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POT from Arabidopsis thaliana is a member of shelterin complex and belongs to Telo bind protein family. Three homologs are
reported, namely, AtPOT1a, AtPOT1b, and AtPOT1c, where AtPOT1b is involved in genomic stability and chromosome end
protection by providing necessary grip to G-rich region of telomeric DNA for telomerase assembly. Telomeric binding factors
(TRB1–3) physically interact with POT with no known functionality. In this work attempt has been made to elucidate the reason
behind the interaction by analyzing molecular docking interaction between AtPOT1b and AtTRB1–3, which yielded potential
residues, which could play essential role in structuralmodification. 3 nsmolecular simulation helped to look into structural stability
and conformational dynamics portraying domain movements. AtTRB’s interaction with AtPOT1b provoked structural changes in
AtPOT1b, thereby increasing the affinity for single strandDNA(ssDNA) as compared to double strandDNA(dsDNA).Although the
obtained results require experimental evidence they can act as a guide in tracing the functions in other organisms.The information
provided in this paper would be helpful in understanding functions of TRB1–3 with respect to genomic stability.

1. Introduction

Protection of telomere (POT1) is a single strand (ss) DNA
binding protein which holds together the G-rich region of
the telomeric sequence. To do such an intense job complexes
of proteins have to join hands together. One such complex is
shelterin which comprises of TRF1, TRF2, TIN2, TPP1, POT1,
and RAP1 proteins. POT1 makes its presence in almost all
eukaryotes being conserved by nature [1]. POT1 safeguards
from rapid telomere loss and chromosome end fusion. Inter-
ruption of POT1 gene caused telomere recombination and
severe DNA damage response [2]. Three POT1 homologs are
identified inArabidopsis, namely, POT1a, POT1b, and POT1c,
where POT1a helps in telomere synthesis while POT1b is
associated with chromosome end protection [3]. Baumann
and Cech reported that POT1b directly binds with telomeric
G-rich region in yeast [4]. However, POT1b of Arabidopsis
does not follow aforementioned statement suggesting other
proteins to be responsible for uniting the interaction with
DNA [5]. Another group of SMH-like proteins (AtTRB1–
3) binds specifically with telomeric DNA with unknown
functionality [6]. Fascinatingly, physical association was also

reported between AtPOT1b and AtTRB1–3 [7] which may be
involved through Telo bind domain [8, 9]. Thus AtTRB1-3
might be a key player in arbitrating structural modifications
in AtPOT1b to strongly hold DNA. Current research focuses
on the interaction mediated by AtTRB1–3 to transform
structural changes in AtPOT1b in order to bind ssDNA.Thus,
in order to identify themolecular basis of interaction between
AtPOT1b and AtTRB1–3 an attempt has been made using
the molecular docking and molecular dynamics simulation
technique.

2. Materials and Methodology

2.1. Sequence and Domain Analysis. Protein sequences of
AtPOT1b, AtTRB1, AtTRB2, and AtTRB3 were collected
from UniProt web server [10] (http://www.uniprot.org/)
with their corresponding accession numbers Q6NKX5,
Q8VWK4, Q9FJW5, and Q9M2X3, respectively. They were
further subjected to InterProScan [11] (http://www.ebi.ac
.uk/Tools/pfa/iprscan/) and ProtParam [12] (http://web.ex-
pasy.org/protparam/) for domain investigation and analyzing
physico chemical properties.
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Table 1: Domain functioning screening for the proteins of choice.

Server used Proteins
AtPOT1b AtTRB1 AtTRB2 AtTRB3

InterProScan
Telo bind
domain
(13–143)

SANT/Myb
domain (5–55)

Histone H1/H5
domain
(123–182)

SANT/Myb
domain (5–55)

Histone H1/H5
domain
(125–182)

SANT/Myb
domain
(5–55)

Histone H1/H5
domain
(122–180)

2.2. Tertiary Structure Prediction. Absence of three-dimen-
sional structure in PDB database [13] (http://www.rcsb.org/)
and lack of suitable templates for homology modeling made
us employ I-TASSER [14] (http://zhanglab.ccmb.med.umich
.edu/I-TASSER/) web application for protein structure pre-
diction which is based on assembly simulations and multiple
threading alignments by LOMETS [15]. The best model
chosen was refined using What If server [16] (http://
swift.cmbi.ru.nl/servers/html/index.html) for removing bad
contacts between protein atoms and was further subjected to
molecular dynamics studies (MDS) using GROMACS 4.5.5
package for structural stability [17].

