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In order to find the zeros of nonlinear equations, in this paper, we propose a family of third-order and optimal fourth-order iterative
methods. We have also obtained some particular cases of these methods. These methods are constructed through weight function
concept. The multivariate case of these methods has also been discussed. The numerical results show that the proposed methods

are more efficient than some existing third- and fourth-order methods.

1. Introduction

Newton’s iterative method is one of the eminent methods for
finding roots of a nonlinear equation:

f(x)=0. €]

Recently, researchers have focused on improving the order
of convergence by evaluating additional functions and first
derivative of functions. In order to improve the order of
convergence and efficiency index, many modified third-order
methods have been obtained by using different approaches
(see [1-3]). Kung and Traub [4] presented a hypothesis on
the optimality of the iterative methods by giving 2" as the
optimal order. It means that the Newton iteration by two
function evaluations per iteration is optimal with 1.414 as
the efficiency index. By using the optimality concept, many
researchers have tried to construct iterative methods of opti-
mal higher order of convergence. The order of the methods
discussed above is three with three function evaluations per
full iteration. Clearly its efficiency indexis 3'/* ~ 1.442, which
is not optimal. Very recently, the concept of weight functions
has been used to obtain different classes of third- and fourth-
order methods; one can see [5-7] and the references therein.

This paper is organized as follows. In Section 2, we present
anew class of third-order and fourth-order iterative methods

by using the concept of weight functions, which includes
some existing methods and also provides some new methods.
We have extended some of these methods for multivariate
case. Finally, we employ some numerical examples and
compare the performance of our proposed methods with
some existing third- and fourth-order methods.

2. Methods and Convergence Analysis

First we give some definitions which we will use later.

Definition 1. Let f(x) be a real valued function with a simple
root o and let x,, be a sequence of real numbers that converge

towards «. The order of convergence m is given by
Xy — &
lim ——o = £0,
n—»oo(xn_(x)m ( (2)

where { is the asymptotic error constant and m € R”.

Definition 2. Let n be the number of function evaluations
of the new method. The efficiency of the new method is
measured by the concept of efficiency index [8, 9] and defined
as

m'’", 3)

where m is the order of convergence of the new method.



2.1. Third-Order Iterative Methods. To improve the order of
convergence of Newton’s method, some modified methods
are given by Grau-Sanchez and Diaz-Barrero in [10], Weer-
akoon and Fernando in [1], Homeier in [2], Chun and Kim in
[3], and so forth. Motivated by these papers, we consider the
following two-step iterative method:

f (%)
f(x)

f (%)
f1(x)

Yn=%X,—a

(4)

Xne1 = Xy — A(r)

wheret = f "( vl f '(x,) and a is a real constant. Now we find
under what conditions it is of order three.

Theorem 3. Let « be a simple root of the function f and let f
have sufficient number of continuous derivatives in a neighbor-
hood of «. The method (4) has third-order convergence, when
the weight function A(t) satisfies the following conditions:

1

An=1, A= -

|A” (1)| < +00.  (5)

Proof. Suppose e, = x,, — « is the error in the nth iteration
and g, = f™(a)/h! f'(«), h = 1. Expanding f(x,) and f'(x,)
around the simple root « with Taylor series, then we have

fx)=f"(@
X [en + Qeﬁ + csez + c4ei + csez +0 (eg)] s
S (x0) = f (@

X [1 +2ce, + 3c3efl + 46462 + SCSefl +0 (ei)] .

(6)

Now it can be easily found that

L) oii(d-2)grol). O

By using (7) in the first step of (4), we obtain

yn:oc+(1—a)en+aczefl+2a(q—czz)efl+0(efl). (8)

At this stage, we expand f'(y,,) around the root by taking (8)
into consideration. We have

I ()
= f’ () [1 +2(1-a)ge, + (Zaclz +3(1 - a)2c3)efl
+ (6 (1 -a)acyc + 4ac, (_(_22 + c3) +4(1 - a)3c4)

X efl +0 (ei)] .
9)
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Furthermore, we have

1 ()
f(x,)

=1+{-26+2(1-a)c}e,

+{4c —4(1-a) g +2a¢) -3¢, +3(1 - a)’c;}

xefl+-~+O(efl).
(10)

By virtue of (10) and (4), we get

A(t)x

Feel(3-

+O(e4).

n

1) 6-26 (-1+a’A" (1))] e

(1)

Hence, from (11) and (4) we obtain the following general
equation, which has third-order convergence:

€ny1 = Xppp T &
f (%)
f'(x,)

L
(12)

=x,—A(t)x

%4

This proves the theorem. O

Particular Cases. To find different third-order methods we
take a = 2/3 in (4).

