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When theHall effect is included in themagnetohydrodynamics equations (Hall-MHDmodel) the wave propagationmodes become
coupled, but for propagation parallel to the ambient magnetic field the Alfvén mode decouples from the magnetosonic ones,
resulting in circularly polarizedwaves that are described by the derivative nonlinear Schrödinger (DNLS) equation. In this paper, the
DNLS equation is numerically solved using spectral methods for the spatial derivatives and a fourth order Runge-Kutta scheme for
time integration. Firstly, the nondiffusive DNLS equation is considered to test the validity of the method by verifying the analytical
condition of modulational stability. Later, diffusive and excitatory effects are incorporated to compare the numerical results with
those obtained by a three-wave truncation model. The results show that different types of attractors can exist depending on the
diffusion level: for relatively large damping, there are fixed points for which the truncation model is a good approximation; for low
damping, chaotic solutions appear and the three-wave truncation model fails due to the emergence of new nonnegligible modes.

1. Introduction

Alfvén waves are one of the most characteristic features
of magnetized laboratory and space plasmas. They are
driven by different sources, for example, nonuniform plasma
parameters, beams of charged particles, and electrostatic and
electromagnetic waves [1]. In space plasmas, large MHD
amplitude fluctuations with typical proton cyclotron local
frequencies were detected on the Earth magnetosphere [2].
Also, nonlinear Alfvén waves were extensively detected in the
solar wind [3] and they are believed to be responsible for the
turbulent heating of stellar coronas [4]. The comprehension
of nonlinear properties of dispersive Alfvén waves is of
crucial importance to interpret the abundant amount of low
frequency data provided by space plasma observations.

On the other hand, the interaction of spatial tethers with
the Earth ionosphere and the ambient magnetic field leads
to the emission of Alfvén waves forming structures called
Alfvén wings.This phenomenon could be applied to produce

electric power, generate artificial auroras [5], or to moderate
spatial trash [6]. Far from the tethers, a linear analysis could
be appropriate [7], but near the conductor intense waves with
important nonlinear effects are expected.

For the study of the plasma behavior the magnetohy-
drodynamics (MHD) equations are usually used, but when
the frequencies of interest are of the order of the ion-
cyclotron frequency or when the characteristic longitudes are
comparable with the ion inertial length, these equations have
to be extended to include the effect of a finite ion-cyclotron
frequency, which is referred to as the “Hall effect”. In the
resulting Hall-MHD model, although the magnetosonic and
the Alfvén modes can still be identified, they are coupled
leading to a dispersive evolution.This allows that, for a homo-
geneous plasma, nonlinear high-frequency Alfvén waves can
propagate parallel to a uniform magnetic field since the
nonlinearities are balanced by the dispersive term which is
constituted by the Hall effect in the induction equation.
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Using a two-fluid, quasineutral approximation with
electron inertia and current displacement neglected, the
MHD-Hall equations normalized by density and magnetic
field reference values, 𝐵

0
and 𝜌
0
, are [8]

𝜕𝜌

𝜕𝑡
+ ∇ ⋅ (𝜌u) = 0,

𝜌 (
𝜕

𝜕𝑡
+ u ⋅ ∇)u = −∇𝑝 + 𝑉

2

𝐴
(∇ × B) × B,

𝜕B
𝜕𝑡

= ∇ × (u × B) −
𝑉
2

𝐴

Ω
𝑖

∇ × [
1

𝜌
(∇ × B) × B] ,

(1)

where 𝜌 is the plasma density, u the velocity, B the magnetic
field, Ω

𝑖
the ion-cyclotron frequency, and 𝑉

𝐴
= 𝐵
0
/(𝜌
0
𝜇
0
)
1/2

is the Alfvén speed where 𝜇
0
is the vacuum permeability.The

equation of state obeying the polytropic law 𝑝 ∝ 𝜌
−𝛾, with 𝛾

the polytropic coefficient, completes the set of equations.
Weak nonlinearities were studied by perturbation theory

[8] leading to a Korteweg-de Vries (KdV) equation for the
magnetosonic modes and a modified KdV equation for the
Alfvén mode when the propagation angle is large enough
[9–11]. When propagation parallel (or quasiparallel) to the
ambient magnetic field is considered, the MHD waves are
degenerated; the Alfvénmode is decoupled and the waves are
circularly polarized, being described by the derivative nonlin-
ear Schrödinger (DNLS) equation (e.g., [12–15]) although the
case of arbitrary propagation angles is also valid for a high-𝛽
plasma [16].

