
Research Article
The Impact of the PSP on Software Quality: Eliminating
the Learning Effect Threat through a Controlled Experiment

Fernanda Grazioli, Diego Vallespir, Leticia Pérez, and Silvana Moreno

Facultad de Ingenieŕıa, Universidad de la República, Julio Herrera y Reissig 565, 11300 Montevideo, Uruguay

Correspondence should be addressed to Diego Vallespir; dvallesp@fing.edu.uy

Received 30 May 2014; Revised 5 September 2014; Accepted 5 September 2014; Published 30 September 2014

Academic Editor: Robert J. Walker

Copyright © 2014 Fernanda Grazioli et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Data from the Personal Software Process (PSP) courses indicate that the PSP improves the quality of the developed programs.
However, since the programs (exercises of the course) are in the same application domain, the improvement could be due to
programming repetition. In this research we try to eliminate this threat to validity in order to confirm that the quality improvement
is due to the PSP. In a previous study we designed and performed a controlled experiment with software engineering undergraduate
students at the Universidad de la República. The students performed the same exercises of the PSP course but without applying the
PSP techniques. Here we present a replication of this experiment.The results indicate that the PSP and not programming repetition
is the most plausible cause of the important software quality improvements.

1. Introduction

The Personal Software Process (PSP) is a software develop-
ment process for the individual [1]. The PSP helps the engi-
neer to control, manage, and improve his or her work and it is
taught through a course. The students (many times software
engineers) perform several programming exercises in which
techniques and phases of the PSP are added as the exercises
advance. For each exercise, process data are collected.

Data from the courses indicate that the PSP improves the
quality of the products developed [2–5]. One way used to
determine this is through statistical analysis of the evolution
of the results obtained by the students in each program
of the course. For example, if the programs developed are
of a better quality as the course progresses, then it can be
statistically inferred that the PSP is responsible for the quality
improvement.

However, since the programs are in the same application
domain, the improvement could be due to programming
repetition (i.e., the learning effect). To explore the reasons for
the improvements, we asked the following research question:
Are the quality improvements observed in the PSP courses
due to the introduction of the phases and techniques of

the PSP or due to programming repetition? To investigate
this we designed and performed a controlled experimentwith
software engineering undergraduate students at the Univer-
sidad de la República. The students performed the exercises
from the course without applying the PSP techniques. This
makes it possible to know if quality improves by the simple
fact of programming repetition. In the context of this study,
product quality is measured as defect density.

The designed experiment was executed in 2012 [6], and
an exact replication was executed in 2013.The subjects of our
experiment perform 8 program assignments without apply-
ing the PSP techniques. Then, the collected data are statisti-
cally analyzed and compared with the data collected during
the regular PSP course. In this paper, we present the analysis
of both executions of the experiment. The most important
result indicates that the PSP and not programming repetition
is the most plausible cause of the important software quality
improvements.

Section 2 briefly presents the PSP. The related works are
presented in Section 3. Section 4 presents the way in which
the study was designed. Sections 5, 6, and 7 present the results
of the research. Threats to validity are presented in Section 8
and the conclusion is in Section 9.

Hindawi Publishing Corporation
Advances in Soware Engineering
Volume 2014, Article ID 861489, 10 pages
http://dx.doi.org/10.1155/2014/861489



2 Advances in Software Engineering

Planning

Design

Design review 

Code

Code review

Compile

Unit test

Postmortem

Code reviews
Design reviews

PSP2 Design templates

PSP2.1

Current process
Time recording
Defect recording
Defect type standard

PSP0 Coding standard
Size measurement 
Process improvement 
proposal

PSP0.1

Size estimating
Test report

PSP1 Task planning
Schedule planning

PSP1.1

Scripts

Project 
summary

Logs

Requirements

Finished product

Guide

Guide

Record time
and defects

Results

Plan

Figure 1: The PSP phases and the PSP process levels.

2. The Personal Software Process

The PSP is a software development process for the individual
[1, 7].ThePSP establishes a highly instrumented development
process that includes a rigorous measurement framework for
effort and quality.Theprocess includes phases and techniques
that the engineer follows anduseswhile building the software.

For each phase, the PSP has scripts that help follow the
process correctly. The phases are planning, detailed design,
detailed design review, code, code review, compile, unit test,
and postmortem. In each phase, the engineer collects data
on the time spent in the phase and the defects injected and
removed, as it is shown in Figure 1.

During the PSP course, the engineer builds programs
while he progressively learns the PSP phases and techniques.
For the first exercise, the engineer starts with a simple and
defined process. As the course progresses, new process phases
and elements are added, from estimation and planning to
code reviews and to design and design review. As these
elements are added, the process changes.

There are six PSP processes, also called PSP levels: PSP0,
PSP0.1, PSP1, PSP1.1, PSP2, and PSP2.1. Each process builds
on the prior process by adding engineering or management
activities, as shown in Figure 1. The PSP is in fact the PSP2.1
level. The other PSP levels exist exclusively for the purposes
of teaching the PSP.