Case 1. If we take A(t) = (7 — 3t)/4 in (4), then we get the
formula:

, (13)
o ey (737 GwY f(x)
T\ 4 (x)) ()
and its error equation is given by
26 + (—9(‘23 + 7665 + %) el +0 (efl). (14)

Case 2. If we take A(t) = 4t/(7t — 3) in (4), then we get the
formula:

_ 2 f(x)
T3 (x,) )
s _( af' (ya) )f(xn)
T NS () =317 (%)

[ (%)

and its error equation is given by

_%czzefl+ %(17023 -2l +c4)eﬁ+O(ez). (16)
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Case 3. If we take A(t) = 4/(1 + 3t) in (4), then we get the
formula:

_L 20
TS )
17)
4
n+l = “n >
’ f1 () + 31" ()
and its error equation is given by
czzefl + <—3cz3 + 366 + %4) e:t +0 (efl). (18)

Case 4. If we take A(t) = (t + 7)/(1 + 7t) in (4), then we get
the formula:

2 f(x,)
3f" (%)

X = _(f’<yn)+7f’(xn)) £ (%)
n+l n fl (xn) + 7fl (yn) f, (xn),

and its error equation is given by

n = Xn

(19)

5(‘26 + % ( 79023 + 84c,c; + 4c4) e: +0 (efl). (20)

Case 5. 1f we take A(t) = (¢ + 3)/4t in (4), then we get the
formula:

yy=x - 2L )
N G
(2D
. x_f@»( ! 3
T 1w S Ow)

which is Huen’s formula [11].

Remark 4. By taking different values of a and weight function
A(t) in (4), one can get a number of third-order iterative
methods.

2.2. Optimal Fourth-Order Iterative Methods. The order of
convergence of the methods obtained in the previous subsec-
tion is three with three function evaluations (one function
and two derivatives) per step. Hence its efficiency index is
3!/% ~ 1.442, which is not optimal. To get optimal fourth-
order methods we consider

S
SISy

S (x0)
fr (%)

where A(t) and B(t) are two real-valued weight functions
with t = f'(y,)/f'(x,) and a is a real constant. The
weight functions should be chosen in such a way that the
order of convergence arrives at optimal level four without
using additional function evaluations. The following theorem
indicate the required conditions for the weight functions and
constant a in (22) to get optimal fourth-order convergence.

IYn =X

(22)

Xy =%, —{A() X B(t)} =——=

Theorem 5. Let « be a simple root of the function f and let
[ have sufficient number of continuous derivatives in a neigh-
borhood of a. The method (22) has fourth-order convergence,
when a = 2/3 and the weight functions A(t) and B(t) satisfy
the following conditions:

A=1, A= —Z, |a® (1)] < +oo,
B(1) =1, B (1)=0, (23)
B'")=2-4"@Q1), [BY ) x+eo.

Proof. Using (6) and putting a = 2/3 in the first step of (22),
we have

e, 28 4(a-d)e,
Yy =+ 2+ + .
303 3

+0(e). @9

Now we expand f'(y,) around the root by taking (24) into
consideration. Thus, we have

4 + e?
I ) =1 (@) [1+ 26 e ra)a ++0(e)
3 3
(25)
Furthermore, we have
f’ (J’n) 4c, 2 8a) o 5
() = 1—Ten+<4c2 - f)en+---+0(en). (26)

By virtue of (26) and (22), we obtain

f (%)
I (%)

1
n~ gp [781a6 +94

{A () x B(1)}

=e

n

+(243 +724" (1) + 324" (1) + 328" (1)) & |
X eﬁ +O(ef,).
(27)

Finally, from (27) and (22) we can have the following general
equation, which reveals the fourth-order convergence:

€hi1 = Xpp — &
=x, —{A(t) x B(t)} f(( ))
. (28)
= il [-81cyc; +9¢, + (243 + 724" (1)
+324" (1) +32B" (1)) 5 | e; + O (e)) .
It proves the theorem. O



Particular Cases

Method 1. 1f we take A(t) = (¢t + 3)/4t and B(t) = ((11/8) -
(3/4)t + (3/8)t%), where t = f'(y)/f'(x), then the iterative
method is given by

L2 f(x)
yn_ n 3 ( )
3 Gw) 3 (SO
el = [s ) T (f( ))] )

