Since the 1950s, mathematicians have successfully interpreted the traditional Eulerian numbers and \(q \)-Eulerian numbers combinatorially. In this paper, the authors give a combinatorial interpretation to the general Eulerian numbers defined on general arithmetic progressions \(\{a, a+d, a+2d, \ldots \} \).

1. Introduction

Definition 1. Given a positive integer \(n \), define \(\Omega_n \) as the set of all permutations of \([n] = \{1, 2, 3, \ldots, n\} \). For a permutation \(\pi = p_1p_2p_3 \ldots p_n \in \Omega_n \), \(i \) is called an ascent of \(\pi \) if \(p_i < p_{i+1} \); \(i \) is called a weak exceedance of \(\pi \) if \(p_i \geq i \).

It is well known that a traditional Eulerian number \(A_{n, k} \) is the number of permutations \(\pi \in \Omega_n \) that have \(k \) weak exceedances [1, page 215]. And \(A_{n,k} \) satisfies the recurrence:

\[
A_{n,1} = 1, \quad (n \geq 1), \quad A_{n,k} = 0 \quad (k > n),
\]

\[
A_{n,k} = kA_{n-1,k} + (n + 1 - k)A_{n-1,k-1} \quad (1 \leq k \leq n)
\]

(1)

Besides the recursive formula (1), \(A_{n,k} \) can be calculated directly by the following analytic formula [2, page 8]:

\[
A_{n,k} = \sum_{i=0}^{k-1} (-1)^i (k-i)^n \binom{n+1}{i} \quad (1 \leq k \leq n).
\]

(2)

Definition 2. Given a permutation \(\pi = p_1p_2p_3 \ldots p_n \in \Omega_n \), define functions

\[
\text{maj} \pi = \sum_{p_i > p_{i+1}} j,
\]

\[
a(n,k,i) = \# \{ \pi \mid \text{maj} \pi = i \& \pi \text{ has } k \text{ ascents} \}.
\]

(3)

Under Carlitz’s definition, the \(q \)-Eulerian numbers \(A_{n,k}(q) \) are given by

\[
A_{n,k}(q) = q^{(m-k+1)(m-k)/2} \sum_{i=0}^{k(n-k-1)} a(n,n-k,i) q^i.
\]

(4)

where functions \(a(n,k,i) \) are as defined in Definition 2.

In [5], instead of studying \(q \)-sequences, the authors have generalized Eulerian numbers to any general arithmetic progression \(\{a, a+d, a+2d, \ldots \} \).

Under the new definition, and given an arithmetic progression as defined in (5), the general Eulerian numbers \(A_{n,k}(a,d) \) can be calculated directly by the following equation [5, Lemma 2.6]:

\[
A_{n,k}(a,d) = \sum_{i=0}^{k} (-1)^i [(k + 1 - i)d - a]^n \binom{n+1}{i}.
\]

(6)

Interested readers can find more results about the general Eulerian numbers and even general Eulerian polynomials in [5].

2. Combinatorial Interpretation of General Eulerian Numbers

The following concepts and properties will be heavily used in this section.
Definition 3. Let \(W_{n,k} \) be the set of \(n \)-permutations with \(k \) weak exceedances. Then \(|W_{n,k}| = A_{n,k} \). Furthermore, given a permutation \(\pi = p_1 p_2 p_3 \ldots p_n \), let \(Q_\theta(\pi) = i \), where \(p_i = n \).

Given a permutation \(\pi \in \Omega_n \), it is known that \(\pi \) can be written as a one-line form like \(\pi = p_1 p_2 p_3 \ldots p_n \), or \(\pi \) can be written in a disjoint union of distinct cycles. For \(\pi \) written in a cycle form, we can use a standard representation by writing (a) each cycle starting with its largest element and (b) the cycles in increasing order of their largest element. Moreover, given a permutation \(\pi \) written in a standard representation, define a function \(f \) as \(f(\pi) \) to be the permutation obtained from \(\pi \) by erasing the parentheses. Then \(f \) is known as the fundamental bijection from \(\Omega_n \) to itself [6, page 30]. Indeed, the inverse map \(f^{-1} \) of the fundamental bijection function \(f \) is also famous in illustrating the relation between the ascents and weak exceedances as follows [2, page 98].