The course has changed twice. The first version of the
course, PSP for engineers I/II original, involved 10 program
exercises. The second version, PSP for engineers I/II revised,
involved 8 programs. The third version, PSP fundamentals
and advanced, involved 7 program assignments. All three
course versions have been taught in different environments,

for different kinds of people all around the world: undergrad-
uate students, graduate students, and professional software
engineers [8, 9].The SEI partners generally use in their classes
the last course version, while in the academy the 10 program
course version is commonly used. We know this by internal
communications with the SEI and by reviewing the published
articles related to PSP analysis.

As an example, Table 1 shows which PSP level is applied
on each assignment in the 8-program course.

3. Related Works

The PSP has several published studies showing improvement
in developer performance with process insertion. In partic-
ular, some studies show that the PSP improves the quality of
the developed products [2–5].

Normally, in these studies the data are grouped by PSP
level in order to be able to evaluate the different techniques
and phases that are introduced and used on each PSP level.
Rather than analyzing changes in group averages, these
kinds of studies focus on the average changes of individual
engineers, that is, analyze the improvement in developer
performance.

Defect counts andmeasures of defect density (i.e., defects
per KLOC) have traditionally served as software quality
measures. The PSP uses this method of measuring product
quality, as well as several process quality metrics.

Hayes and Over analyzed the data of 298 engineers who
attended the PSP for engineers I/II original course until 1997
[2].Their investigation focuses on the changes across the first
three major PSP levels (0, 1, and 2). They grouped individual



Advances in Software Engineering 3

Table 1: PSP levels applied on each program assignment in the PSP I/II revised course.

1 2 3 4 5 6 7 8
PSP0 PSP0.1 PSP1 PSP1.1 PSP2 PSP2.1 PSP2.1 PSP2.1

data according to these levels and then examined the change
in individual performance that occurred from level to level.

The analysis of overall defect density revealed a statisti-
cally significant difference between PSP levels 0 and 1, as well
as between PSP levels 0 and 2. They found that the median
reduction in total defect density is factor of 1.5 between PSP
levels 0 and 2. On the other hand, they were not able to reject
the null hypothesis between PSP levels 1 and 2.

Analysis of both defect density in the compile phase
and defect density in the test phase revealed a statistically
significant difference in defect density across the three PSP
levels comparisons.They found that the median reduction in
defect density for the compile phase is a factor of 3.7, and, for
the test phase, the median reduction is a factor of 2.5, both
between PSP levels 0 and 2.

In 2007, Rombach et al. performed a replication and
extension of the Hayes study [3]. They analyzed the data
of 3090 engineers who attended the PSP for engineers I/II
original course between 1994 and 2005. The paper does not
clarify whether they use all the 3090 engineers’ data for the
defect density analyses or not. We know that authors began
with that size sample but we do not know if they discarded
some data for quality analysis.

They observed similar and significantly decreasing trends
concerning defect density for the compile and test phases. For
those variables, the null hypotheses were rejected for all the
PSP level comparisons.

In the case of overall defect density, a general decreasing
trendwas observed in almost all PSP level comparisonswhere
the null hypotheses were rejected. It was only between PSP
levels 1 and 2 that they were not able to reject the null
hypothesis as no significant difference was found.

In 2006, Paulk analyzed the data of 1345 engineers who
attended the PSP for engineers I/II original course between
1994 and 2001 [4]. He only used defect density in test phase
as the dependent variable to measure software quality.

He analyzed the changes across the four major PSP levels
(0, 1, 2, and 3). A decreasing trend could be observed between
all PSP level comparisons. Null hypotheses were rejected for
all cases, using both statistical tests named above. He found a
decrease in defect density in testing of more than 75 percent
between PSP level 0 and 3.

In a later work, Paulk considered a data set of 2435
programs developed by engineers who performed the PSP for
engineers I/II original course between 1994 and 2001 [5]. The
article does not clarify how many engineers were involved in
those developments. The data set is a subset of his previous
study and in this instance he only considered programs
written in C language. He analyzed the changes across the
four major PSP levels like in his previous study, using the
same two statistical methods. He found a statistically signif-
icant decreasing trend between all PSP level comparisons.

He found that quality improved by 79 percent and that
variability decreased by 81 percent between PSP level 0 and 3.

A retrospective analysis of these related works left some
threats to external validity. One threat is the confounding
of the effect of introducing process phases and techniques
insertions with the gaining of domain experience as related
programs are developed. Therefore, the question is if the
improvements are due to the phases and techniques or due to
programming repetition during the course (learning effect).