2.3. Molecular Dynamics Studies. GROMACS 4.5.5 package
and Amber force field [18] were used to analyze model
stability. The models were solvated with SPC-E water model
using 0.9 nm triclinic box. The system was neutralized by
replacing water molecules with counter ions sodium and
chloride. The periodic boundary conditions were applied in
all directions. Equilibration for both temperature (300K)
and pressure (1 atm) was carried out for 100 ps while the
steepest descent algorithm was applied to 50,000 energy
minimization steps for the constructed models. A total of
3000 ps (3 ns) production run was performed with a time
step of 2 fs. The lowest potential energy conformations
were selected from 3 ns MDS trajectory for further Protein-
DNA interaction study. The model generated after MDS
was subjected for validation using various web tools includ-
ing PROCHECK [19], ERRAT [20], and VERIFY 3D [21],
respectively.

2.4. Docking Studies. Single strand (ss) as well as double
strand (ds) DNAwith telomere sequence TTTAGGG starting
from5 to 3 was prepared usingDiscovery Studio software 3.1
(Discovery StudioModeling Environment, Accelrys Software
Inc., 2012). Three-dimensional structures derived from I-
TASSERweb applicationwere further used as input forHAD-
DOCKweb application specifying the Telo bind domain (13–
143) of AtPOT1b and Histone H1/H5 domain (122–182) of
AtTRB1–3 to dock in order to unearth the structural changes
in AtPOT1b made by AtTRB1–3.

2.5. Docking of AtPOT1b with ssDNA. The least energy
trajectory throughout 3 ns MDS of AtPOT1b was selected
and docked with ssDNA using HADDOCK web application.
Telo bind domain of AtPOT1b was specified in input param-
eters and HADOCK score was considered for selecting best
docked structure. The interacting residues were identified
through Ligplot software [22].

2.6. Docking of AtPOT1b with AtTRB1–3. AtPOT1b was
docked with AtTRB1–3 in order to find the structural changes
inAtPOT1b induced byAtTRB1–3.Thewhole length domains
of the protein were allowed to dock using HADDOCK web
server forming three complexes, namely, AtPOT1b-AtTRB1,
AtPOT1b-AtTRB2, and AtPOT1b-AtTRB3, respectively.

2.7. Docking AtPOT1b with ssDNA after Structural Changes.
Structurally induced AtPOT1b was redocked with ssDNA
through HADDOCK web application in order to find out
whether H1/H5 domain of AtTRB1–3 induces Telo bind
domain to bind ssDNA. PRODY [23] application was used
to track the domain movements.

2.8. Docking AtPOT1b with dsDNA after Structural Changes.
In order to know the effect of AtTRB1–3 on AtPOT1b to bind
dsDNA, structurally induced AtPOT1b was also redocked
with dsDNA using HADDOCK web application. This also
cross-validates the role of AtRB1–3 responsible for inducing
AtPOT1b to bind either of ssDNA, dsDNA, or both.

3. Results and Discussion

3.1. Sequence and Domain Analysis. InterProScan predicted
Telo bind andH1/H5protein family to be present inAtPOT1b
and AtTRB1–3. The residues belonging to the different fam-
ilies are described in Table 1. Telo bind domain helps in
recognition of single stranded DNA [8] while SANT/Myb
domain also assists for DNA binding [24]. On the other hand,
Histone H1/H5 is responsible for protein interaction [25].
It gives a clear understanding that H1/H5 domain should
interact with Telo bind domain in order to bring structural
changes to bind to ssDNA more effectively.

ProtParam tool was used to analyze themolecular weight,
isoelectric point, and amino acid percentage rich region of
all the proteins. The properties analyzed revealed leucine
(9%) to be the most abundant amino acid in AtPOT1b
followed by serine (7.9%) and arginine (6.82%). However,
in AtTRB1–3 alanine was plenteous (12%, 13.4%, and 12.5%)
in all, followed by glutamic acid (9%) and serine (8.7%) in
AtTRB1 while lysine (10.7% and 10.5%) and glutamic acid
(8% and 8.5%) remained as the second and third highest
in their frequency in both AtTRB2 and AtTRB3. Table 2
depicts physico chemical properties of all the proteins under
investigation.

3.2. Tertiary Structure Prediction and Structural Analysis. I-
TASSER web application was used for deciphering the three-
dimensional structures as no suitable template was found
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Table 2: Physicochemical properties of concerned protein analysed through ProtParam.

Property
UniProt ID

AtPOT1b
(Q6NKX5)

AtTRB1
(Q8VWK4)

AtTRB2
(Q9FJW5)

AtTRB3
(Q9M2X3)

Number of amino acids 454 300 299 295
Total number of atoms 7376 4651 4685 4570
Molecular weight (kDa) 52.57 33.02 33.01 32.24
Theoretical pI 8.38 9.34 9.87 9.52

Maximum % of residue
Leucine (9)
Serine (7.9)
Arg (6.8)

Alanine (12)
Glu (9)

Serine (8.7)

Alanine (13.4)
Lysine (10.7)

Glu (8)

Alanine (12.5)
Lysine (10.5)
Glu (8.5)

Minimum % of residue Tryptophan (2) Cysteine (1) Cysteine (0.3) Cysteine (0.3)
Total number of negatively charged
residues
(Asp + Glu)

55 38 35 36

Total number of positively charged
residues
(Arg + Lys)

60 47 52 47

Instability index 48.95 49.21 32.12 43.04
Aliphatic index 85.84 72 72.98 74.88
Ext. coefficient (with Cys) 68380 29575 31970 30940
Ext. coefficient (without Cys) 67380 29450 31970 30940
Grand average of hydropathicity (GRAVY) −0.215 −0.623 −0.623 −0.558

Table 3: List of templates used by I-TASSER for three-dimensional
structure prediction.