The DNLS equation was derived by several authors using
different techniques: through the Vlasov equation [12] and
using the Hall-MHD equation (e.g., [13–15]).The nondimen-
sional DNLS equation in a frame moving with the Alfvén
speed along the magnetic field direction (𝑧) with 𝑉

𝐴
≫ 𝑐
𝑠

(𝛽 = 𝑐
𝑠
/𝑉
𝐴
≈ 0, with 𝑐

𝑠
the sound speed) results in

𝜕𝑏

𝜕𝑡
+

𝜕

𝜕𝑧
(|𝑏|
2
𝑏) + i𝜕

2
𝑏

𝜕𝑧2
+ 𝛾𝑏 = 0, (2)

where the positive sign in the dispersive term indicates that
left-hand polarized waves are considered, 𝛾 is an appropriate
damping/driving linear operator, and the dimensionless vari-
ables 𝑏, 𝑧, and 𝑡 are defined by

𝑏 =

𝐵
𝑥
+ i𝐵
𝑦

2𝐵
0

, 2Ω
𝑖
𝑡 → 𝑡,

2Ω
𝑖

𝑉
𝐴

𝑧 → 𝑧. (3)

The advantage of using the DNLS is due to the fact that
this equation “belongs” to soliton theory; thus much about
its solutions is known although it is nonlinear. On the other
hand, soliton theory was used to explain many observations
of quasiparallel finite-amplitudeMHDwaves where the com-
petition betweennonlinear steepening anddispersion occurs,
such as in the foreshock regions of quasiparallel shocks
occurring in connection with the bow shocks of planets or
comets [17]. Therefore, the solutions of the DNLS equation
can be attributed to specific physical problems [18].

Many exact solutions of the DNLS equations are known
and stability analysis has been made for some of them [19].

Among these solutions, the circularly polarized wave is of
particular interest because the stability of this solution is
easily investigated (see Section 3).

On the other hand, different analytical approaches were
used, which consist of reducing the DNLS equation to a sys-
temwith lowdimensions, either considering stationarywaves
or truncating the system by including only a finite number
of modes. In the first case, the DNLS equation is reduced
to a set of three ordinary differential equations where the
free variables are the two components of the transverse mag-
netic field and the phase wave [20]. In this way, a contin-
uous three-dimensional dynamical system is obtained, which
would allow retaining the nonlinear evolution of driven
conservative and dissipative Alfvén waves that is registered
in more complicated high-dimensional models [21]. This
approach was extensively used to study the Alfvén intermit-
tent turbulence in space plasmas [22, 23], showing that the
onset of Alfvén turbulence can occur via a crisis-induced
intermittency.

The other analytical approach, consisting in the trunca-
tion of the system, was also widely studied. This approxima-
tion supposes that the solution is the sum of a finite number
of modes, by which a set of ordinary differential equations
is obtained, where the order of the system depends on the
number of modes used for the truncation. Based on numeri-
cal studies where the DNLS was fully integrated, three-wave
truncationmodels with a resonance relation 2𝑘

0
= 𝑘
1
+𝑘
2
(𝑘
0

is themother wave) have been proposed. Although the results
of the first analysis of this model did not exhibit a chaotic
dynamics [21], subsequent works showed that the three-wave
truncationmodel does present chaos through different routes
[24–27]. Similar studies were performed in the context of the
nonlinear Schrödinger equation (NLS) [28].

Numerical studies of the DNLS have been carried out by
numerous authors exploring the integrability properties of
this equation [21, 27, 29–31]. Most of these works are based
on spectralmethods assuming periodic boundary conditions,
but different integration schemes have been used to solve
stability problems.

In this paper, a numerical analysis of the driven dissipa-
tive DNLS equation for the particular case of three reson-
ant Alfvén waves is presented.The numerical results are com-
pared with those obtained by a three-wave truncation model
which was carried out to represent Alfvén wave fronts gen-
erated by orbiting conductive tethers interacting with the
ambientmagnetic field in the ionosphere [5, 26, 27].This ana-
lysis allows establishing the application range of the trunca-
tion method by inspecting the power spectrum, in a similar
way as the work by Ghosh and Papadopoulos [21]. However,
in this case a simpler numerical scheme is used with an alias-
ing filter that only cancels 1/3 of the wavenumber domain,
allowing retaining a greater number of effective modes [32].
In addition, new features of the dynamic solutions are
obtained, showing that there are more configurations which
present bifurcation diagrams exhibiting a Hopf bifurcation
that separates the more diffusive region, with stationary solu-
tions, from the less diffusive one, with complex dynamic solu-
tions, where chaotic attractors are developed by different
routes (Feigenbaum cascades, intermittency, and crises).
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Also, new coherence relations are found for the stationary
solutions, where the existence of five resonant modes is
detected. In this way, the analysis of the present paper extends
the results of previous works [21, 27]. On the other hand,
another new aspect of this research is the detailed analysis
of the stability of the numerical scheme presented here,
which not only allows verifying the code, but also permits to
study the evolution of the conservative DNLS equation under
unstable conditions. These results show that the presence of
periodic or chaotic evolutions depends on the parameters of
the initial wave.

The organization of the paper is as follows. In Section 2,
a brief description of the numerical method is presented. In
Section 3, the numerical method is tested by verifying the
analytical conditions of modulational stability in the non-
diffusive case. In Section 4, numerical results for the driven
diffusive DNLS equation under a three-wave resonant initial
condition are shown, comparing the solutions with those of
the three-wave truncation model. Finally, in Section 5 the
main conclusions of the work are presented.

2. The Method

The DNLS equation, as type-KdV equations, admits that
periodic boundary conditions are used when the initial con-
ditions are periodic [33]. Therefore, boundary conditions of
the form

𝑏 (𝑧, 𝑡) = 𝑏 (𝑧 + 𝐿, 𝑡) (4)

are appropriate to implement numerical simulations [19],
where 𝐿 is the domain size.