4. Methodology and Study Setup

The main goal of our research is to know if the software
engineers improve the quality of the developed products due
to the PSP itself or due to programming repetition in the
same application domain. In order to answer this research
question, our study is composed of three main steps:

(i) analyzing the data of the PSP for engineers I/II revised
course,

(ii) designing, executing, and analyzing the data of a
controlled experiment that allows us to know if
quality improves by the simple fact of programming
repetition,

(iii) comparing both results in order to know if there are
differences between them.

In order to analyze the PSP for engineers I/II revised
course, the methodology consists of analyzing the available
data of students that performed the PSP complete course
and looking for changes in the individual performance. The
method and the hypotheses are presented in detail in the
following paragraphs. The results, analysis, and discussion of
the PSP regular course are presented in Section 5. Regarding
the experiment that allows us to look at the effects of pro-
gramming repetition, the methodology and experimental
design are presented in Section 6.1, while the experiment
results, analysis, and discussion are presented in Section 6.2.

We use threemeasures to evaluate the quality of the prod-
ucts: defect density in compile, defect density in unit test, and
total defect density. As we show in the related works section,
these are generally used for software quality assessment. The
defect density is measured as the number of defects per every
thousand lines of code (KLOC). The consequence of high
defect density in software engineering is typically seen in the
form of defect-fixing or rework effort incurred in projects,
which results in poor quality products [2].

Because the PSP was developed to improve individual
performance through the gradual introduction of practices,
we decided to follow a similar approach to analyze the regular
PSP course, examining the change in individual performance
as these practices are introduced by the different PSP process



4 Advances in Software Engineering

levels. We group the available data of the program assign-
ments according to the major PSP level that was followed on
that assignment. That is, we generate three groups: one with
the programs developed using PSP0 and PSP0.1, another one
with PSP1 and PSP1.1, and the last one with PSP2 and PSP2.1.
Table 2 shows the program assignment numbers for each
group according to the PSP for engineers I/II revised course.

Our PSP course analysis raises the null hypotheses and
their respective alternative hypotheses for each of the three
mentioned quality metrics. The hypotheses aim at knowing
if, when comparing a PSP level to another one applied
previously, the software engineer improves the quality of the
developed products. So, we compare groups by pairs to find
if the changes in each dependent variable are statistically
significant:

H0 def ut: median (defect density in UT 𝑖) = median
(defect density in UT 𝑗),
H1 def ut: median (defect density in UT 𝑖) <>median
(defect density in UT 𝑗),

where 𝑖, 𝑗 are the numbers of the major PSP levels (0, 1, or 2)
and 𝑖 < 𝑗.

The same type of null and alternative hypotheses is raised
for the other two dependent variables.

In our experiment, the subjects perform the same eight
exercises from the regular course without applying the PSP
techniques. In order to get comparable results, to analyze
the data of the experiment, we decide to group the data
using the program assignment grouping done in the PSP
I/II revised course, regardless of the PSP level. That is, we
generate three groups: one with programs 1 and 2, another
one with assignments 3 and 4, and the last one with exercises
5 to 8. Given these groups, for the experiment we raise the
same hypotheses stated above for the three product quality
measures under study.

In both cases, in the PSP regular course and in the
experiment, we have a context of repeated measures samples.
So, the first statistical analysis method we considered to
compare defect density was the parametric ANOVA for
repeatedmeasures test, which allows investigating changes in
mean scores over time points. Repeated measures ANOVA
carries a set of assumptions such as multivariate normality,
homogeneity of covariance matrices, and independence. The
results of the Shapiro-Wilk normality test for our experiment
sample indicate that it is not normally distributed. So, it does
not fulfill the normality assumption for ANOVA. The same
happened when testing the normality of the PSP course data.
Based on the normality test results and the small size samples,
we discarded ANOVA for repeated measures as the analysis
method.Then we analyzed the data of the PSP course and the
data of the experiment using the nonparametric Wilcoxon
signed-rank test [10]. This test is used to compare two sets
of scores that come from the same subjects and it does not
require any assumptions about the shape of the distribution.
The Wilcoxon signed-rank test uses the median in the null
and in the alternative hypotheses instead of the mean.

After analyzing and discussing each study separately,
the comparison between the course and the experiment

Table 2: Program assignments grouped by PSP major level.

Group Program assignments
PSP0 1 and 2
PSP1 3 and 4
PSP2 5, 6, 7, and 8

is performed. This comparison is presented in Section 7,
using a descriptive method and includes a complete results
discussion.

5. PSP I/II Revised Course Quality
Results and Discussion

We used data from the eight-program course version, PSP
for engineers I/II revised, taught between June 2006 and June
2010. These courses were taught by the Software Engineering
Institute (SEI) at Carnegie Mellon University or by SEI part-
ners, including a number of different instructors in multiple
countries.

We made several cuts and ran data cleaning algorithms
to include only the subjects who had completed all program-
ming exercises, in order to clean and remove errors and
questionable data. We determined other cuts on the data set,
by performing an analysis and assessment of the data quality
based on the data quality theory [11]. After this cleaning
process, the data set was composed of 40 engineers.