Protein
name Templates

POT1b 2i0qA, 1jb7A, 1xjvA, 3kjpA

TRB1 2osxA, 2lsoA, 1hstA, 4fsxA, 2juhA, 1h89A, 1hstA,
1h88C, 3hfwA

TRB2 4fxgB, 2lsoA, 1hstA, 4fsxA, 2juhA, 1x58A, 1h88C, 4fxgB
TRB3 4fxgB, 1hstA, 1zrtD, 2juhA, 1x58A, 1h88C, 4fxgB, 2lsoA

for homology modeling. The various templates considered
by I-TASSER server for structure prediction are mentioned
in Table 3. The best structure was chosen based on 𝐶-score,
TM score, and cluster density. 𝐶-score (confidence score)
says about the significance about the threading template
alignment. 𝐶-score is typically in the range of [−5, 2]; thus,
in our model the score was −0.31, −3.24, −2.44, and −2.20
for AtPOT1b, AtTRB1, AtTRB2, and AtTRB3, respectively.
While expectedTMscore is scale formeasuring the structural
similarity between two structures and the range should be
>0.5 indicating the model to be in correct topology [26], the
TM score for the bestmodel was found to be 0.67±0.13, 0.55±
0.12, 0.53 ± 0.14, and 0.65 ± 0.15 which were in accordance
with the above statement. A higher number of decoys 2089,
703, 2315, and 2336 for the modeled protein signify that
the structure occurs more often in the simulation trajectory
and therefore signifies a better quality model (Table 4). The
best model was further taken for simulation and validation
studies.

Detailed analysis of PDBsum server [27] revealed various
important parameters like sheets, hairpins, psi loop, beta

Table 4: Identification of the best model generated based on the
scoring pattern.

Protein
name

I-TASSER
models 𝐶-score

Number
of

decoys
Cluster density

POT1b

Model 1∗ −0.31 2089 0.1410
Model 2 −2.20 314 0.0212
Model 3 −1.00 1049 0.0708
Model 4 −3.27 108 0.0073
Model 5 −3.69 71 0.0048

TRB1

Model 1∗ −3.24 703 0.0242
Model 2 −3.37 621 0.0214
Model 3 −3.66 461 0.0159
Model 4 −3.98 335 0.0115
Model 5 −4.19 272 0.0094

TRB2

Model 1∗ −2.44 2315 0.0533
Model 2 −4.67 251 0.0058
Model 3 −4.73 235 0.0054
Model 4 −4.90 199 0.0046
Model 5 −5.00 175 0.0040

TRB3

Model 1∗ −2.20 2336 0.0696
Model 2 −3.54 611 0.0182
Model 3 −4.69 193 0.0058
Model 4 −4.82 169 0.0050
Model 5 −4.86 162 0.0048

∗Represents the best models taken into consideration generated by I-
TASSER server.
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Table 5: Various secondary structures predicted by PDBsum server.

Protein
name

Number of
sheet

Number of
beta hairpins

Number of
psi loop

Number of
beta bulges

Number of
strand

Number of
helices

Number of
helix-helix
interaction

Number of
beta
turns

Number of
gamma
turns

AtPOT1b 7 7 1 5 19 7 1 60 10
AtTRB1 None None None None None 15 27 33 11
AtTRB2 1 1 None None 2 13 18 28 8
AtTRB3 1 1 None 1 2 13 12 31 7

Table 6: Evaluation of molecular dynamics studies for the chosen proteins.

Protein POT1B TRB1 TRB2 TRB3
RMSD profile (from 3 ns MD trajectory)

Equilibration period (ps) 250 2000 1200 2200
RMSD (nm) 0.41 0.35 0.45 0.48
Potential energy (kJ/mol)

Minimum −2233890
(2696 frame)

−796525.75
(1522 frame)

−988556.44
(2500 frame)

−912086.94
(1844 frame)

Maximum −2219754.8
(222 frame)

−788678.81
(8 frame)

−980101.88
(8 frame)

−903493.06
(14 frame)

Ramachandran plot assessment
Residues in favored region (%) 80.5 80.1 83.8 84
Residues in additionally allowed region (%) 17 14.7 14.7 14.4
Residues in generously allowed region (%) 1.9 3.8 0.8 0.4
Residues in disallowed region (%) 0.5 1.5 0.8 1.2
Verify 3D score 82.64 80.17 77.33 82.84
ERRAT score 78.93 89.66 89.55 77.47

bulges, strands, helices, helix-helix interaction, beta turns,
and gamma turns for configuring the tertiary structure of the
protein. AtTRB2 and AtTRB3 exhibited almost a common
pattern in terms of the presence of sheets, beta hairpins,
strands, and helices while AtTRB1 was totally different when
compared to the other two. The results are shown in Table 5
and Figure 1.