Spectral methods based on trigonometric functions auto-
matically and individually satisfy the periodic boundary con-
ditions.The discrete Fourier expansion allows computing the
Fourier coefficients of a function 𝑏(𝑧) defined in the domain
(−𝐿/2, 𝐿/2] and known at points

𝑧
𝑗
= −

𝐿

2
+
𝐿

𝑁
𝑗, 𝑗 = 1, . . . , 𝑁, (5)

where 𝑁 is the number of grid points. The discrete Fourier
transform and its inverse are

F [𝑏
𝑗
] = 𝑏
𝑘
=

1

𝑁

𝑁

∑

𝑗=1

𝑏
𝑗
exp(−i2𝜋𝑛

𝐿
𝑧
𝑗
) ,

F
−1
[𝑏
𝑘
] = 𝑏
𝑗
=

𝑁/2

∑

𝑛=−(𝑁/2)+1

𝑏
𝑘
exp(−i2𝜋𝑛

𝐿
𝑧
𝑗
) ,

(6)

where the notations 𝑏
𝑗
= 𝑏(𝑧

𝑗
) and 𝑏

𝑘
= 𝑏(𝑘) are used. The

wavenumbers 𝑘 are given by

𝑘 =
2𝜋𝑛

𝐿
, 𝑛 = −

𝑁

2
+ 1, . . . ,

𝑁

2
. (7)

Equations (6) define an exact transform pair between the
𝑁 grid values 𝑏

𝑗
and the 𝑁 discrete Fourier coefficients 𝑏

𝑘
.

The transformation can be performed from one representa-
tion to the other without loss of information [34]. Note that
from (6) the derivatives at the grid points are given by

d𝑛𝑏
𝑗

d𝑧𝑛
= F−1 [(i𝑘)𝑛𝑏𝑘] , (8)

and then we can write the DNLS equation as

𝜕𝑏

𝜕𝑡
= F−1 [−i𝑘F [|𝑏|

2
𝑏] + i𝑘2F [𝑏]] − 𝛾𝑏; (9)

thus, the time derivative can be computed for a defined damp-
ing/driving operator 𝛾. In this way, the time integration can
be explicitly performed using a fourth order Runge-Kutta
scheme.

It should be noted that the 𝑁 truncation of the series
introduces the “aliasing” error, which is associated with the
difference between the discrete and the continuous Fourier
expansion. This error can cause numerical instabilities in the
time integration of nonlinear equations [35]. The usual strat-
egy employed to avoid these effects is to remove the “aliased”
modes by applying an “all-or-nothing” filter where the
Fourier coefficients external to a certain portion of the cen-
tral domain are canceled. In this paper, contrary to previous
works where half of the modes are preserved [21, 27], the
2/3 of the central domain is used, allowing to extend the
amount of effective modes used in the simulations [32]. The
subsequent results show that this is a good implementation.

2.1. Modeling of the Diffusive Term. In (2), 𝛾 is used to repre-
sent an appropriate damping/driving linear operator, which
is assumed to have the characteristic diffusive form

𝛾 = −𝜂
𝜕
2

𝜕𝑧2
, (10)

where 𝜂 is the damping coefficient. Taking into account this
definition and (8), it is obtained for the generic sample point
𝑧
𝑗
that

𝛾
𝑗
= −𝜂𝑘

2

𝑗
. (11)

This operator is equivalent to consider a resistive damping
model, where the dissipation is proportional to 𝑘2

𝑗
[24]:


𝛾
𝑗


≈

𝑉
2

𝐴
𝑘
2

𝑗

2Ω
𝑒
Ω
𝑖
𝜏
𝑐

= 𝜂𝑘
2

𝑗
, (12)

where Ω
𝑒
is the electron-cyclotron frequency and 𝜏

𝑐
is the

characteristic Braginskii collision time.
To represent the excitation of themother wave (identified

with 𝑘
0
), the Dirac function 𝛿 is used:

𝛾
𝑗
= 𝛾
𝑔
𝛿 (𝑘
𝑗
− 𝑘
0
) − 𝜂𝑘

2

𝑗
, (13)

where 𝛾
𝑔
gives the excitation level of the wave. For 𝑘

𝑗
other

than 𝑘
0
, the Dirac function is zero and (13) reduces to (10).
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With the latest definitions, the real and the imaginary
parts of (9) are

Re[
𝜕𝑏
𝑗

𝜕𝑡
] = F

−1
[𝑘
𝑗
Im [F [


𝑏
𝑗



2

𝑏
𝑗
]] − 𝑘

2

𝑗
Im [𝑏
𝑘𝑗
]]

+F
−1
[(𝛾
𝑔
𝛿 (𝑘
𝑗
− 𝑘
0
) − 𝜂𝑘

2

𝑗
)Re [𝑏

𝑘𝑗
]] ,

Im[

𝜕𝑏
𝑗

𝜕𝑡
] = F

−1
[−𝑘
𝑗
Re [F [


𝑏
𝑗



2

𝑏
𝑗
]] + 𝑘

2

𝑗
Re [𝑏
𝑘𝑗
]]

+F
−1
[(𝛾
𝑔
𝛿 (𝑘
𝑗
− 𝑘
0
) − 𝜂𝑘

2

𝑗
) Im [𝑏

𝑘𝑗
]] ,

(14)

and the time derivative of the DNLS equation is finally
obtained.