: (f'(lxn) Ty (3%)) f(:")’

and its error equation is given by

1 3 4 5

€41 = 5 [23c2 - 9,6 + c4] e, +0 (en) . (30)
Method 2. 1f we take A(t) = (7 — 3t)/4 and B(t) = ((17/8) —
(9/4)t + (9/8)t%), where t = f'(y)/f'(x), then the iterative
method is given by

x2S )
Yn = Xn 3 )
[ e (£ Y
e [8 Sy <>)] o
(5,

(i)

and its error equation is given by
en+1=[3%3—%cj+%]efl+o(ez). (32)

Method 3. If we take A(t) = 4t/(7t —3) and B(t) = ((13/16) +
(3/8)t — (3/16)t%), where t = f'(y)/f'(x), then the iterative
method is given by

_ 2
T3 (%)
I EERE VAR NS ACAAN
i) wl) | o
() st
7f () = 3f" (%) ) f' (%)
and its error equation is given by

e, = % [—(‘23 - 90,65 + c4] ei +0 (ei). (34)
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Method 4. If we take A(t) = 4/(1 + 3t) and B(t) = ((25/8) —
(9/8)t + (9/16)t%), where t = f’(y)/f'(x), then the iterative
method is given by

~ 25 90 9(fOwY
[1? 8f’(xn)+1_6<f’(xn))] )

[f’ )+3f’ yn)]
and its error equation is
€ = [3cz3—ozg+ %]eﬁ+0(ei). (36)

Method 5. If We take A(t) = 4/(1 + 3t) and B(t) = 1 +

(9/16) (t — 1)%, where ¢ = f (y)/f'(x), then the iterative
method is given by
2 f(x)
3 (%)
_ 9o(f ) Y
x”+1_x"_|:1+1_6 f’(xn)_1> (37)

(el
f1 (%) + 31" (vn)
which is same as the formula (11) of [12].

Method 6. If we take A(t) = (t + 7)/(1 + 7t) and B(t) =
((47/32) - (15/16)t — (15/32)t*), where t = f'(y)/ f'(x), then
the iterative method is given by

f (%)
fr(x)

47 15 () 15( f ()
K = [5‘16f'<x> 32(f’( >>] e
7f () + 1)\ f (%)
X(f’(xn)+7f’(yn)>f’(xn)’
and its error equation is

106 ql. o
n+1=[ % —ozg+§]en+o(en). (39)

n = *n

2
3

Remark 6. By taking different values of A(¢) and B(#) in (22),
one can obtain a number of fourth-order iterative methods.

3. Further Extension to Multivariate Case

In this section, we extend some third- and fourth-order
methods from our proposed methods to solve the nonlinear
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systems. Similarly we can extend other methods also. The
multivariate case of our third-order method (15) is given by

v _ x _ %[F' (X(k))]_lF(X(k)),
x®D = X0 _y7p (Y®) =36 (x)] (40)

B () {[ (x)] ' F (x)

where X® = [xgk),xgk),...,x;k)]T, (k=0,1,2,...); similarly
Y®: Iis n x n identity matrix F(X(k)) : [f; (x(k),x2 s
(k) fz(x1 ,x2 ,...,x fn(x1 , xg),...,x(k))]; and

F'(X®) is the Jacobian matrix of F at X®. Let £ + H € R"
be any point of the neighborhood of exact solution & € R”"
of the nonlinear system F(X) = 0. If Jacobian matrix F '(§)
is nonsingular, then Taylor’s series expansion for multivariate
case is given by

FE+H)=F (&) [H+CH +CH’ +---+C, H]
+0(H?),
(41)
where C; = [F'(§)] ' (F?(§)/i!), i > 2 and
F'(£+H)

= F’ (E) [I + 2C2H + 3C3H2 + -0+ (p — I)CP,IHP_Z]

+O(HP_1), o)
42

where I is an identity matrix. From the previous equation we
can find

[F¢+H)]"
S[F @] [1+ L H + LH + LH 44 L, HP]
+0(H"),
(43)

where L, = -2C,, L, = 4C3 - 3Cy, and L; = -8C] +
6C,C;+6C;C,—4C,. Here we denote the error in kth iteration
by E®), that is, E®¥ = X® — & The order of convergence of
method (40) can be proved by the following theorem.

Theorem 7. Let F : D € R" — R" be sufficiently Frechet
differentiable in a convex set D, containing a root & of F(X) =
Let one suppose that F' (X) is continuous and nonsingular in D
and X9 is close to &. Then the sequence {X"®},., obtained by
the iterative expression (40) converges to & with order three.