Proposition 4. The function \(f^{-1} \) gives a bijection between the set of permutations on \([n] \) with \(k \) ascents and the set \(W_{n,k+1} \).

Example 5. The standard representation of permutation \(\pi = 5 2 4 3 7 1 6 \) is \(2(45)(7615) \in \Omega_7 \), and \(f(\pi) = 2437615 \). The standard representation \(\pi \) written as a one-line form like \(\pi = p_1 p_2 p_3 \ldots p_n \) has 3 + 1 = 4 weak exceedances because \(p_1 = 6 > 1, p_2 = 4 > 2, p_3 = 5 > 3, \) and \(p_6 = 7 > 6 \).

Now suppose we want to construct a sequence consisting of \(k \) vertical bars and the first \(n \) positive integers. Then the \(k \) vertical bars divide these \(n \) numbers into \(k+1 \) compartments. In each compartment, there is either no number or all the numbers are listed in a decreasing order. The following definition is analogous to the definition of [2, page 8].

Definition 6. A bar in the above construction is called extraneous if either

(a) it is immediately followed by another bar; or

(b) each of the rest compartment is either empty or consists of integers in a decreasing order if this bar is removed.

Example 7. Suppose \(n = 7, k = 4 \); then in the following arrangement

\[
32\,11\,7654
\]

(7)

the 1st, 2nd, and 4th bars are extraneous.

Now we are ready to give combinatorial interpretations to the general Eulerian numbers \(A_{n,k}(a,d) \). First note that (6) implies that \(A_{n,k}(a,d) \) is a homogeneous polynomial of degree \(n \) with respect to \(a \) and \(d \). Indeed,

\[
A_{n,k}(a,d) = \sum_{i=0}^{k} (-1)^i [(k + 1 - i)(d - a) + (k - i)a]^{(n+1)} \left(\begin{array}{c} n+1 \\ i \end{array} \right)
\]

(8)

where

\[
c_{n,k} (j) = \sum_{i=0}^{k} (-1)^i (k + 1 - i)^{n-j}(k - i)^j \left(\begin{array}{c} n+1 \\ i \end{array} \right), \quad 0 \leq j \leq n.
\]

The following theorem gives combinatorial interpretations to the coefficients \(c_{n,k}(j) \), \(0 \leq j \leq n \).

Theorem 8. Let the general Eulerian numbers \(A_{n,k}(a,d) \) be written as in (8). Then

\[
c_{n,k} (j) = \# \{ \pi \in W_{n,k+1}, j < Q_\theta(\pi) \leq n \}
\]

(10)

\[
+ \# \{ \pi \in W_{n,k}, 1 \leq Q_\theta(\pi) \leq j \}.
\]

Proof. We can check the result in (10) for two special values \(j = 0 \) and \(j = n \) quickly by (2),

\[
\text{when } j = 0, \quad c_{n,k}(0) = \sum_{i=0}^{k} (-1)^i (k + 1 - i)(n+1) = A_{n+1,k+1};
\]

\[
\text{when } j = n, \quad c_{n,k}(n) = \sum_{i=0}^{k} (-1)^i (k - i)^n = A_{n,k}.
\]

Therefore, (10) is true for \(j = 0 \) and \(j = n \).

Generally, for \(1 \leq j \leq n - 1 \), we write down \(k \) bars with \(k+1 \) compartments in between. Place each element of \([n] \) in a compartment. If none of the \(k \) bars is extraneous, then the arrangement corresponds to a permutation with \(k \) ascents. Let \(B \) be the set of arrangements with at most one extraneous bar at the end and none of integers \(\{1, 2, \ldots, j\} \) locating in the last compartment. We will show that \(c_{n,k}(j) = |B| \).

To achieve that goal, we use the Principle of Inclusion and Exclusion. There are \((k+1)^{n-j}k^j \) ways to put \(n \) numbers into \(k+1 \) compartments with elements \(\{1, 2, \ldots, j\} \) avoiding the last compartments.