3. Verification of the Numerical Method

In order to test the numerical scheme, the nondiffusiveDNLS
equation (𝛾 = 0) is analyzed to verify the accomplishment of
the analytical conditions of modulational stability, which can
be established for an initial magnetic field condition

𝑏 (𝑧, 0) = 𝑏
0
= 𝐴
0
exp (i𝑘

0
𝑧) , (15)

where the initial wavenumber is

𝑘
0
=
2𝜋𝑛
0

𝐿
, (16)

𝑛
0
being an integer, 𝐿 the domain size, and 𝐴

0
the initial

amplitude.
The DNLS modulational instability analysis is performed

using the modulation of the constant amplitude wave train
expressed by

𝑏 (𝑧, 𝑡) = 𝐴
0
exp [i (𝑘

0
𝑧 − 𝜔𝑡)] [1 + 𝜀 (𝑧, 𝑡)] , (17)

where 𝑏 and 𝜀 are complex periodic functions in the range
[−𝐿/2, 𝐿/2], |𝜀|2 ≪ 1 and 𝜔 = 𝐴

2

0
𝑘
0
− 𝑘
2

0
. According to the

positive sign in the dispersive term of (2), only the left-hand
polarized waves are considered (𝑘

0
> 0). On the other hand,

the right-hand polarized waves (𝑘
0
< 0) are unconditionally

stable for parallel modulation [30]. These conditions are due
to the left-hand polarized waves leading to the resonance of
the ion cyclotron mode at higher values of 𝑘, while the right-
hand polarized branch connects to thewhistlermodewithout
resonance [18].

Expanding 𝜀(𝑧, 𝑡) in a Fourier base gives

𝜀 (𝑧, 𝑡) =

∞

∑

𝑗=−∞

𝜀
𝑗
(𝑡) exp (iℓ

𝑗
𝑧) ,

𝜀
𝑗
(𝑡) = 𝜀

𝑗
(0) exp (i𝜆

𝑗
𝑡) ,

(18)

where ℓ
𝑗
= 2𝜋𝑗/𝐿 is the modulational wavenumber. Replac-

ing this expression in the DNLS equation reads [36]

𝜆
𝑗
= i2 (𝐴2

0
− 𝑘
0
) ℓ
𝑗
±

ℓ
𝑗


√(2𝑘
0
− 𝐴
2

0
) 𝐴
2

0
− ℓ
2

𝑗
. (19)

From (19), the instability conditions for the left-hand
polarized waves are obtained:

2𝑘
0
< 𝐴
2

0
→ Marginally stable,

2𝑘
0
> 𝐴
2

0
→ Unstable. (20)

To numerically verify this condition the parameter 𝐸
𝑘0

is defined, which represents the ratio between the energy
carried by the initial wave and the total energy of the system
in the Fourier space:

𝐸
𝑘0
=


𝑏
𝑘0



∑
𝑁

𝑗=1


𝑏
𝑘𝑗



, (21)

where 𝑏
𝑘0

is the discrete Fourier transform of the initial
wave, that is, the amplitude of wave 𝑘

0
, 𝑁 is the total num-

ber of modes used in the simulation, and 𝑘
𝑗
indicates the

wavenumber. 𝐸
𝑘0
= 1 implies that the energy is concentrated

in the initial wave. When the instability is triggered, the
energy initially concentrated in 𝑘

0
is transferred to other

modes and 𝐸
𝑘0

< 1. Figure 1 shows, for different initial
wavenumbers, the triggering time of the instability as a
function of the initial amplitude 𝐴

0
.

Figure 1 indicates that the instability condition 𝐴
0

<

√2𝑘
0
is always verified. For larger amplitudes, the stability

was confirmed for initial amplitude values twice the limit
amplitude and a simulation time of 50000 units. The time
step used in the simulations is 𝜏 = 10

−3, with a grid of
𝑁 = 256 points. These values were established searching
for the minimum computational time for which conditions
(20) and the stability of the right-hand polarized waves were
verified.

This analysis not only allows verifying the stability of the
numerical scheme but also permits to study the evolution of
the unstable solutions, which is not possible by the theoretical
analysis. Figure 2 shows the parameter 𝐸

𝑘0
as a function of

time for different initial wavenumbers 𝑘
0
and amplitudes𝐴

0
.

In addition, the energy distribution is also shown in order to
know how the initial energy (curve |𝑏

𝑘
|
0
) is transferred when

𝐸
𝑘0
reaches its minimum value (curve |𝑏

𝑘
|min).

It can be seen that the evolution of 𝐸
𝑘0

is similar in all
cases independent of the initial wavenumber 𝑘

0
. This evo-

lution can be divided in two different behaviors depending
on the initial amplitude 𝐴

0
. For small initial amplitudes,

quasiperiodic solutions are registered in which the initial
wave recovers its energy and 𝐸

𝑘0
has a cyclic evolution

between a maximum (𝐸
𝑘0

≈ 1) and a minimum value. This
minimum value is associated with the amplitude 𝐴

0
, being

smaller with shorter periods for larger amplitudes. Con-
cerning the energy transfer, it is observed that it occurs
mainly among few modes, the initial wave (mother wave 𝑘

0
)

and the two adjacent modes (daughter waves) with wave-
numbers 𝑘

1
and 𝑘

2
that satisfy the resonance relation 2𝑘

0
=

𝑘
1
+ 𝑘
2
.