Table 3 presents median, interquartile range, andmean of
the three variables under study for the threemajor PSP levels.

Tables 4, 5, and 6 present the results of applying the
Wilcoxon test to each pair of PSP levels for the hypothesis of
defect density in compile (DDComp), defect density in unit
test (DDUT), and total defect density (TDD), respectively.
The tables present the comparison between pairs of PSP lev-
els. Each cell contains the (2-tailed) 𝑃 value of the Wilcoxon
test and the effect size of the changes when applicable. The
cells in ∗ or ∗ ∗ ∗ indicate that the null hypothesis has
been rejected (𝑃 < 0.05). The ∗ ones also indicate that
there has been an improvement as the subjects advance in
the PSP levels; the ∗ ∗ ∗ ones indicate deterioration. The ∗∗
cells indicate that it has not been possible to reject the null
hypothesis.The effect sizes of the changes are presented based
on Cohen’s 𝑑measure.

The analysis of defects per KLOC in compile phase
reveals a statistically significant improvement in defect den-
sity between all the PSP level comparisons (𝑃 < 0.05), all with
medium and large effect sizes following Cohen classification
[12].

The analysis of defects perKLOC in unit test phase reveals
a statistically significant improvement in defect density
between all the PSP level comparisons (𝑃 < 0.05). The effect
size of the improvement is large between PSP0 and PSP2.

The analysis of overall defect density reveals that the
differences between PSP levels 0 and 1 and between PSP levels
0 and 2 are statistically significant (𝑃 < 0.05) but that the
difference between PSP levels 1 and 2 is not. The effect size



Advances in Software Engineering 5

Table 3: Descriptive statistics for the three variables under study.

PSP0 PSP1 PSP2
Defect density in compile

(number of defects found in compile/KLOC)
Median 26.67 10.03 0.00
IQR 23.37 17.90 4.76
Mean 29.67 14.63 3.50

Defect density in unit testing
(number of defects found in UT/KLOC)

Median 18.76 9.93 5.41
IQR 16.29 15.22 14.03
Mean 20.60 12.94 8.04

Total defect density per KLOC
(number of defects found/KLOC)

Median 48.32 24.73 31.77
IQR 28.67 27.69 37.42
Mean 58.05 29.90 35.64

Table 4: DDComp analysis.

Level PSP1 PSP2
PSP0 𝑃 = 0.000, 𝑑 = 0.7

∗

𝑃 = 0.000, 𝑑 = 1.4
∗

PSP1 𝑃 = 0.000, 𝑑 = 1.0
∗

Table 5: DDUT analysis.

Level PSP1 PSP2
PSP0 𝑃 = 0.001, 𝑑 = 0.5

∗

𝑃 = 0.000, 𝑑 = 1.0
∗

PSP1 𝑃 = 0.021, 𝑑 = 0.4
∗

Table 6: TDD analysis.

Level PSP1 PSP2
PSP0 𝑃 = 0.000, 𝑑 = 0.9

∗

𝑃 = 0.000, 𝑑 = 0.7
∗

PSP1 𝑃 = 0.072
∗∗

of the improvement is large between PSP0 and PSP1 and
medium between PSP0 and PSP2.

All these observations support the PSP course benefits
regarding product quality. It is important to note that, because
of the followed approach, the improvements that were
observed represent real change in individual performance,
not a change in the average performance of the group. These
analyses throw very similar software quality results to those
obtained by Hayes, Rombach, and Paulk.

However, as it was stated earlier that, in this kind of study,
we cannot affirm that improvements are achieved exclusively
by the PSP in itself. There is a possibility that the improve-
ments are achieved due to the programming learning effect
produced by the programming repetition during the course.

6. The PSP0.1 Experiment

We designed and performed a controlled experiment at the
Universidad de la República. In this experiment, the subjects

performed the exercises from the PSP for engineers I/II
revised course without applying the PSP techniques.

6.1. Design, Experimental Material, and Subjects. The experi-
mental material is made up of the process scripts of PSP0 and
PSP0.1, the requirements of the programs 1 to 8 used in the
PSP course, and the tool for data collection. All this material
is the same as the one that is used in the PSP for engineers I/II
revised courses for the PSP0 and PSP0.1 levels. The tool for
data collection is the one distributed by the SEI (PSP support
tool developed in Microsoft Access).

The design of this experiment is a repeated measures
design. Students develop 8 software programs following an
established process. The 8 programs are the same for all the
subjects and are developed in the same order. The students
use the PSP0 for the first program and the PSP0.1 for the
remaining seven programs. These two levels of the PSP only
aim at collecting data of the process (time, defects, etc.) but
they do not introduce the practices of the PSP (reviews,
design, PROBE, etc.). This design of the experiment makes
it possible to know if the students improve the performance
due to programming repetition.