Let \(B_j \) be the number of arrangements with the following features:

1. none of \(\{1, 2, \ldots, j\} \) sits in the last compartment;
2. each arrangement in \(B_j \) has at least \(i \) extraneous bars.
3. in each arrangement in \(B_j \), any two extraneous bars are not located right next to each other.
Then the Principle of Inclusion and Exclusion shows that
\[|B| = (k + 1)^{n-i}k! - B_1 + B_2 + \cdots - (-1)^k B_k. \] \hspace{1cm} (11)

Now we consider the value of \(B_i \), where \(1 \leq i \leq k \). Suppose that we have \(k+1-i \) compartments with \(k-i \) bars in between. There are \((k+1-i)^{n-i}(k-i)! \) ways to insert \(n \) numbers into these \(k+1-i \) compartments with first \(j \) integers avoiding the last compartment and list integers in each component in a decreasing order. Then insert \(i \) separating extraneous bars into \(n+1 \) positions. So we get
\[B_i = (k + 1 - i)^{n-i}(k-i)! \left(\frac{n+1}{i} \right). \] \hspace{1cm} (12)

Plug formula (12) into (11); we have \(c_{n,k}(j) = |B| \).

Given an arrangement \(\pi \in B \), if we remove the bars, then we obtain a permutation \(\pi \in \Omega_n \). So without confusion, we just use the same notation \(\pi \) to represent both an arrangement in set \(B \) and a permutation on \([n] \). Now for each \(\pi \in B, \pi \) either

(1) has no extraneous bar and none of \([1,2,\ldots,j] \) locates in the last compartment or

(2) has only one extraneous bar at the end.

If \(\pi \) is in case 1, then \(\pi \) has \(k \) ascents since each bar is non-extraneous. And the last compartment of \(\pi \) is nonempty. Therefore the last cycle of \(f^{-1}(\pi) \) has to be \((n \ldots p_1) \). In other words, \(Q_n(f^{-1}(\pi)) = p_g > j \) since none of \([1,2,\ldots,j] \) locates in the last compartment. And by Proposition 4, \(f^{-1}(\pi) \in W_{n,k+1} \).

If \(\pi \) is in case 2, then \(\pi \) has \(k-1 \) ascents since only the last bar is extraneous. Note that in this case, the arrangement with no elements of \([1,2,\ldots,j] \) in the compartment second to the last or the last nonempty compartment has been removed by the Principle of Inclusion and Exclusion. Equivalently, at least one number of \([1,2,\ldots,j] \) has to be in the compartment second to the last. So the last cycle of \(f^{-1}(\pi) \) has to be \((n \ldots p_1) \), and \(Q_n(f^{-1}(\pi)) = p_1 \leq j \). Also by Proposition 4, \(f^{-1}(\pi) \in W_{n,k} \).

Combing all the results above, statement (10) is correct.

The next Theorem describes some interesting properties of the coefficients \(c_{n,k} \).

Theorem 9. Let the coefficients \(c_{n,k} \) be as described in Theorem 8. Then,

1. \(\sum_{i=0}^{n} c_{n,k}(j) = n! \) for any \(0 \leq j \leq n \);
2. \(c_{n,k}(j) = c_{n,n-k}(n-j) \) for all \(0 \leq j, k \leq n \).

Before we can prove Theorem 9, we need the following lemma which is also interesting by itself.

Lemma 10. Given a positive integer \(n \), then
\[\# \left\{ \pi \in W_{n,k} \cap Q_n(\pi) = j \right\} \]
\[= \# \left\{ \pi \in W_{n,n+1-k} \cap Q_n(\pi) = n+1-j \right\} \] \hspace{1cm} (13)

for any \(1 \leq k, j \leq n \).

Proof. First of all, given a positive integer \(n \), we define a function \(g : \Omega_n \to \Omega_n \), as follows:
\[g(\pi) = (n+1-p_1)(n+1-p_2)\ldots(n+1-p_n). \] \hspace{1cm} (14)

For instance, for \(\pi = 53214 \in \Omega_5 \), \(g(\pi) = 13452 \) is obviously a bijection of \(\Omega_n \) to itself.