For large amplitudes, the regular solution is lost and
a spatio-temporal chaotic evolution is produced, which is
independent of the initial wavenumber. Unlike the previous
case, the initial wave does not recover its initial energy and a
random distribution among the different modes occurs.
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Figure 1: Instability time as a function of the initial amplitude 𝐴
0
for different initial wavenumbers 𝑘

0
= 2𝜋𝑛
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/𝐿. Dashed lines indicate the

stability limits for each configuration, (20). The stable region is bounded by the dashed line and 𝐴
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→ ∞ (for clarity, the figure is divided

into even and odd 𝑛
0
cases).
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The transition between the quasiperiodic and the chaotic
behavior occurs for 𝐴

0
values where the results are a com-

bination of both solutions. In the transition range, the ini-
tial wave partially recovers the initial energy with a cyclic per-
formance as in the first case, but a descendant behavior of
the maximum energy occurs until the irregular trend is est-
ablished.

The initial amplitude values associated with the different
behaviors depend on the initial wavenumber. From the fig-
ures, it is noted that higher initialmodes have periodic behav-
ior ranges smaller with bounded transition intervals. On the
contrary, low initial modes have periodic behavior at higher
amplitudes and the transition is smoother.

4. Results of the DNLS Equation with
Diffusive and Excitatory Effects

In this section the results for the driven diffusive DNLS
equation are presented, where a three-wave initial condition
under a resonant relation is used.The wave 𝑘

0
(mother wave)

is linearly unstable and the others are damped. Such simpli-
fied system was extensively studied since it can be useful in
making a preliminary analysis of Alfvén waves generated by
tethers [24, 26, 27]. On the other hand, the system driven by
a one unstable mode in the Fourier spectrum was also widely
used as a physical analogy of a warm-low-density field-
aligned ion beam creating growth along a finite bandwidth
of modes through the electromagnetic ion-beam cyclotron
instability [21].

The three-wave initial condition is

𝑏 (𝑧, 0) =

2

∑

𝑗=0

𝑎
𝑗
exp (i𝑘

𝑗
𝑧) , (22)

with wavenumbers 𝑘
1
= (1 − Δ)𝑘

0
and 𝑘

2
= (1 + Δ)𝑘

0
that

satisfy the resonance relation 2𝑘
0
= 𝑘
1
+ 𝑘
2
and the periodic

boundary conditions, (4).
The numerical results are compared with a three-wave

truncationmodel under resonant interaction.The truncation
model is obtained looking for solutions of the DNLS in the
form

𝑏 (𝑧, 𝑡) =

2

∑

𝑗=0

𝑎
𝑗
exp [i (𝑘

𝑗
𝑧 − 𝜔
𝑗
𝑡 + 𝜙
𝑗
)] , (23)

involving three modes satisfying the resonance relation and
the dispersion relation 𝜔

𝑗
= ∓𝑘

2

𝑗
. Substituting (23) in the

DNLS andonly considering terms involving 𝑘
0
, 𝑘
1
, and 𝑘

2
, the

truncation equations can be derived to obtain the amplitudes
𝑎
0
, 𝑎
1
, and 𝑎

2
and the relative phase 𝜃 = ]𝑡 + 𝜙

1
+ 𝜙
2
− 2𝜙
0

with ] = 2𝜔
0
− 𝜔
1
− 𝜔
2
= ±2Δ

2, a frequency mismatch. The
upper (lower) sign corresponds to the left-hand (right-hand)
polarized waves [26, 27].

The comparison between both methods is done consid-
ering the amplitudes of the resonant waves 𝑎

0
, 𝑎
1
, and 𝑎

2
and

the energy in the whole domain

𝐸
𝑚
= ∫

𝐿/2

−𝐿/2

|𝑏|
2d𝑧. (24)

Table 1: Range of existence of fixed points as a function of the
damping coefficient with 𝛾

0
= 0.02.

Attractor Damping range 𝑛
1

𝑛
0

𝑛
2

𝐴
8

𝜂 ≥ 0.04 1 9 17

𝐴
7

𝜂 ≥ 0.08 2 9 16

𝐴
6

𝜂 ≥ 0.05 3 9 15

𝐴
5

𝜂 ≥ 0.04 4 9 14

𝐴
4

0.05 ≤ 𝜂 ≤ 0.15 5 9 13

𝐴
3

0.03 ≤ 𝜂 ≤ 0.13 6 9 12

In the case of the truncation model, where the only non-zero
amplitudes are 𝑎

0
, 𝑎
1
, and 𝑎

2
, the last equation results in:

𝐸
𝑚
= ∫

𝐿/2

−𝐿/2

|𝑏|
2d𝑧 = (𝑎

2

0
+ 𝑎
2

1
+ 𝑎
2

2
) 𝐿. (25)

The analysis is carried out considering attractors with a
mother wave with wavenumber given by 𝑛

0
= 9 and an

excitation 𝛾
0
= 0.02. The attractors are numerically obtained

by the simulation for certain damping coefficient values
depending on the wavenumbers of the daughter waves. It
should be noted that in this analysis only long term dynamic
solutions are considered; therefore, transient solutions as
those due to chaotic saddles are not presented. However,
it is mentioned that transient chaos appears in almost all
the studied configurations, either in the case of stationary
solutions or before the convergence to limit cycles. A very
detailed study of this type of nonattracting chaotic sets can
be found at [22, 23, 28].