Molecular structure of AtPOT1b showsTelo bind domain
(13–143), which is conserved throughout RPA like superfam-
ily [3]. On the other hand, AtTRB1–3 shows two domains,
namely, SANT/Myb domain (5–55) and histone H1/H5
domain (122–182). It has been reported that SANT/Myb
domain usually binds to DNA [28] while H1/H5 binds
to proteins [25], thereby suggesting a mechanism where
H1/H5 domain bindswith Telo bind domain, therebymaking
structural changes in AtPOT1b. AtTRB-AtPOT1b complex
then attaches itself to the single stranded telomeric G-rich
strand due to the SANT/Myb domain present in AtTRB1–
3. As the attachment is done with ssDNA, AtTRB (telomere
repeat binding factor) gets rid of AtPOT1bmaking significant
modification in the structural conformation of AtPOT1b.

3.3. Molecular Dynamics Studies (MDS) of Modeled Proteins.
MDS was carried out for 3000 pico second (3 ns) in order to
evaluate the stability of the best I-TASSER models. Molec-
ular dynamics studies gave insight into potential energy,

RMSD, and RMSF of three-dimensional structures. Both
two-dimensional and three-dimensional structure predicted
by I-TASSER server were evaluated after undergoing 3 ns
simulation as seen in Figure 1. The minimum and maximum
potential energies of all the proteins are listed in Table 6.

Root mean square deviation (RMSD) profiles are
described in Figures 2(a)–2(d), which showed that the
RMSD trajectory of AtPOT1b rises during the first 250 ps
(equilibration period) and remains quite stable during
the following period with an average RMSD of 0.41 nm,
while TRB1, TRB2, and TRB3 stabilized after equilibration
period of 2000 ps, 1200 ps, and 2200 ps with average RMSD
asset values of 0.35 nm, 0.45 nm, and 0.48 nm, respectively.
The overall residue fluctuation of each protein during the
3 ns timescale of the molecular dynamics simulation was
also calculated and is described in Figures 2(e)–2(h) for
AtPOT1b, AtTRB1, AtTRB2, and AtTRB3, respectively.
RMSF results indicated that AtPOT1b protein has 37–43
(0.1–0.21 nm), 54–56 (0.1–0.18 nm), 85–94 (0.1–0.27 nm), 113–
117 (0.15–0.24 nm), and 122–126 (0.1–0.21 nm) residues for
Telo bind domain (47–140). However, in AtTRB1 positions
between 147–153 (0.13–0.19 nm) and 177–180 (0.12−0.17 nm),
respectively, showed high flexibility. For AtTRB2 the
fluctuating residues were 116–124 (0.12–0.15 nm) and 158–160
(0.1–0.13 nm) while for AtTRB3 the fluctuating residues are
105- 114 (0.1–0.2) and 115–125 (0.1–0.35 nm), respectively.
The above-mentioned regions of protein play vital role in
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Figure 1: Two- and three-dimensional structures of best I-TASSERmodels after 3 ns simulation. 2D figures were generated in PDBsum server
while 3D was prepared using Chimera software. ((a) and (e)) represent AtPOT1b; ((b) and (f)) represent AtTRB1; ((c) and (g)) represent
AtTRB2; ((d) and (h)) represent AtTRB3. Oval dashed lines represent the specific regions of protein which interact with each other for all the
three proteins while the positions of interacting residues can be inferred from 2D figures.
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Figure 2: MDS trajectory based analysis of proteins under investigation. ((a)–(d)) represent RMSD profiles while ((e)–(h)) represent RMSF
profiles of AtPOT1b, AtTRB1, AtTRB2, and AtTRB3, respectively. RMSDs of C𝛼 atoms with respect to the initial structures of the proteins
showed the stability of the model after the initial equilibration time. Oval dashed lines are the residues which were mostly involved in
interaction, showing fewer fluctuations, suggesting the interactions to be stable.
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Figure 3: Ramachandran plot of the four proteins as depicted by PROCHECK server. Most favored regions are colored red, additionally
allowed as yellow, generously allowed as light yellow, and disallowed regions as white fields, respectively.

the interactions by maintaining the conformational changes
during the 3 ns molecular dynamics and can be observed in
Figure 2.