Now for some fixed \(1 \leq k, j \leq n \), suppose \(S_{k,j} = \left\{ \pi \in W_{n,k} \cap Q_n(\pi) = j \right\} \), and \(T_{k,j} = \left\{ \pi \in W_{n,n+1-k} \cap Q_n(\pi) = n+1-j \right\} \). For any \(\pi \in S_{k,j} \), we write \(\pi \) in the standard representation cycle form. So \(\pi = (p_u \ldots) \ldots (n \ldots j) \) and \(f(\pi) = p_u \ldots n \ldots j \) has \(k-1 \) ascents by Proposition 4.

Now we compose \(f(\pi) \) with the bijection function \(g \) as just defined. Then \(g(f(\pi)) = n+1-p_u \ldots n+1-j \) has \(n-k \) ascents, which implies that \(f^{-1}(g(f(\pi))) \) has \(n+1-k \) weak excedances. So \(f^{-1}(g(f(\pi))) \in W_{n,n+1-k} \). Note that the last cycle of \(f^{-1}(g(f(\pi))) \) has to be \((n \ldots n+1-j) \). Therefore, \(f^{-1}(g(f(\pi))) \in T_{k,j} \).

Since both \(f \) and \(g \) are bijection functions, \(f^{-1}gf \) gives a bijection between \(S_{k,j} \) and \(T_{k,j} \).

Now we are ready to prove Theorem 9.

Proof of Theorem 9. For part 1, by Theorem 8,
\[\sum_{k=0}^{n} c_{n,k}(j) = \sum_{k=0}^{n} \left[\# \{ \pi \in W_{n,k+1}, j < Q_n(\pi) \leq n \} \right] \]
\[+ \sum_{k=0}^{n} \left[\# \{ \pi \in W_{n,k}, 1 \leq Q_n(\pi) \leq j \} \right] \] \hspace{1cm} (15)

For part 2, also by Theorem 8,
\[c_{n,k}(j) = \sum_{i=j+1}^{n} \left[\# \{ \pi \in W_{n,k+1}, Q_n(\pi) = i \} \right] \]
\[+ \sum_{m=1}^{j} \left[\# \{ \pi \in W_{n,k}, Q_n(\pi) = m \} \right] \]
\[= n \left[\# \{ \pi \in W_{n,n-k}, Q_n(\pi) = n+1-i \} \right] \]
\[+ \sum_{m=1}^{j} \left[\# \{ \pi \in W_{n,n+1-k}, Q_n(\pi) = n+1-m \} \right] \] \hspace{1cm} (16)

by Lemma 10.
Remark 11. Using the analytic formula of \(c_{n,k}(j) \) as in (9), part 2 of Theorem 9 implies the following identity:

\[
\sum_{i=0}^{k} (-1)^i (n + 1 - i)^{n-j}(k - i)\binom{n+1}{i} = \sum_{i=0}^{n-k} (-1)^i(n + 1 - k - i)^{n-k-1}(k - i)\binom{n+1}{i},
\]

(17)

where \(n \) is a positive integer, and \(0 \leq j, k \leq n \).

3. Another Combinatorial Interpretation of \(c_{n,k}(1) \) and \(c_{n,k}(n-1) \)

In pursuing the combinatorial meanings of the coefficients \(c_{n,k} \), the authors have found some other interesting properties about permutations. The results in this section will reveal close connections between the traditional Eulerian numbers \(A_{n,k} \) and \(c_{n,k}(j) \), where \(j = 1 \) or \(j = n - 1 \).

One fundamental concept of permutation combinatorics is inversion. A pair \((p_i, p_j) \) is called an inversion of the permutation \(\pi = p_1 p_2 \ldots p_n \) if \(i < j \) and \(p_i > p_j \) [6, page 36]. The following definition provides the main concepts of this section.

Definition 12. For a fixed positive integer \(n \), let \(AW_{n,k} = \{ \pi = p_1 p_2 \ldots p_n \mid \pi \in W_{n,k} \text{ and } p_i < p_j \} \) or (\(p_i, p_j \) is not an inversion) and \(BW_{n,k} = W_{n,k} \setminus AW_{n,k} \) or (\(p_i, p_j \) is an inversion).

It is obvious that \(|AW_{n,k}| + |BW_{n,k}| = A_{n,k} \). The following theorem interprets coefficients \(c_{n,k}(1) \) and \(c_{n,k}(n-1) \) in terms of \(AW_{n,k} \) and \(BW_{n,k} \).