Proof. For the convenience of calculation, we replace 2/3 by
B in the first step of (40). From (41), (42), and (43), we have

k
F(x®)=F (&)
2 3 4 5
x [E® + CE + CE®” + € B®” 4 CEY |

Lo (B,

(44)
F' (X”")
=F (&)

x [1+2C,EW +3C,E®” +4C,E®” 450, E"]
+0(E®’),
[F (x)]”

-[F®]" {r-2c,6®

(45)

+ (4C§ - 3C3) E(k)z
n (—scg +6C,C; + 6C5C, — 4C4)
x O’} v o (E9Y),

(46)

where C; = [F' ()]
(44), we can obtain

= [ ()] (x)

LEDE) /i), i > 2. Now from (46) and

2 3 4 5
=GE® + GEW" + G EY” + G EW + 0 (E97),

(47)
where
G, =1,
G,= -C,,
X (48)
G; = —2C; + 2G5,
G, = - 3C, - 4C,C; +3C;C, — 4C,.

By virtue of (47) the first step of the method (40) becomes
Y® = (1= B)E® + BC,EW” + B (<22 + 2¢,) BV’
+ B (4C5

+O(E(k)5).

—4C,C, - 3C,C, +3C,) E®” (49)



Taylor’s series expansion for Jacobian matrix F "(Y®) can be
given as

F'(Y®) = F' @) [1+2C,(1- ) E®
+ (2BC2 +3C,(1 - p)°) E®’
+(=4BC; +4BC,C5 + 6B (1 - B) C,C,
+4C,(1-B)’) E®’
+(8BC; - 8BC5C, — 68C,C5C,
+6BC,C, - 35°C;C,
- 12B(1- B)C,C5
+12B(1-p)C3
+128(1 - B)°C,C,)

+5C5(1-)") EV* ]+ 0 (E”).

(50)
Now
[7F' (Y®) - 3F" (x™)]
=4[F (9]
51
X [I + }1 [AIE(k) + AZE(k)2 + A3E(k)3” Y
Lo (B,
where
A =C,(8-14p),
A, = 14BC% +21C,(1 - B)* - 9C,,
(52)

Ay = -28BC; +28C,C; + 428 (1 - B) C,C,
+28C,(1- B)’ - 12C,.
Taking inverse of both sides of (51), we get

-1

a[7F' (v ®) - 3F (X))
-[F@]" [I + BE® + BEW 4 B3E(k)3] -

o (59,
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where
A
B = - =1,
4
(A A
B=\"7"*1%) (54)
3
B, = _ﬁ_ﬁ_f_%_l_%
3 4 64 16 16 )

By multiplying (53) and (50), we get

al7E () -3 (xO)] 7 [F (v)]

(55)
2 3 4
= (1+ EE® + BEP” + B, EDT) + 0 (B9,
where
E, = B, +D,,
E,=B,D, +B, +D,, (56)

E; = B,D, + B,D, + B; + D,
and the values of D,, D,, and D, are mentioned below:
D, = 2C2(1—ﬁ),
D, = 2BC3 +3C5(1 - B)’,

D, = —4BC3 +4BC,C; + 6B (1 - B) C5C, +4C, (1 - B)’.
(57)

From multiplication of (47) and (55), we achieve
4[7F (Y®) = 38" (x®)] " [F (Y9)] s
= [GiE® +{G, + E\G} E®” + {E,G, + E,G, + G, } EV]

+0 (E(k)4> .
(58)

After replacing the value of the above equation in second part
of (40), we get

ERY {1 G} EW — (G, + E,G,} BV

, . (59)
~{E,G, + E,G, + G} E®” + 0 (E¥7).
The final error equation of method (40) is given by
2
B - (S0 (9% (60)
3 .
Thus, we end the proof of Theorem 7. O
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TaBLE 1: Functions and their roots.

f(x)

[

£(x) = [sin(x)]* + x

£o(x) = [sin(x)]* = x* + 1

f3(x) =™ +sin(x) — 1

falx) = X +sin(x) + x

f5(x) = sin[2 cos(x)] - 1 - X +e
fo(x) =x°—10x° + x* —x +3
) =x'-x>+11x-7

fo(x) = x* = cos(x) +2

fo(x) = Vx = cos(x)

Jfro(x) =log(x) — x° + 2 sin(x)

sin(xS)

o, =0
«, =~ 1.404491648215341226035086817786
oy = 2.076831274533112613070044244750
a, =0
o = 1.306175201846827825014842909066
o = 0.658604847118140436763860014710
«, = 0.803511199110777688978137660293
g = —1.172577964753970012673332714868
oy = 0.641714370872882658398565300316
oy = 1.297997743280371847164479238286

The multivariate case of (33) is given by

The following theorem shows that this method has fourth-
order convergence.