3.4. Validation of the 3D Structure. Molecular dynamics
helped to increase the quality of protein structure. The stere-
ochemical qualities of the 3 ns simulated models of the four
proteins were validated by subjecting PDB files to structural
analysis and verification server (SAVES) for Ramachandran
plot, ERRAT score, and verify3D analysis, which showed

that all model, had good quality factors and were reliable
for further studies. Ramachandran plot represents red areas
which correspond to the core regions representing the most
favorable combination of phi-psi values [29]. Maximum
likelihood for finding the protein residues (>90%) in the core
regions suggests better stereochemical quality. The results of
PROCHECK analysis indicate that a relatively low percentage
of residues have phi/psi angles in the disallowed regions
suggesting the acceptability of Ramachandran plots for the
four proteins. The percentage of allowed residues in the
core region were found to be 97.5, 94.8, 98.5, and 98.4%
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Figure 4: (a) DIMPLOT result of AtPOT1b-AtTRB1 interaction. Blue labels represent interacting residues of AtPOT1b while red ones
represent AtTRB1. (b) DIMPLOT result of AtPOT1b-AtTRB2 interaction. Blue labels represent interacting residues of AtPOT1b while red
ones represent AtTRB2. (c) DIMPLOT result of AtPOT1b-AtTRB3 interaction. Blue labels represent interacting residues of AtPOT1b while
red ones represent AtTRB3.

and residues in the disallowed regions were found to be
0.5, 1.5, 0.8, and 1.2% for AtPOT1b, AtTRB1, AtTRB2, and
AtTRB3, respectively. The above-mentioned results can be
seen from Table 6 and Figure 3. From the consequence, the
stereochemical quality of the predicted model was found to
be satisfactory.

3.5. AtPOT1b and ssDNA Interactions. The lowest poten-
tial energy of AtPOT1b was chosen to dock with ssDNA.
Telo bind domain of AtPOT1b was docked with ssDNA
using HADDOCK web application. Haddock score for the
complex was −1.7 while RMSD was 0.925 Å which seemed
to be quite significant in terms of structural changes made
by ssDNA as depicted from Table 7. The important residues
which contributed in hydrogen bond formation with ssDNA
are T66, R68, S103, F106, K125, L127, K222, H251, and K253 of
which residues T66, R68, S103, F106, K125, and L127 belong
to Telo bind domain. Hydrogen bond plays a significant role
which is very essential for three-dimensional structure [30].
Interacting residues are mentioned in Table 7.

3.6. Docking of AtPOT1b and AtTRB1–3. The lowest potential
energy of each trajectory for four proteins was chosen and

Table 7: Interacting residues involved in AtPOT1b-ssDNA complex
without the influence of AtTRB1–3.

Interacting residues of AtPOT1b
with ssDNA

Hydrogen bond length
(Å)

A: THR66—B: GUA19 2.04095
∗A: ARG68—B: GUA20 2.06521
∗A: SER103—B: GUA19 2.05793
A: PHE106—B: GUA20 1.99212
∗A: LYS125—B: THY22 1.97958
A: LEU127—B: GUA21 2.12058
A: LYS222—B: GUA12 2.21105
A: LYS222—B: GUA12 2.13035
A: LYS222—B: GUA13 2.08481
A: HIS251—B: GUA12 2.4708
A: LYS253—B: ADE11 2.12659
Bold represents the residues involved in Telo bind domain while ∗represents
the common amino acids involved in AtPOT1b-ssDNA complex with and
without AtTRB1–3 interaction.

the protein-protein interactions were performed usingHAD-
DOCK server. Since AtPOT1b significantly interacted with
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Table 8: List of interacting residues involved in three complexes, namely, AtPOT1b-AtTRB1, AtPOT1b-AtTRB2, and AtPOT1b-AtTRB3.

Residues Chain Position number Residues Chain Position number Distance of
H-bond (Å)

AtPOT1b-AtTRB1
PHE A 11 GLY B 172 2.94
ARG A 13 GLY B 172 3.14
ARG A 13 ASP B 122 2.77
ASP A 16 LYS B 176 2.67
ASP A 16 LYS B 176 2.76
ILE A 28 LYS B 173 2.77
ASP A 50 LYS B 173 2.6
PRO A 51 ARG B 120 2.82
TYR A 53 LYS B 178 2.76
SER A 54 ARG B 120 3.03
ASP A 116 ARG B 159 2.71
ASP A 116 ARG B 159 2.62
GLU A 130 LYS B 166 2.59
GLU A 141 TYR B 146 2.65
GLU A 141 GLN B 150 3.05
THR A 145 GLN B 150 2.82
GLU A 149 ARG B 120 2.79
GLU A 149 ARG B 120 2.99
ARG A 282 ASP B 149 3.03
ARG A 282 ASP B 149 2.66