Theorem 13. Let the coefficients \(c_{n,k} \) of the general Eulerian numbers be written as in (9). \(AW_{n,k} \) and \(BW_{n,k} \) are as defined in Definition 12. Then

1. \(c_{n,k}(1) = 2|AW_{n,k+1}| \).
2. \(c_{n,k}(n-1) = 2|BW_{n,k}| \).

Proof. For part (1), by Theorem 8, \(c_{n,k}(1) = |S_1| + |S_2| \), where \(S_1 = \{ \pi = p_1 p_2 \ldots p_n \mid \pi \in W_{n+1,k} \text{ and } p_i \neq j \} \), \(S_2 = \{ \pi = p_1 p_2 \ldots p_n \mid \pi \in W_{n,k} \text{ and } p_i = j \} \). Given a permutation \(\pi = p_1 p_2 \ldots p_n \in S_1 \), then both \(p_i, p_2, \ldots, p_n \) and \(p_1, p_2, \ldots, p_n \) belong to \(S_1 \), so one of them has to be in \(AW_{n+1,k} \).

If \(\pi = p_1 p_2 \ldots p_n \in S_1 \), then \(\pi \in AW_{n,k+1} \), but \(p_1, p_2, \ldots, p_n \in S_2 \). Therefore, (1/2)\(c_{n,k}(1) = |AW_{n+1,k}| \).

Part (2) can be proved using exactly the same method. So we leave it to the readers as an exercise.

\(|AW_{n,k}| \) and \(|BW_{n,k}| \) are interesting combinatorial concepts by themselves. Note that generally speaking, \(|AW_{n,k}| \neq |BW_{n,k}| \). Indeed, \(|AW_{n,k}| = |BW_{n+1-k,k}| \).

Theorem 14. For any positive integer \(n \geq 2 \), the sets \(AW_{n,k} \) and \(BW_{n,k} \) are defined in Definition 12. Then \(|AW_{n,k}| = |BW_{n+1-k,k}| \) for \(1 \leq k \leq n \).

Proof. It is an obvious result of part 2 of Theorems 9 and 13.

Our last result of this paper is the following theorem which reveals that both \(|AW_{n,k}| \) and \(|BW_{n,k}| \) take exactly the same recursive formula as the traditional Eulerian numbers \(A_{n,k} \) as shown in (1).

Theorem 15. For a fixed positive integer \(n \), let \(AW_{n,k} \) and \(BW_{n,k} \) be as defined in Definition 12; then

\[
k |AW_{n-1,k} + (n + 1 - k) |AW_{n-1,k-1}| = |AW_{n,k}|, \tag{18}
\]

\[
k |BW_{n-1,k} + (n + 1 - k) |BW_{n-1,k-1}| = |BW_{n,k}|. \tag{19}
\]

Proof. A computational proof can be obtained straightforward by using (9) and Theorem 13. But here we provide a proof in a flavor of combinatorics.

Idea of the Proof. For (18), given a permutation \(A_1 = p_1 p_2 \ldots p_n \in AW_{n-1,k} \), for each position \(i \) with \(p_i > i \), we insert \(n \) into a certain place of \(A_1 \), such that the new permutation \(A'_1 \) is in \(AW_{n,k} \). There are \(k \) such positions, so we can get \(k \) new permutations in \(AW_{n,k} \). Similarly, if \(A_2 = p_1 p_2 \ldots p_n \in AW_{n-1,k-1} \), for each position \(i \) with \(p_i < i \), and the position at the end of \(A_2 \), we insert \(n \) into a specific position of \(A_2 \) and the resulting new permutation \(A'_2 \) is in \(AW_{n,k} \). There are \(n + 1 - k \) such positions, so we can get \(n + 1 - k \) new permutations in \(AW_{n,k} \). We will show that all the permutations obtained from the above constructions are distinct, and they have exhausted all the permutations in \(AW_{n,k} \).

For any fixed \(A' = \pi_1 \pi_2 \ldots \pi_n \in AW_{n,k} \), then \(\pi_1 < \pi_n \).

We classify \(A' \) into the following disjoint cases:

Case a. Consider that \(\pi_i = n \) with \(i < n \). So \(A' = \pi_1 \pi_2 \ldots \pi_{i-1} n \pi_{i+1} \ldots \pi_n n \).

