symbols and length according to the power of size experiments. (c) 𝑃 value of the BDS test. (d) Rejection or no rejection of randomness
null hypothesis. (N) Not enough sample size for the SRS test.

and it is connected with the Shannon entropy widely studied
in information theory when measuring uncertainty in data.

Size and power experiments were conducted for small
samples and the results are compared with the well-known
BDS test and runs test. Experiments indicate that for a sample
size less than 2,000 it is not advisable to apply more than
four symbols.The three tests are conservative even if SRS test

seems to be the most conservative. The test power detecting
randomness and independence in nonlinear and chaotic
systems was studied. Results suggested that even if the test
is conservative it presented the best performance detecting
the 20 different processes. In very small samples (about 50
observations) SRS test was able to detect dependence in most
of the chaotic processes. In particular it was the only one
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identifying nonlinearity generated by the very simple logistic
process. The SRS test is able to detect the chaotic process of
Anosov and the stochastic model NLMA for a sample size
of 2,000, whereas no other test can do it. It is also observed
that BDS and runs test present different performances, even
if the latter is better. On the one hand, NLSING was detected
by the runs test but not by BDS; on the other hand Bilinear
was detected by BDS test and runs test cannot identify this
process; SRS test was able to detect both of the models. It
should be mentioned that for a sample size of 2,000 no test
detected the NLAR process. It is important to remark that the
objectivewas to study the performance in small sample size as
is common to find in economics. However, note that all tests
performance improves as the sample size increases.

The SRS test was applied to financial series such as stock
asset, stock indices, and exchange rates, considering different
frequencies (daily, weekly, andmonthly).The test was applied
to the raw returns and to the residuals of a GARCH(1,1).
Comparing with other tests it was noted that the SRS test
rejected independence less times than the BDS in the raw
returns case, in particular when there aremonthly data or few
data. However, when the tests are applied to the residuals of a
GARCH(1,1), the results change. In this case the BDS rejected
the independence few times whereas the SRS test still detects
nonlinearity in the residuals.This suggests that BDS considers
that the GARCH(1,1) model is a goodmodel most of the time
but the SRS test would suggest that GARCH(1,1) is not a good
model considering all the nonlinear components.

In applied economics it is generally worked with finite
samples. For this reason it is necessary to design a more
powerful test detecting nonlinearity or dependence in small
samples. In this sense, the symbolic time series analysis can be
an approach to go further. A future research line is to develop
the test for multidimensional time series. Symbolization
permits transforming a time series with many dimensions to
a one dimensional series permitting the simplification of the
analysis.
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