AtPOT1b-AtTRB2
ASP A 8 ARG B 293 2.67
LYS A 10 GLU B 153 2.88
LYS A 10 GLU B 254 2.79
ASP A 16 ARG B 163 2.67
ASP A 16 ARG B 163 2.67
ASP A 50 ASN B 160 2.93
HIS A 113 THR B 123 2.84
HIS A 113 ARG B 120 2.82
ASP A 116 ARG B 120 2.84
GLU A 130 TRP B 62 2.74
ASN A 134 ASN B 154 3.06
SER A 137 SER B 121 2.72
ASN A 138 ASP B 126 2.68
ARG A 140 THR B 123 2.87
GLU A 141 SER B 124 2.69
GLU A 141 LYS B 127 2.6
THR A 145 GLU B 131 2.89

AtPOT1b-AtTRB3
ASP A 16 ARG B 136 2.65
ASP A 50 LYS B 135 2.65
ASP A 50 LYS B 135 2.82
TRP A 52 THR B 132 2.8



10 ISRN Structural Biology

Table 8: Continued.

Residues Chain Position number Residues Chain Position number Distance of
H-bond (Å)

SER A 54 ASP B 158 2.66
ASP A 116 ASN B 172 2.73
GLN A 131 TYR B 169 2.76
SER A 137 ASN B 172 3.07
ASN A 138 ARG B 166 2.79
ASN A 138 ARG B 166 2.95
ASN A 138 LEU B 162 2.88
ASN A 138 SER B 165 2.61
TRP A 142 ASP B 158 2.78
GLU A 149 ARG B 161 2.73
GLU A 149 ARG B 161 2.7

Table 9: Statistical analysis of HADDOCK results for each complex.

Protein-nucleotide
complex (ssDNA) AtPOT1b-ssDNA AtTRB1 induced

AtPOT1b-ssDNA
AtTRB2 induced
AtPOT1b-ssDNA

AtTRB3 induced
AtPOT1b-ssDNA

Haddock score −1.7 ± 4.8

−53.0 ± 14.0 −54.3 ± 9.3 −63.8 ± 7.6

RMSD (Å) 0.925 1.815 1.455 2.304
Van der Waals energy (kJ/mol) −80.7 ± 7.1

−77.6 ± 3.1 −76.2 ± 4.3 −77.3 ± 8.5

Electrostatic energy (kJ/mol) −576.9 ± 66.4

−659.2 ± 10.1 −672.2 ± 12.3 −659.3 ± 82.1

Buried surface area (Å2) 1956.0 ± 185.7

2019.4 ± 107.8 1955.8 ± 99.3 2003.5 ± 84.4

Binding energy (kcal/mol) −11580.27
−18431.65 −17323.66 −17513.71

Protein-nucleotide
complex (dsDNA) AtPOT1b-dsDNA AtTRB1 induced

AtPOT1b-dsDNA
AtTRB2 induced
AtPOT1b-dsDNA

AtTRB3 induced
AtPOT1b-dsDNA

Haddock score −4.3 ± 6.8

−31.5 ± 5.3 −36.1 ± 12.5 −31.5 ± 7.4

RMSD (Å) 0.9 ± 0.1

5.1 ± 0.1 0.9 ± 0.6 0.9 ± 0.5

Van der Waals energy (kJ/mol) −84.1 ± 3.9

−86.8 ± 5.5 −77.0 ± 6.2 −64.8 ± 3.2

Electrostatic energy (kJ/mol) −606.6 ± 30.6

−402.5 ± 31.8 −637.4 ± 29.8 −637.9 ± 55.5

Buried surface area (Å2) 1987.9 ± 89.2

1819.7 ± 19.2 1970.8 ± 131.4 1857.3 ± 130.0

Binding energy (kcal/mol) −1421.9
−1680.84 −1767.63 −1702.43

AtTRB1–3 through Telo bind domain (13–143) and histone
H1/H5 superfamily domain (115–183), respectively, they were
reported to engage for telomerase assessment [8, 25]. In fact,
whole length protein family residues were used as active
residues to define ambiguous interaction restrains (AIR)
from which the best 200 structures were clustered for each
AtPOT1b-AtTRB1, AtPOT1b-AtTRB2, andAtPOT1b-AtTRB3
interaction based on their binding energies. HADDOCK
analyses of the best cluster showed intermolecular energies
of −219.072, −210.047, and −213.927 kcal/mol, respectively,
with very low (<2 Å) RMSD deviations suggesting that the
structure of each complex was very stable.

From Figures 4(a)–4(c) and Table 8, hydrogen bond
length of different interacting residues was identified. Twelve
residues of AtPOT1b interacted with AtTRB1 making a total
of seventeen hydrogen bonds between them. Similarly, for
the second complex (AtPOT1b with AtTRB2) seventeen
hydrogen bonds were formed by thirteen residues, while
for the third complex (AtPOT1b with AtTRB3), ten residues

were involved to give a total of fifteen hydrogen bonds.
Residues lying within 130 to 142 of AtPOT1b were found
to be significantly involved in the interaction with all the
three proteins of AtTRB as evidenced by hydrogen bond
frequencies, thus proving this region to be highly active.
Ligplot application revealed none of the residues to be
involved in Telo bind domain to be able to interact with both
histone H1/H5 domain and ssDNA.