Theorem 8. Let F : D ¢ R" — R" be sufficiently Frechet
differentiable in a convex set D, containing a root & of F(X) = 0.
Let one suppose that F'(X) is continuous and nonsingular in D

and X9 is close to €. Then the sequence {X"®},., obtained by
the iterative expression (61) converges to & with order four.

Proof. For the convenience of calculation we replace 2/3 by 3
and put g, = 13/16, a, = 3/8, and a; = —3/16 in (61). From
(46) and (50), we have

= )] ()
= 1-2BC,E® + {6pC2 + 3¢, (B - 2B)} BV’
+{-168C; + (6B + 168) C,C5 (62)
+6B (2= B)C;C, + (4(1 - B)* —4) C,} BV’

+0 (E(k)4).

From the above equation we have
¢ = ([F ()P ()
= 1-4BC,EW + [(12B+48%) C2 + 6 (B>~ 2B) C;} E’
+{(-328-24p%) C; + (-6’ + 32B) C,C,
+(-6B> +24B) C;C, +2(4(1 - )’ - 4)} E®’
+0 (E(k)4).
(63)
With the help of (62) and (63), we can obtain
aI +ayt + ast®
=(a, +a, +a;)I
+ (~2pBa, — 4Pas) C,EW
+{(3(B* -2B)a, +6 (B> -2B)a;) Cs
+(6Bay + (12B+48%) ay) C2} BV
+{(-16Ba, + (-328-248%) a;) C;
+((-68* +16B) a, + (-6p° + 32B) a;) C,C,
+(6B(2-B)ay + (-6f" +24B) a;) C,C,
+((401-B)’ - 4)a, +2(4(1 - p)* - 4)a,) C, }
«E®’ 10 (E(k)4> .
(64)
By multiplying (64) to (58), we have
(a1 +ast +at?) 4[7F (Y9 = 36" (X®)] 7 [F' (Y®)] 8