For our experiment we decided to use 8 program assign-
ments because we consider that 10 assignments (as it has
the first PSP course version) could be too much for a
student that is always applying the same baseline process,
and as a consequence students could lose the interest or
the motivation at the last part of the experiment. We also
preferred to use this instead of 7 assignments (as it has the
last PSP course version) because it better fits the context of a
university subject of one semester. Furthermore, 8 programs
are enough to analyze whether there are improvements due
to programming repetition.

Regarding the environment, the students must perform
the assignments individually in their houses, but they are per-
manentlymonitored by a tutor. It is a controlled environment
because there is a constant feedback with the tutor, unlimited
email exchanges to evacuate doubts (sometimes also phone
calls or meetings), corrections, and redelivery requests when
necessary at the end of each assignment. Students are not in
a time-limited classroom, so in this way the time records and
the amount of defects found are not biased by the available
time of class. That is, the student performs the assignment
at their own peace and records their real time and defects
without being pressured by the clock or by other studentswho
finish earlier. That allows us to have reliable measures.

A total of 22 subjects performed the PSP0.1 experiment:
12 during the first execution that was performed in 2012
and the other 10 during the second execution in 2013. These
executions were conducted in the same way and only the
subjects changed.

The subjects are software engineering undergraduate
students of the Universidad de la República of Uruguay; all
of them advanced students since they are in their fourth
or fifth year. They have completed the course Programming
Workshop in which they learn Java language and they
have at least completed three more programming courses
and a course on object oriented languages. We consider



6 Advances in Software Engineering

therefore that the group that participates in the experiment
is homogeneous due to their similar advance in their career.

Some qualitative analyses have shown that undergraduate
students in PSP courses were concerned more with pro-
gramming than with software process issues and that they
were not ready to appreciate the benefits of addressing those
issues [13–15]. In these works, the students were applying
PSP in introductory programming courses during their first
year of university studies. Our experiment is different from
that in several aspects. We only use a small part of the
PSP framework which does not require new knowledge by
students. They must apply their own process just adding
discipline aspects to record their data, and they do not have to
learn complex techniques applied in PSP such as the PROBE
method for time and size estimation, performing neither
reviews nor detailed design techniques. Another different
aspect is that our students already know how to program and
they are advanced students who had previously completed
several programming courses. Our students are focused on
making the best software development they can and focused
on recording the data correctly. During the execution of our
experiment we did not identify similar problems to those
described by these authors.

The students participate in the experiment in order to
obtain credits for their career and that is their motivation. It
is mandatory for them to attend the theory classes (lectures)
where the software development process used (PSP0 and
PSP0.1) is presented. It is also mandatory for them to follow
the scripts provided and to collect the data using the tool
for that purpose. The students do not know they are taking
part in an experiment and they think they are taking a course
with an important component of laboratory practices. They
do know, however, that the data they collect will be used in
research work and they indeed give their written consent for
such purpose.

Finally, participation in the course by the students is
voluntary. This course is not mandatory for their Software
Engineering Degree; therefore enrolling in it is optional.

6.2. Results and Discussion. In this section, we present the
quality analysis results of the 22 subjects that performed the
experiment, which will allow us to know if quality improves
by the simple fact of programming repetition.

For this analysis the labels “progs1-2,” “progs3-4,” and
“progs5–8” represent the program assignment grouping done
as in the PSP I/II revised course. That is, progs1-2 is the
grouped data of program assignments 1 and 2, progs3-4 is the
grouped data of program assignments 3 and 4, and progs5–8
is the grouped data of program assignments 5 to 8.

Table 7 presents median, interquartile range, andmean of
the three variables under study for the three groups.

Tables 8, 9, and 10 present the result of applying the
Wilcoxon test to each pair of groups and the effect size for the
three variables under study. The colors are used in the same
way as in Table 4.

The analyses of defects per KLOC in compile phase
show a statistically significant improvement when compar-
ing the first two programs with the following programs

Table 7: Descriptive statistics for the three variables under study.

Progs1-2 Progs3-4 Progs5–8
Defect density in compile

(number of defects found in Compile/KLOC)
Median 56.58 39.72 37.83
IQR 75.48 45.32 39.15
Mean 78.21 59.08 44.12

Defect density in unit testing
(number of defects found in UT/KLOC)

Median 39.10 16.45 19.82
IQR 17.58 20.01 18.30
Mean 54.57 20.13 27.38

Total defect density per KLOC
(number of defects found/KLOC)

Median 114.40 64.33 66.50
IQR 82.13 51.87 48.87
Mean 134.91 79.96 72.07

Table 8: DDComp analysis.

Group Progs3-4 Progs5–8
Progs1-2 𝑃 = 0.04, 𝑑 = 0.3

∗

𝑃 = 0.001, 𝑑 = 0.6
∗

Progs3-4 𝑃 = 0.296
∗∗

Table 9: DDUT analysis.