To clarify the analysis, the results are separated into
stationary solutions and dynamic solutions as follows.

4.1. Stationary Solutions. When intermediate and strong
diffusion levels (𝜂 ≳ 0.05) are considered, a set of attractors
is obtained which consist of stationary traveling waves with
most of the energy concentrated in the three initial modes,
such that its amplitudes and the energy can be considered as
stable fixed points. Table 1 shows the damping range where
each attractor is reached.

To obtain the attractors, The attractors are obtained con-
sidering the convergence of the energy𝐸

𝑚
and the amplitudes

of the resonant modes, 𝑎
0
, 𝑎
1
, and 𝑎

2
. For coefficients 𝜂 less

than the indicated values, in some cases the solutions diverge
(𝐸
𝑚

→ ∞) and the attractor disappears. In other cases,
the lower limit is a supercritical Hopf bifurcation that gives
rise to periodic solutions which lead to complex attractor, as
explained in the next section.

The attractors of Table 1 are classified as stable fixed
points; however, this feature depends on the integration time
that is considered. For a maximum time less than 5000

units, the attractors can be still assumed as stable fixed
points, but for longer times it is found that, independent
of the daughter wavenumbers 𝑛

1
and 𝑛

2
, all configurations

converge to the attractor 𝐴
8
via a jump. This is, the energy

of the daughter waves is transferred to the modes given by
𝑛
1
= 1 and 𝑛

2
= 17, and the system evolves towards the

mentioned attractor. Figure 3 shows the energy evolution for
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Figure 3: Energy evolution 𝐸
𝑚
for different configurations of resonant initial waves with 𝑛

0
= 9, 𝜂 = 0.12, and 𝛾

0
= 0.02 (in configurations

with 𝑛
1
> 4 and 𝑛

2
< 14, the convergence to the attractor 𝐴

8
occurs with small transitory stability intervals and thus they are not considered

in the analysis).

different initial configurations. Note that the convergence
to the attractor 𝐴

8
occurs from a pseudo-stable position.

Similar behaviors can be observed for the evolution the of
mother wave amplitude 𝑎

0
, while for the daughter waves the

amplitudes 𝑎
1
and 𝑎

2
rapidly converge to zero as the energy

jumps to the waves of 𝐴
8
. The convergence of the solutions

to this attractor is due to the strong dissipation, for which the
system is obligated to put the energy in the unstablemode and
in the mode 𝑛

1
= 1 that has the lower diffusion, according to

the resistive damping model. Consequently, the solution can
be affected by the boundary conditions [27].

In Figures 4 and 5, the results for attractors𝐴
8
and𝐴

5
are

shown. The results of the others attractors are very similar;
therefore, the next comments are valid for all attractors
presented in Table 1. In the figures, the energy 𝐸

𝑚
and the

amplitudes 𝑎
0
, 𝑎
1
, and 𝑎

2
are shown as a function of the

damping coefficient 𝜂, where circles indicate the numerical
simulations and the full lines the results of the truncation
model. In addition, it also shows the Fourier energy spectrum
of the solution, that is, the amplitude of each mode as a

function of thewavenumber 𝑘, highlightingwith dashed lines
the resonant waves. In this way, it can be known how the
energy is distributed among the different modes when the
attractor is formed. It should be noted that, for attractors
other than 𝐴

8
, the comparison between the numerical and

the truncation results is only valid at times before the jump
to 𝐴
8
, since the truncation model only considers the three

initial waves.
Observing Figures 4 and 5, it can be seen that both

methods are in good accordance with most of the damping
domain, excepting the region 𝜂 ≲ 0.15, where the results
are different for each method. The energy spectrum shows
that, in addition to the discrepancy in the evaluation of the
amplitude of the daughter waves, the differences between
the results of 𝐸

𝑚
are also due to the emergence of two new

modes with nonnegligible energy values. These new modes
identified as 𝑘

3
and 𝑘

4
, being 𝑘

3
< 𝑘
1
< 𝑘
0
< 𝑘
2
< 𝑘
4
,

satisfy the resonance relation 2𝑘
0
= 𝑘
1
+ 𝑘
2
= 𝑘
3
+ 𝑘
4
and

an additional relation 𝑘
4
− 𝑘
3
= 2(𝑘

2
− 𝑘
1
). This behavior

is registered in all the attractors of Table 1 when intermediate
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Figure 6: Bifurcation diagram of attractor 𝐴
2
(𝑛
0
= 9, 𝑛

1
= 7, and 𝑛

2
= 11 with 𝛾

0
= 0.02). Points indicate the numerical simulations. The

truncation solutions are indicated by the full line (branch of fixed points) and the dashed line (maximum of the periodic solution).