= (1,E® + LEY + T,E®” + T,EW 4 0 (EV7)),
(65)
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TaBLE 2: Comparison of absolute value of the functions by different methods after fourth iteration (TNFE-12).
£ Guess HN3 M3 SL4 TM4 M4
03 0.le - 57 0.3¢ - 93 0.2¢ — 172 0.4¢ — 162 0.5¢ — 199
0.2 0.5¢ — 69 0.1e - 91 0.1e — 186 0.2¢ — 198 0.1e — 245
£l 0.1 0.1e — 90 0.6e — 107 0.5¢ — 241 0.2¢ — 266 0.6 — 339
-0.1 0.2¢ — 85 0.1e - 93 0.1e - 198 0.1e — 247 0.7¢ - 278
-0.2 0.3¢ — 59 0.9¢ — 64 0.1e — 99 0.8¢ — 161 0.5¢ — 165
1.3 0.1e — 92 0.3e — 102 0.1e — 244 0.4¢ — 278 0.6e — 297
1.2 0.le — 67 0.7¢ - 75 0.2¢ — 152 0.2¢ — 197 0.7¢ — 200
|1 1.1 0.8¢ — 53 0.le - 57 0.4e — 94 0.5¢ — 147 0.2e — 132
1.4 0.6 — 205 0.7e - 217 0.le - 613 0.5¢ — 634 0.1e - 672
1.5 0.3¢ — 99 0.9 — 114 0.1e — 296 0.2¢ — 300 0.7¢ — 374
2.0 0.le— 112 0.2¢ — 122 0.8¢ — 362 0.1e — 325 0.1e — 418
23 0.1e - 81 0.1e — 102 0.1e - 215 0.1e — 229 0.5¢ — 275
|f3] 2.1 0.7e — 157 0.1e — 169 0.6 — 493 0.1e — 466 0.3¢ — 543
2.2 0.3¢ — 100 0.1e-116 0.4e — 288 0.2¢ — 288 0.1e — 343
1.9 0.1e - 81 0.5¢ — 88 0.1e - 223 0.le — 224 0.3¢ — 272
03 0.4 — 78 0.9¢ — 101 0.4e — 157 0.3e — 219 0.2 — 257
0.2 0.1e — 90 0.3¢ — 109 0.5¢ — 201 0.4 — 258 0.2¢ — 301
|£il 0.1 0.2¢—113 0.2¢ — 128 0.2¢ — 279 0.1e — 328 0.1e — 379
-0.2 0.9¢ — 84 0.4¢ — 90 0.7e — 223 0.2¢ — 229 0.1e — 286
-0.1 0.8¢ — 110 0.5e — 119 0.1e — 285 0.3¢ — 314 0.2¢ — 483
1.35 0.1e — 101 0.6e — 112 0.3¢ — 252 0.1e — 312 0.2¢ — 320
131 0.1e - 77 0.1e - 86 0.3¢ — 170 0.1e — 236 0.1e - 233
| fs| 1.29 0.1e — 69 0.4e - 78 0.1e — 141 0.5e — 211 0.5¢ — 203
1.15 0.8¢ — 39 0.2e — 42 0.7¢ — 28 0.8¢ — 107 0.1e - 510
1.20 0.1e — 46 0.4e — 52 0.2¢ — 54 0.3e - 135 0.1e — 101
0.7 0.7¢ — 109 0.1e — 122 0.1e — 288 0.2¢ — 334 0.1e — 380
0.6 0.4¢ — 94 0.7¢ — 104 0.9 — 229 0.3¢ — 286 0.8¢ — 300
| fsl 0.5 0.3e — 57 0.2¢ — 63 0.3¢ — 95 0.4e — 166 0.2e — 154
0.8 0.1e — 68 0.2¢ — 87 0.2¢ — 171 0.3¢ — 207 0.2¢ — 282
1.2 0.6 — 36 0.6¢ — 52 0.1e - 151 0.2e - 97 0.le—112
0.65 0.2¢ — 294 0.1e - 306 0.2¢ — 588 0.2¢ — 807 0.8¢ — 810
0.75 0.2¢ — 177 0.8¢ — 187 0.5¢ — 250 0.4e — 462 0.1e — 457
| £ 0.95 0.3e — 129 0.5¢ — 130 0.le — 134 0.2¢ — 295 0.2e — 290
0.90 0.1e — 137 0.3¢ — 140 0.2¢ — 153 0.3¢ — 322 0.9¢ - 318
0.80 0.2¢ — 160 0.3¢ — 167 0.3¢ — 207 0.9¢ — 399 0.6¢ — 395
-1.0 0.2¢ — 64 0.4¢ — 72 0.1e - 112 0.1e - 193 0.5¢ — 182
-1.1 0.3¢ - 96 0.2¢ - 106 0.6 — 224 0.8¢ — 297 0.8¢ — 301
A -1.2 0.6e — 132 0.le — 144 0.3e — 345 0.8¢ — 412 0.6 — 431
-15 0.5¢ — 50 0.6e — 71 0.5¢ — 100 0.2¢ — 155 0.5¢ — 275
-0.9 0.1e — 47 0.2¢ — 52 0.5¢ — 46 0.1e - 135 0.6e — 105
0.9 0.1e - 127 0.6e — 133 0.1e - 152 0.5¢ — 315 0.2 — 307
0.7 0.2¢ - 178 0.1e - 186 0.1e - 315 0.5¢ — 455 0.4e — 451
£l 0.6 0.2¢ — 189 0.1e - 206 0.1e - 351 0.6¢ — 482 0.2¢ — 479
0.8 0.6 — 144 0.1e — 149 0.5¢ — 206 0.9 — 356 0.3¢ — 350
1.0 0.2¢ — 117 0.2e — 123 0.3e— 117 0.7e — 295 0.1e — 284
12 0.4e — 74 0.2¢ — 81 0.3¢ — 154 0.1e - 213 0.8¢ — 229
2.0 0.7¢ - 26 0.1e - 52 0.2¢ — 75 0.5¢ - 76 0.1e — 107
| 1ol 15 0.2e — 57 0.le — 79 0.3e — 139 0.le — 170 0.2e — 229
13 0.9¢ — 214 0.7e — 226 0.1e — 612 0.4e — 660 0.7¢ — 708
1.8 0.3¢ — 33 0.2¢ - 76 0.1e — 83 0.1e - 97 0.7¢ — 134
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TaBLE 3: Comparison of CPU time (in seconds) between some
existing methods and our proposed methods.

Function CPU time
Guess  HN3 M3 SL4 M4 M4

f 0.3 0.2867 0.2644 0.3060 0.2449 0.2449
£ 1.5 0.2943  0.2510 0.3049 0.2682 0.3043
fs 2.3 0.3019 0.3658 0.3457 0.3562  0.3483
fa 0.3 0.3091 0.2850 0.2832 0.2399 0.2428
fs 1.35 0.3399 0.3694 0.3938 0.4149 0.3940
fe 0.7 0.2896 0.2708 0.2388 0.2613  0.2550
f; 0.65 0.2517 0.2356  0.2938 0.2644 0.2880
fs -1.00 0.2697 0.2279 0.2739 0.2934 0.2900
where