Group Progs3-4 Progs5–8
Progs1-2 𝑃 = 0.000, 𝑑 = 0.9

∗

𝑃 = 0.001, 𝑑 = 0.7
∗

Progs3-4 𝑃 = 0.012, 𝑑 = 0.4
∗∗∗

Table 10: TDD analysis.

Group Progs3-4 Progs5–8
Progs1-2 𝑃 = 0.000, 𝑑 = 0.6

∗

𝑃 = 0.000, 𝑑 = 0.7
∗

Progs3-4 𝑃 = 0.961
∗∗

(i.e. progs1-2 versus progs2-3 and progs5–8). However, there
is no improvement after the first programs as it was not pos-
sible to reject the null hypothesis when comparing progs3-4
and progs5–8.

This means that programming repetition and data col-
lection of time and defects following the process PSP0.1
reduce the defects found in compile phase with statistical
significance. We understand that the most plausible reason
for the improvement in the first programs is that the subjects
record their own injected defect types found in the programs.
By recording each injected defect and data related to them,
the engineer becomes aware of themost common defects and
reduces the injection or easily finds them before compilation.
Nevertheless, further experiments are needed to confirm if
this is the reason for the improvement.

Following Cohen classification, the effect size of the
improvement is small between progs1-2 and progs3-4 and
medium between progs1-2 and progs5–8.



Advances in Software Engineering 7

The analyses of defects per KLOC in unit test phase reveal
a statistically significant improvement between progs1-2 and
progs3-4 and between progs1-2 and progs5–8.This could also
be due to the defect recording of every injected defect.

Between progs3-4 and progs5–8 there is a significant
difference but it refers to a deterioration, which means that
programs 5–8 show a higher number of detected defects in
unit test than programs 3-4. This shows that programming
repetition (using these programs) does not result in a con-
tinuous improvement of defect density in unit testing. One
possible explanation for this behavior is that defect types that
are not recognizable by the compiler (for example, function,
data, or checking defects) are not as easy to learn to avoid
their injection as the defect types that are detectable at the
compile phase (for example, syntax defects). This combined
with the increasing complexity of the program assignments
tasks could be the reason for the deterioration.There could be
many other possible reasons for this deterioration, but further
studies are necessary.

According to Cohen classification, the effect sizes of the
improvements are large, and the effect size of the deteriora-
tion is medium.

The analyses of total defects per KLOC show the same
behavior as the analyses of DDComp. A statistically signif-
icant improvement was found when comparing the progs1-
2 and progs2-3 and progs5–8, and it was not possible to
reject the null hypothesis when comparing progs3-4 against
progs5–8. This shows that the overall defect density of the
developed programs is reduced with statistical significance
by the programming repetition and data collection of time
and defects following the PSP0.1 process. The effect size of
the improvement is large between progs1-2 and progs3-4 and
medium between progs1-2 and progs5–8.

All these observations reveal that there is an improvement
regarding product quality with the use of PSP0.1, but this
improvement is not continuous as it is in the PSP for engi-
neers I/II revised course.

7. Comparative Discussion

In this section we compare the regular PSP course with our
experiment. We want to know whether the quality improve-
ment is because of the PSP practices or because of other
characteristics.

Figure 2 summarizes the hypotheses tests results and
effect sizes that were presented earlier in the PSP I/II revised
course and the PSP0.1 experiment. Only the comparisons
between progs1-2 against progs3-4 and progs3-4 against
progs5–8 are included in the tables. Remember that, in the
case of the PSP course, those comparisons refer to PSP0
against PSP1 and PSP1 against PSP2 levels, respectively.

A bar-whisker chart of defect density per group and a bar-
whisker chart of individual improvement are also included in
the figure comparing the PSP course and the experiment for
each analyzed variable.These charts are descriptive and allow
us to get a clearer idea of the software quality behavior at the
individual level.

The individual improvement is calculated as the percent-
age difference for each subject between two groups (i.e., %
improvement = − 100 ∗ (defect density in group Y − defect
Density in group X)/defect density in group X). An improve-
ment is represented by a positive value, and deterioration
is represented by a negative one. Samples with zero defects
as the divisor are not considered in the analysis, as division
by zero is not defined. We use a proportional representation
of individual improvement instead of an absolute difference
because we consider it more appropriate in our context (i.e.,
it does not seem appropriate to consider a reduction in defect
density from 455 to 450 defects per KLOC as equal as a
reduction from 10 to 5 defects per KLOC.)

The left side charts indicate that, from the beginning, the
PSP course is better than PSP0.1 experiment.The PSP courses
are generally performed by professional software engineers
with several years of experience in the industry. We believe
that this factor is making the initial number of defects lower
when comparing with undergraduate students. This factor is
known to affect productivity performance [16]. This is not
a problem for our study because we are interested in the
changes in the individual performance. That is, we analyze
if there are improvements when introducing techniques or if
there are improvements with programming repetition.