Table 2: Range of existence of dynamic solutions as a function of
the damping coefficient with 𝛾

0
= 0.02.

Attractor Damping range 𝑛
1

𝑛
0

𝑛
2

𝐴
6

0.0256 ≤ 𝜂 ≤ 0.05 3 9 15

𝐴
4

0.0162 ≤ 𝜂 ≤ 0.05 5 9 13

𝐴
2

0.0163 ≤ 𝜂 ≤ 0.05 7 9 11

values of the damping coefficient are used. On the other hand,
when larger values of 𝜂 are considered, there are no new
modes with relevant energy levels and the results are similar
for both methods.

4.2. Dynamic Solutions. In this section, attractors corre-
sponding to small damping coefficients are presented. In
these cases a series of complex solutions is obtained, which
are formed by limit cycles, chaotic attractors, and processes
of intermittency and crises.

Table 2 shows the damping range for existence of dynamic
solutions for the indicated initial wave configurations. These
solutions are only captured by the numerical simulations,
while the truncation model mainly converges to spurious

fixed points. Wave configurations of attractors 𝐴
8
, 𝐴
7
, 𝐴
5
,

and 𝐴
3
not included in Table 2 have no dynamic solutions,

but they diverge for small damping values (𝐸
𝑚
→ ∞).

In Figure 6, bifurcation diagrams of themaximums of the
energy and the amplitudes are plotted versus the damping
coefficient 𝜂 for attractor 𝐴

2
. In this way, a one-period limit

cycle for a given damping coefficient is identified as a single
point in the bifurcation diagram, a two-period limit cycle
as two points, and so on, while for a chaotic attractor the
solution is broad.

According to the numerical results, the attractor 𝐴
2

starts at 𝜂
𝑐
≈ 0.05with a supercritical Hopf bifurcation where

the fixed points solutions that rapidly converge to attractor
𝐴
8
become stable periodic solutions modulated in time for

𝜂 ≲ 𝜂
𝑐
. In 𝜂 ≈ 0.0467, there is a period doubling bifurcation

followed by a Feigenbaum sequence ending in a chaotic
attractor. The periodic solution emerges again at 𝜂 ≈ 0.0325

through what appears to be an intermittent process. Then
a new Feigenbaum sequence continues, which starts at
𝜂 ≈ 0.029 ending in a new chaotic attractor. By means of
another similar sequence, the periodic solution returns to
finally culminate in a chaotic attractor that ends the periodic
solutions at 𝜂 ≈ 0.016. Finally, the chaotic attractor is
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Figure 7: Bifurcation diagram of attractor 𝐴
4
(𝑛
0
= 9, 𝑛

1
= 5, and 𝑛

2
= 13 with 𝛾

0
= 0.02).

suddenly destroyed at 𝜂 ≈ 0.0163 where a boundary crisis
appears to take place.

With respect to the solutions of the truncation model, it
can be seen that the method does not capture the chaotic
attractors, but it predicts the existence of a branch of stable
fixed points that ends in a Hopf bifurcation at 𝜂 ≈ 0.023,
where periodic solutions take place.

The discrepancies between both methods are due to the
energy transfer, since the energy initially contained in the
three resonant waves is transferred to other modes which
are not considered in the three-wave truncation model. This
feature confirms the results obtained in the analysis of sta-
tionary solutions, where it was shown that for small damping
new additional modes emerge; although in this case the
energy spectrum is broader than only five modes.

Figures 7 and 8 show the bifurcation diagrams for
attractors 𝐴

4
and 𝐴

6
, respectively. For 𝐴

4
similar results to

attractor 𝐴
2
can be observed, where the same Feigenbaum

sequences and chaotic attractors at similar damping ranges
are registered; although in this case the results of the trun-
cationmodel are rather worse than those obtained for𝐴

2
. On

the other hand, in the bifurcation diagram of the daughter
waves can be observed what appears to be an attractor
merging crisis. With respect to attractor 𝐴

6
, the above

comments are valid for damping coefficients 𝜂 ≳ 0.0256, for
which the attractor behaves similarly to attractor 𝐴

4
. But in

this case the boundary crisis take place for 𝜂 ≈ 0.0256 when
the attractor is suddenly destroyed.

To complete the analysis, Figure 9 is presented in order
to visualize the intermittent process by which the periodic
solution is restored at 𝜂

𝑐
≈ 0.0325. In the figure the time

evolution of the mother wave is shown, where it can be seen
that for a minimum increment of the damping coefficient the
periodic solution is replaced by pseudoperiodic evolutions
that are interrupted by chaotic explosions, responding to
the characteristic shape of the intermittent phenomenon.
According to the bifurcation diagrams, a tangent bifurcation
appears to take place at 𝜂

𝑐
, which indicates the presence

of type-I Pomeau-Manneville intermittency [37]. In such a
phenomenon, the emergence of chaotic solutions is related
to the coalescence of two fixed points in a tangent bifurcation
that disappear when the control parameter is changed,
generating a narrow channel through which the orbits slowly
evolve forming the characteristic laminar phases of the inter-
mittency phenomenon. To visualize this situation, Figure 10
shows a one-dimensional Poincaré map built with the values
of the peaks of 𝑎

0
for 𝜂 = 0.032507. This figure shows

the presence of a narrow channel between the map and the
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Figure 8: Bifurcation diagram of attractor 𝐴
6
(𝑛
0
= 9, 𝑛

1
= 3, and 𝑛

2
= 15 with 𝛾

0
= 0.02).

bisectrix, evidencing the process of type-I intermittency. A
detailed analysis of this phenomenon was recently carried
out, where a new methodology to obtain the statistical prop-
erties of type-I intermittency with discontinuous reinjection
probability density is presented for the solutions of the DNLS
equation [38].