T, =G, (a, +a, +ay),
T, = G, (-2fBa, — 4Ba;) C, + (a, + a, + a3) (G, + E,G,),
T, = (a) + a, + a3) (E,G, + E,G, +G;)
+ (—2fa, — 4fa;) C, (G, + E|G,)
+G, [(3(B*-2B)ay +6 (B> -2p)as) Cs
+ (6Bay + (12B +4p%) a3) C3] .
T, = (G, + E\G,) ([(3(B* - 2B) a, + 6 (B> - 2B) a;) C5]
+[(6Ba, + (128 +4B%) a;) C3])
+(E,G, + E,G, + G;) [(-2fa, — 4Ba;) C, ]
+(a, +ay + ay) (E,G, + E3G, + E|G; + G,)
+G, ({-16Pa, + (328 - 24p*) ay} C3
+{(-68* +16B) a, + (-6p° + 32B) a;} C,C,
+{68(2- P)a, + (-6’ +24B) a;} C,C,

+{(4(1-B)’-4) a,+2(4(1-B)’-4) as} C,) .
(66)

The final error equation of method (61) is given by
1 1 4 5
Bk _ (—5(73 +8C,Cs — C3C,y + §c4> E®" 40 (E®),
(67)

which confirms the theorem. O

4. Numerical Testing

4.1. Single Variate Case. In this section, ten different test
functions have been considered in Table 1 for single variate

case to illustrate the accuracy of the proposed iterative meth-
ods. The root of each nonlinear test function is also listed.
All computations presented here have been performed in
MATHEMATICA 8. Many streams of science and engineering
require very high precision degree of scientific computations.
We consider 1000 digits floating point arithmetic using
“SetAccuracy []” command. Here we compare the perfor-
mance of our proposed methods with some well-established
third-order and fourth-order iterative methods. In Table 2,
we have represented Huen’s method by HN3, our proposed
third-order method (15) by M3, fourth-order method (17)
of [5] by SL4, fourth-order Jarratts method by JM4, and
proposed fourth-order method by M4. The results are listed
in Table 2.

An effective way to compare the efliciency of methods
is CPU time utilized in the execution of the programme.
In present work, the CPU time has been computed using
the command “TimeUsed []” in MATHEMATICA. 1t is well
known that the CPU time is not unique and it depends on the
specification of the computer. The computer characteristic is
Microsoft Windows 8 Intel(R) Core(TM) i5-3210M CPU@
2.50 GHz with 4.00 GB of RAM, 64-bit operating system
throughout this paper. The mean CPU time is calculated by
taking the mean of 10 performances of the programme. The
mean CPU time (in seconds) for different methods is given
in Table 3.

4.2. Multivariate Case. Further, six nonlinear systems
(Examples 9-14) are considered for numerical testing
of system of nonlinear equations. Here we compare our
proposed third-order method (40) (MM3) with Algorithm
(2.2) (NR1) and Algorithm (2.3) (NR2) of [13] and fourth-
order method (61) (MM4) with (22) (SH4) of [14] and
method (3.4) (BB4) of [15]. The comparison of norm of the
function for different iterations is given in Table 4.

Example 9. Consider

X2 —x,-19=0,
3 (68)
2, % _
—x1+€+x2—17—0,

with initial guess X © = (5.1,6.1)7, and one of its solutions is
a=(56)".

Example 10. Consider

—Sin (x;) + Cos (x,) = 0,

1 .
_ L=,
ot (%3) (69)