3.7. Redocking of Induced AtPOT1b to ssDNA. HADDOCK
score revealed the best protein-protein complex between
AtPOT1b-AtTRB1, AtPOT1b-AtTRB2, andAtPOT1b-AtTRB3
and was again redocked with ssDNA. In order to know
whether AtTRB1–3 had induced AtPOT1b, root mean square
deviation (RMSD) was keenly observed between the initial
structure and the AtTRB1–3 induced structure. It was very
surprising that RMSD between the initial and induced was
very high at 1.815 Å, 1.455 Å, and 2.304 Å, respectively. Devi-
ating so much from the initial structure ironically suggests
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Figure 5: (a) LIGPLOT result of AtPOT1b-ssDNA without the influence of AtTRB1–3. (b) LIGPLOT result of AtPOT1b-ssDNA with the
influence of AtTRB1. (c) LIGPLOT result of AtPOT1b-ssDNA with the influence of AtTRB2. (d) LIGPLOT result of AtPOT1b-ssDNA with
the influence of AtTRB3 (green labels represent interacting residues of AtPOT1b while blue ones represent ssDNA).

that there is a significant change in the structure of AtPOT1b
through the interaction of AtTRB1–3. HADDOCK score also
increased from −1.7 to −63.8 as evidenced from Table 9
which also hints that AtTRBmight be responsible for making
structural changes in AtPOT1b in order to bind ssDNAmore
efficiently.

Interestingly, structural analysis revealed plenteous evi-
dence to prove that AtTRB1–3 induces AtPOT1b. The total
number of hydrogen bond increased to 21, 24, and 14
of which 12, 19, and 11 hydrogen bonds are due to the
residues belonging to by Telo bind domain owing to AtTRB1,
AtTRB2, and AtTRB3 inducement. Two-dimensional and
three-dimensional interactions between the proteins can be
visualized fromFigures 5(a)–5(d) and 6(a)–6(d), respectively,
which are prepared using Ligplot [22] and Discovery Studio
application 3.1 (Discovery Studio Modeling Environment,
Accelrys Software Inc., 2012). The list of residues which were
involved in hydrogen bond formation along with their bond
length ismentioned in Table 10. It was clear fromTables 7 and
10 that R68, S103, andK125 are key amino acids present before
and after AtTRB1–3 interaction. These key residues might
play vital role in inducing structural changes as these are
responsible for maintaining the interaction in all the protein-
DNA complexes.

Moreover, stern look at the structure revealed the pres-
ence of three loops in triangular orientation governed by

key amino acids, namely, R68, S103, and K125, respectively
(Figure 8). Number of hydrogen bonds without AtTRB1–3
influence was three while with influence the bonds increased
to six possibly stating the role of AtTRB1–3 in structural
modification as depicted in Figures 7(a) and 7(b), respec-
tively. As seen from the figure Ser 103 makes only one
hydrogen bond while Ser 105 is responsible for none but as
it is induced by AtTRB1–3 the number of hydrogen bonds
increased for both residues (Table 10), illustrating the role
of AtTRB1–3 in influencing structural changes. The presence
of three amino acids, namely, Arg 68, Ser 103, and Lys 125,
are responsible for the contraction of the three loops in
triangular orientation in order to bind the ssDNAmore firmly
as seen in Figure 8. Residues R68, S103, and S105 bind guanine
which supports the above-mentioned experimental evidence
stating that POT1b specifically binds G-rich region of ssDNA.
From the above evidences it is understood that AtTRB is
responsible for inducing AtPOT1b where Ser 105 might be
playing a decisive role in ssDNA attachment and vice versa.

PRODY interface [23] was used to compute anisotropic
network model (ANM) calculations both before and after
TRB1–3 interaction. ANM calculation provides the move-
ments in the structures to be visualized. The movement
direction of AtPOT1b due to AtTRB1–3 interaction can be
visualized from Figures 9(a) and 9(b) which is represented
with red arrows. Longer arrows indicate increasedmovement
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(a) (b)

(c) (d)

Figure 6: (a) Molecular docking of AtPOT1b-ssDNA without the influence of AtTRB1–3. (b) Molecular docking of AtPOT1b-ssDNA under
the influence of AtTRB1. (c) Molecular docking of AtPOT1b-ssDNA under the influence of AtTRB2. (d) Molecular docking of AtPOT1b-
ssDNA under the influence of AtTRB3. The interacting residues of AtPOT1b in each interaction belong to Telo bind domain. Black dotted
line represents hydrogen bond formation while the number denotes hydrogen bond length between them. The figure is represented in ball
and stick model where blue, black, grey, and red balls represent nitrogen, carbon, hydrogen, and oxygen, respectively.

and displacement of AtPOT1b. Interestingly, the shorter
arrows are pointing towards inward direction indicating the
movement to be in closed conformation. However, in the
case of TRB induced POT1b arrows are longer in length
as well as pointing towards outer direction indicating an
open conformation.The expansion of protein structure in an
open form might be essential to firmly hold ssDNA. Binding
energy score also supports the above statement (Table 9).
AtTRB1–3 significantly increased the movement of Telo bind
domain in AtPOT1b leading to the conclusion that AtTRB1–
3 definitely plays a vital role in bringing structural changes
necessary for ssDNA attachment.