5. Conclusions

In this work, the derivative nonlinear Schrödinger (DNLS)
equation for periodic boundary conditions has been numeri-
cally solved using spectral methods based on Fourier expan-
sions for the spatial derivatives and a fourth order Runge-
Kutta scheme for time integration. The left-hand polarized
Alfvén waves in a homogeneous uniform plasma with 𝛽 ≈ 0

were considered in the analysis.
TheDNLS equation is extensively used to describe Alfvén

waves propagating parallel (or quasiparallel) to the magnetic
field direction. Alfvén waves are ubiquitous in space and play
an important role in the solar wind, interstellar medium,
turbulent heating in magnetosphere, and among others [39,
40]. In these astrophysical processes the Hall effect becomes
relevant; thus the magnetohydrodynamics (MHD) equations

have to be modified, resulting in a computationally demand-
ing problem. However, for the description of the nonlinear
dynamics of large amplitude Alfvén waves traveling along
to the background magnetic field, the solution of the full
Hall-MHD equations can be replaced by the analysis of the
DNLS equation, which represents a large reduction in the
computational cost when numerical methods are used. The
validity of this idealized model will always depend on the
validity of the assumptions carried out during its derivation,
in addition to the appropriateness of the use of a fluid-
like damping model and a one-wave driver term [8, 18, 20].
Having into account these circumstances, theDNLS equation
is widely used to explain many phenomena of astrophysics,
such as the Alfvén turbulence [22, 23], the solar wind [41],
and the wave-wave interactions [25].

The first analysis of this work was carried out to validate
the numerical scheme by testing the analytical conditions of
modulational stability in the nondiffusive case with a one-
wave initial condition. The stability conditions were ade-
quately reproduced by the code. In addition, the instability
time could be calculated and a study of the evolution of
the unstable configurations was carried out, features not
predicted by previous theoretical analysis. In this way the
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numerical results showed that the wavenumber of the initial
wave defines the instability time of the system (higher modes
destabilize faster), while the amplitude governs the shape of
the evolution: small amplitudes evolve as periodic solutions
where the initial wave recovers its energy in each cycle, while
greater amplitudes produce spatio-temporal chaos where the
energy is randomly distributed among all the modes with an
irregular evolution.

In the study of the driven dissipative DNLS equation a
three-wave initial condition was considered, with the mother
wave (𝑘

0
) linearly unstable and the remaining waves damped,

with the daughter waves (𝑘
1
and 𝑘

2
) satisfying the resonant

condition (2𝑘
0
= 𝑘
1
+ 𝑘
2
). This analysis showed that the

diffusion level of the system defines the kind of solutions.

For relatively large damping a set of attractors consisting in
pseudo-stable fixed points is found, which converge to the
less diffusive wave configuration via a jump for sufficiently
long times. Before the jump, each attractor behaves as a
conventional fixed point. In these cases, for larger damping
levels, the energy remains contained in the three initial
modes, while for smaller diffusion it is distributed to two new
modes 𝑘

3
and 𝑘

4
(being 𝑘

3
< 𝑘
1
< 𝑘
0
< 𝑘
2
< 𝑘
4
) that always

satisfy the resonant condition 2𝑘
0
= 𝑘
1
+ 𝑘
2
= 𝑘
3
+ 𝑘
4
and

are related to the daughter waves by 𝑘
4
− 𝑘
3
= 2(𝑘

2
− 𝑘
1
).

The emergence of these new modes produces the errors in
the results of the three-wave truncation model, which can be
considered a good approximation for large damping but fails
when the new modes become relevant.

When very small damping coefficients are used, the
numerical solutions drastically change resulting in a complex
dynamics.The bifurcation diagrams of these solutions exhibit
limit cycles, chaotic attractors, and processes of intermittency
and crisis with the change of the damping coefficient. On the
other hand, the three-wave truncation model cannot capture
the dynamic solution and predicts a spurious branch of fixed
points instead.This is because the power spectrum for 𝜂 → 0

is broad and consequently the truncation model is unable
to represent the dynamics of the system. As a result, this
simplified model cannot be used for small diffusion levels.

These results allow concluding that the numerical scheme
proposed in this paper is a good option to solve the driven
dissipative DNLS equation, while the three-wave truncation
model is a good approach when relatively large damping
levels are considered, but for small diffusion the energy
transfer does not allow the use of the simplified model.

Finally, according to the results, it is concluded that the
numerical method presented in this work is a good option to
solve the driven dissipative DNLS equation, which has been
properly validated and by which new results were obtained.
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