For each analyzed variable, we can see an initial improve-
ment (from progs1-2 to progs3-4) in the PSP course as well
as in the PSP0.1 experiment. In the right side charts, this
improvement effect is clearly visible. In both cases, the reason
for the improvement could be the defect recording activity
done since PSP0, as in PSP1 only size and time estimation
techniques are introduced and these should not have impact
on product quality. For DDComp and TDD the effect size in
the PSP course is greater, while for DDUT the effect size is
greater in the experiment.

There is no statistical evidence of improvement when
comparing progs3-4 to progs5–8 in the PSP0.1 experiment
in any of the analyzed variables (even statistical evidence of
deterioration exists in DDUT). However, when comparing
PSP1 to PSP2 in the PSP course we found a statistical
improvement in DDComp and DDUT with an effect size
of 1.0 and 0.4, respectively. We can see those improvements
in the PSP course graphically represented in the right side
charts. Design reviews, code reviews, and detailed design
techniques are introduced in PSP2 using four specific design
templates and individual tailored checklists. This change in
the process is the most plausible reason for the difference in
the quality improvement between the PSP0.1 experiment and
the PSP course. Therefore, the practices introduced by the
PSP (and, so, the PSP itself) lead to such a big improvement
in product quality, while programming repetition or defect
recording does not.

From the perspective of the practitioner at least two
interesting conclusions emerge. One is that the use of the PSP
supports the development of quality software. We presented
the fact that quality improvements are due to the use of
this process and, also, that by using the PSP2 a low defect
density in unit testing is reached, even when the engineer is
incorporating and learning the process (see Table 5).



8 Advances in Software Engineering

Defect density in compile 

Course

PSP0.1 expe.

PSP I/II rev.

Defect density in unit testing

Course

PSP0.1 expe.

PSP I/II rev.

Total defect density

Course

PSP0.1 expe.

PSP I/II rev.

D
ef

ec
t d

en
sit

y 
in

 co
m

pi
le

Group Groups

D
ef

ec
t d

en
sit

y 
in

 u
ni

t t
es

t
To

ta
l d

ef
ec

t d
en

sit
y

150.00

Course
PSP0.1 expe.
PSP I/II revised

100.00

50.00

Progs1-2 Progs1-2 versus
progs3-4

Progs3-4
0.00

0
50

10080.00

60.00

40.00

20.00

0.00

200.00

250.00

150.00

100.00

50.00

0.00

Progs5–8

Group
Progs1-2 Progs3-4 Progs5–8

Progs3-4 versus
progs5–8

Progs1-2 versus
progs3-4

Progs1-2 versus
progs3-4

Progs1-2 versus
progs3-4

Progs3-4 versus
progs5–8

Progs3-4 versus
progs5–8

Progs3-4 versus
progs5–8

Course
PSP0.1 expe.
PSP I/II revised

Group
Progs1-2 Progs3-4 Progs5–8

Course
PSP0.1 expe.
PSP I/II revised

Course
PSP0.1 expe.
PSP I/II revised

Groups

Progs1-2 versus
progs3-4

Progs3-4 versus
progs5–8

Course
PSP0.1 expe.
PSP I/II revised

Groups

Progs1-2 versus
progs3-4

Progs3-4 versus
progs5–8

Course
PSP0.1 expe.
PSP I/II revised

−300

−250

−200

−150

−100

−50

0
50

100

−300

−250

−200

−150

−100

−50

0
25
50
75

100

−100

−25

−50

−75

Im
pr

ov
em

en
t D

D
U

T 
(%

)
Im

pr
ov

em
en

t T
D

D
 (%

)
Im

pr
ov

em
en

t D
D

C
om

p 
(%

)

d = d = d =

d =d =

d =

d =

d = d =

0.3
∗

0.9
∗

0.5
∗

0.4
∗

0.4
∗∗∗

0.6
∗

0.9
∗

0.7
∗

1.0
∗

∗∗—

∗∗—
∗∗—

Figure 2: PSP0.1 experiment versus PSP I/II revised course.



Advances in Software Engineering 9

The second conclusion from the practitioner’s point of
view is that the detailed design and the individual design and
code reviews are excellent techniques, probably unavoidable,
to build quality software. These techniques are the ones
added in the PSP2 and they are the ones responsible for
the quality improvements detected in our work. Nowadays,
with the fashion of agility, developers sometimes do not build
detailed designs, let alone reviewing their design or code
using checklists.

Still, unfortunately, themost common approach to software
development today is code-and-fix programing [17], some-
times modernized by the automating of the unit tests. It is
time to change.