In order to confirmwhether AtTRB1–3 induced AtPOT1b
had any affinity towards dsDNA, HADDOCK web applica-
tion was again used to cross-validate. AtPOT1b was docked
with dsDNA. HADDOCK score and binding energy score

were taken into consideration for interpreting the results
which are depicted in Table 9. It was interesting to find
insignificant HADDOCK scores of −31.5, −36.1, and −31.5
for AtTRB1–3 induced AtPOT1b when it was allowed to
interact with dsDNA. The binding energy for ssDNA with-
out the influence of AtTRB was −11580.27 kcalmol−1 while
under influence of AtTRB1, AtTRB2, and AtTRB3 the energy
increased to −18431.65, −17323.66, and −17513.71 kcalmol−1,
respectively. With respect to dsDNA the binding energy with
and without AtTRB1–3 influence was −1680.84, −1767.63,
−1702.43, and −1421.9 kcalmol−1, respectively, as seen in
Table 9. The binding energy results were also in concordance
with the said hypothesis.

Thus, it might be concluded that AtTRB1–3 interaction
with AtPOT1b (Telo bind domain) might induce the later to
bind ssDNA more efficiently rather than dsDNA. Triangular
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(a)

(b)

Figure 7: Molecular interaction of serine 105 with and without
AtTRB’s influence. Ser 105 is involved in forming one hydrogen
bond with guanine under the influence of AtTRB as shown in (a)
while none without influence as shown in (b). TRB is responsible to
alter the orientation of Ser 105, thereby hindering hydrogen bond
formation. Ser 105 is marked with a black circle while hydrogen
bonds are represented as black dotted lines.

orientation of the three amino acids helps in providing
stability to the telomeric single stranded DNA leading to
efficient telomere elongation headed by telomerase.

4. Conclusion

AtPOT1b plays a very vital role in maintaining genomic
stability with the help of transcription factors AtTRB1–3.
Moreover, molecular model for AtPOT1b, AtTRB1, AtTRB2,

Figure 8: Triangular orientation of the key amino acids. R68, S103,
andK125 can be seen in a triangular orientation which is responsible
for hydrogen bond formation represented by red dotted lines along
with their distances. The binding of these residues is responsible
for conformational changes in AtPOT1b leading to a firm grip for
ssDNA.

(a)

(b)

Figure 9: (a) Recessive motion observed in non-AtTRB1-3 influ-
enced AtPOT1b. Structural transformations and movement can be
depicted from the red arrows. The overall movement of AtPOT1b
is very less as represented by shorter red arrows pointing inwards
illustrating closed conformation of AtPOT1b. (b) Dominant motion
observed in AtTRB1–3 influenced AtPOT1b. Structural transforma-
tions and movement can be depicted from the red arrows. The
overall movement of AtPOT1b is very high as represented by longer
red arrows pointing outwards illustrating open conformation of
AtPOT1b.



ISRN Structural Biology 15

and AtTRB3 has been predicted and the role of AtTRB1–
3 with respect to AtPOT1b was analyzed. The three-
dimensional structure was modeled using I-TASSER web
application and their stability was analyzed through 3 ns
molecular dynamics simulation studies. Structure validation
was performed through Ramachandran plot, verify3D, and
ERRAT scores. Molecular docking analysis helped to locate
structural transitions brought in AtPOT1b through AtTRB1–
3 interaction while structural analysis assisted in finding key
residues, namely, R68, S103, and K125, to be responsible in
mediating interaction with ssDNA. S105 on the other hand
might be responsible for efficient gripping of ssDNA. RMSD
scores of 1.815 Å, 1.455 Å, and 2.304 Å also supported the fact
that AtTRB1–3 interacts with AtPOT1b mediating structural
transformations in AtPOT1b in order to bind ssDNA more
efficiently than dsDNA as portrayed from HADDOCK and
binding energy scores. Moreover, the attachment to DNA is
mediated by the key amino acids which form a triangular
orientation in order to interact with ssDNA.Nevertheless, the
order of AtTRB1–3 interaction is still unknown and future
investigation is required in order to trace the transcriptional
regulation of protection of telomeres (POT). More work will
be needed to check whether the above-mentioned result is
true for humans and other organisms.
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