e - (x3)2 =0,

with initial guess x© = (1,0.5, 1.5)T, and one of its solutions

is o = (0.9095---0.6612 - --1.5758 ---)T.
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TABLE 4: Norm of the functions by different methods after first, second, third, and fourth iteration.
Example Guess Method IF(x™)]] [|F(x®)]| IEG®)]| IFGY||
NR1 3.8774e - 4 9.2700e — 15 7.7652e — 47 4.0858e — 143
NR2 3.8774e - 4 9.2700e — 15 7.7652e — 47 4.0858e — 143
Example 9 (5.1,6.) MM3 1.2657¢ — 4 1.0705e — 16 3.978% — 53 1.8320e — 162
BB4 2.1416e -5 1.1267e — 24 4.6477e — 102 1.2561e — 411
SH4 1.2923e -5 9.2420e — 26 1.2710e — 106 4.2184e — 430
MM4 3.0768¢ — 6 3.9419¢ - 29 8.7758e — 121 2.1039¢ — 487
NRI1 3.0006e — 2 1.3681e — 4 1.3174e - 11 1.1754e — 32
NR2 2.9765e — 2 1.3230e — 4 1.1848e — 11 8.5484e — 33
Example 10 (1,05,15) MM3 9.9051e - 3 3.7473e -6 9.1835e - 17 1.3035e — 48
BB4 2.1133e -2 6.9602¢ — 6 7.1401e — 20 7.7987e — 76
SH4 1.5676e — 2 1.1309¢ - 6 2.4814e — 23 5.5195e — 90
MM4 6.1451e - 3 8.1169¢ — 8 2.3264e — 28 6.9642¢ — 110
NRI1 2.3097e - 3 7.5761e — 10 5.6516e — 30 2.8662¢ — 91
NR2 2.3097e - 3 7.5761e — 10 5.6516e — 30 2.8662¢ — 91
Example 11 (05,05, 0.5, -0.2) MM3 9.4336e — 4 1.6380e — 11 1.7401e — 35 2.5268e — 108
BB4 9.1400e — 4 1.8627e — 14 8.7599%¢ — 59 6.9713e — 238
SH4 5.3618e — 4 1.4537e — 15 2.1746e — 63 1.7744e — 256
MM4 7.7084¢ — 5 2.1932e — 20 3.4979%¢ — 84 3.6487¢ — 341
NRI1 2.1427e -3 1.7987¢ — 10 1.0504e — 31 2.0958e — 95
NR2 2.1498e - 3 1.8262¢ — 10 1.1001e — 31 2.4077e — 95
Example 12 (1.0, 2.0) MM3 7.6174e — 4 2.3592¢ - 12 7.9632¢ — 38 3.0435¢ - 114
BB4 5.3124e - 4 8.2104e — 16 3.8411e — 63 2.8216e — 252
SH4 2.9895e — 4 6.5567e — 17 1.8332e — 67 1.5913e — 269
MM4 1.0131e -4 2.8562e — 19 3.4019¢ - 77 2.4842¢ — 308
NRI1 2.9692¢ — 4 5.5149¢ - 14 3.8063e — 40 1.2456e — 118
NR2 2.9718e -5 5.5137e - 14 3.8044e — 40 1.2438e — 118
Example 13 (0.8, 11,11) MM3 9.8775e — 6 6.7719¢ — 16 2.3491e — 46 9.7596e — 138
BB4 4.0723e -6 1.6873e — 21 9.1974e — 83 7.8287e — 328
SH4 2.1907e — 6 8.6294e — 23 3.6734e — 87 1.1711e — 349
MM4 1.0838e — 6 8.4404¢ — 25 1.2327e — 96 4.3437e — 384
NRI1 1.8661e — 1 7.1492¢ — 4 4.5647e — 11 1.188%¢ — 32
NR2 1.7417e - 1 5.7596e — 4 2.3870e — 11 1.7000e — 33
Example 14 (0.5,15) MM3 1.2770e — 1 4.6794e - 5 4.1708e — 15 3.0222e — 45
BB4 9.8299%¢ — 2 9.2624e — 6 8.3046e — 22 5.3716e — 86
SH4 1.0359 - 1 5.4166e — 6 4.6302e — 23 2.4821e - 91
MM4 1.4490e — 1 1.0558e — 5 6.7122e — 22 1.0964e — 86
Example 11. Consider Example 12. Consider
X1 -1 —
—e!'+tan (x,)+2=0,
X255 + %4 (%, + x3) = 0, (2) (71)

tan”! (xf + xg - 5) =0,

x5 + x4 (%) +x3) =0,
(70)  with initial guess X © = (1.0,2.0)", and one of its solutions is
X% + %, (%, + %) = 0, o = (1.12906503 - - - 1930080863 --- ).

X%, + X X5 + X,%5 = 1, Example 13. Consider
—e M+ x,+ x5 =0,
with initial guess X© = (0.5,0.5,0.5,-0.2)", and one of its

T —e 7 +x,+ x5 =0, (72)
solutions is & = (0.577350, 0.577350, 0.577350, —0.288675)" .

- +x, +x, =0,
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with initial guess X = (-0.8,1.1,1.1)", and one of its
solutions is & = (—0.8320---1.1489---1.1489 - --)T.

Example 14. Consider

log (x,) = X7 + x,%, = 0,
(73)
log (x;) = X5 + x,%, = 0,

with initial guess X © = (0.5, 1.5)T, and one of its solutions is
a=(1,1)"

5. Conclusion

In the present work, we have provided a family of third-
and optimal fourth-order iterative methods which yield some
existing as well as many new third-order and fourth-order
iterative methods. The multivariate case of these methods
has also been considered. The efficiency of our methods is
supported by Table 2 and Table 4.
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