8. Threats to Validity

Due to space restrictions, we only mention the threats
to validity that seem to be most important to us. These
include the following: (a) having a small number of subjects
performing the experiment, which results in the application
of nonparametric tests that are less powerful than parametric
ones; (b) all the subjects of the experiment are students with
little or no programming experience in the industry; (c) the
program assignments were developed at home, which is a
threat but is reduced because of the tutor’s monitoring during
and at the end of each assignment, as it was explained in
Section 6.1; and (d) the design method and the design and
code review are embedded in the PSP process, so the second
practitioner’s conclusion is dependent on the PSP.

9. Conclusions and Future Work

The presented results contribute to the elimination of an
important threat to the validity of different experiments
performed with the PSP. This agrees with previous research
works we performed which indicate that the practices intro-
duced by the PSP and not programming repetition are
responsible for the improvement of individual performance
[6, 18].

In addition, the comparison between our experiment and
the regular PSP course reveals that continuous and transcen-
dent product quality improvements cannot be reached simply
by the programming learning effect. The use of adequate
practices is the cause of the important software quality
improvements.

As future work we intend to isolate the PSP techniques
(detailed design, design and code review) using a new
controlled experiment that will enable us to study the effect of
each technique in software quality and the synergy produced
between them.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] W. Humphrey, A Discipline for Software Engineering, Addison-
Wesley, 1995.

[2] W. Hayes and J. Over, “The personal software process: an
empirical study of the impact of PSP on individual engineers,”
Tech. Rep. CMU/SEI-97-TR-001, Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh, Pa, USA, 1997.

[3] D. Rombach, J. Münch, A. Ocampo, W. S. Humphrey, and
D. Burton, “Teaching disciplined software development,” The
Journal of Systems and Software, vol. 81, no. 5, pp. 747–763, 2008.

[4] M. C. Paulk, “Factors affecting personal software quality,”
CrossTalk, vol. 19, no. 3, pp. 9–13, 2006.

[5] M. C. Paulk, “The impact of process discipline on personal
software quality and productivity,” ASQ Software Quality Pro-
fessional, vol. 12, no. 2, pp. 15–19, 2010.

[6] D. Vallespir, F. Grazioli, L. Pérez, and S. Moreno, “Demon-
strating the impact of the PSP on software quality and effort:
eliminating the programming learning,” in TSP Symposium,
Software Engineering Institute, Carnegie Mellon University,
Dallas, Tex, USA, 2013.

[7] W. Humphrey, PSP: A Self-Improvement Process for Software
Engineers, Addison-Wesley, 2005.

[8] “Transition guide for the PSP for engineers course,” Internal
Document, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa, USA, 2005.

[9] Transition Guide PSP for Engineers to PSP Fundamentals and
PSP Advanced, Internal Document, Software Engineering Insti-
tute, Carnegie Mellon University, 2008.

[10] F. Wilcoxon, “Individual comparisons by ranking methods,”
Biometrics Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[11] C. Valverde, F. Grazioli, and D. Vallespir, “Un estudio de la
calidad de los datos recolectados durante el uso del personal
software process,” in Proceedings of the 9th Jornadas Iberoamer-
icanas de Ingenieŕıa de Software e Ingenieŕıa del Conocimiento
(JIISIC ’12), pp. 37–44, November 2012.

[12] J. Cohen, Statistical Power Analysis for the Behavioral Sciences,
Lawrence EarlbaumAssociates, Hillsdale, NJ, USA, 2nd edition,
1988.

[13] P. Runeson, “Experiences from teaching PSP for freshmen,”
in Proceedings of the 14th Conference on Software Engineering
Education and Training, pp. 98–107, February 2001.

[14] S. K. Lisack, “The personal software process in the classroom:
student reactions (an experience report),” in Proceedings of
the 13th Conference on Software Engineering Education and
Training, pp. 169–175, 2000.

[15] R. Grove, “Using the personal software process to motivate
good programming practices,” in Proceedings of the 6th Annual
Conference on the Teaching of Computing and the 3rd Annual
Conference on Integrating Technology into Computer Science
Education (ITICSE ’98), pp. 98–101, Dublin, Ireland, September
1998.

[16] R. Mushtaq, F. Joao, and N. William, “Factors affecting produc-
tivity performance in PSP training,” in Proceedings of the Team
Software Process Symposium (TSP ’13), Software Engineering
Institute, Carnegie Mellon, Pittsburgh, Pa, USA, 2013.

[17] S. McConell and L. L. Tripp, “Software engineering as a
profession,” in Software Engineering Essentials, Volume II: The



10 Advances in Software Engineering

Supporting Process, R. H.Thayer andM. Dorfman, Eds., chapter
11, pp. 159–164, 2013.

[18] F. Grazioli and W. Nichols, “A cross course analysis of product
quality improvement with PSP,” Tech. Rep. CMU/SEI-2012-SR-
015: 76–89, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa, USA, 2012, TSP Symposium.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