(a1) \(\pi_1 < \pi_{n-1} \) and \(\pi_{n+1} \geq i \);

(a2) \(\pi_1 < \pi_{n-1} \) and \(\pi_{n+1} < i \);

(a3) \(\pi_1 > \pi_{n-1} \), \(\pi_n < n - 1 \), and \(\pi_{n+1} \geq i \);

(a4) \(\pi_1 > \pi_{n-1} \), \(\pi_n < n - 1 \), and \(\pi_{n+1} < i \);

(a5) \(\pi_1 > \pi_{n-1} \) and \(\pi_n = n - 1 \).

Case b. Consider that \(\pi_n = n \). So \(\pi_i = n - 1 \) for some \(i < n \) and \(A' = \pi_1 \pi_2 \ldots \pi_{i-1} n - 1 \pi_{i+1} \ldots \pi_n n \).

(b1) \(\pi_1 < \pi_{n-1} \);

(b2) \(\pi_{n+1} < \pi_1 < n - 1 \), and \(\pi_{n+1} \geq i \);

(b3) \(\pi_{n+1} < \pi_1 < n - 1 \), and \(\pi_{n+1} < i \);

(b4) \(\pi_1 = n - 1 \).

Based on the classifications listed above, we can construct a map \(f : \{ AW_{n-1,k} \} \rightarrow AW_{n,k} \) by applying the idea of the proof we have illustrated at the beginning of the proof. To save space, the map \(f \) is demonstrated in Table 1. From Table 1 we can see that in each case, the positions of inserting \(n \) are all different. So all the images obtained in a certain case are different. Since all the cases are disjoint, all the images \(A' \in AW_{n,k} \) are distinct.
Table 1: The map \(f: \{ AW_{n-1,k}, AW_{n-1,k-1} \} \rightarrow AW_{n,k} \).

<table>
<thead>
<tr>
<th>(A = p_1p_2\ldots p_{n-1})</th>
<th>Position (i)</th>
<th>Condition</th>
<th>(A' \in AW_{n,k})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \in AW_{n-1,k})</td>
<td></td>
<td>(p_i > p_1)</td>
<td>(A' = p_1p_2\ldots p_{n-1}p_{i+1}\ldots p_{n-1}p_i)</td>
</tr>
<tr>
<td>(1 < i \leq n - 1)</td>
<td></td>
<td>(p_i < p_1) and (p_1 \leq i)</td>
<td>(A' = p_1p_2\ldots p_{i+1}p_{i+1}\ldots p_{n-1}p_{n-1}p_i)</td>
</tr>
<tr>
<td>(A \in AW_{n-1,k-1})</td>
<td>(i = 1)</td>
<td>(p_{n-1} = n - 1)</td>
<td>(A' = n-1p_2\ldots p_{n-3}p_{n-1})</td>
</tr>
</tbody>
</table>

Case (c5)

\(B \in BW_{n-1,k} \)		\(p_i > p_1 \)	\(B' = p_1p_2\ldots p_{n-1}p_{i+1}\ldots p_{n-1}p_i \)
\(1 < i \leq n - 1 \)		\(p_i < p_1 \) and \(p_1 \leq i \)	\(B' = p_1p_2\ldots p_{i+1}p_{i+1}\ldots p_{n-1}p_{n-1}p_i \)
\(A \in AW_{n-1,k-1} \)	\(i = 1 \)	\(p_{n-1} = n - 1 \)	\(B' = n-1p_2\ldots p_{n-3}p_{n-1} \)

Case (a4)

\(B \in BW_{n-1,k} \)	\(i = n \)	\(p_i > p_1 \)	\(B' = p_1p_2\ldots p_{n-1}p_{n-1}p_i \)
\(1 < i < n - 1 \)		\(p_i < p_1 \) and \(p_1 > i \)	\(B' = p_1p_2\ldots p_{i+1}p_{i+1}\ldots p_{n-1}p_{n-1}p_i \)
\(A \in AW_{n-1,k-1} \)	\(i = n \)	\(p_i > p_1 \)	\(B' = p_1p_2\ldots p_{n-1}p_{n-1}p_i \)

Case (b2)

Table 2: The map \(g: \{ BW_{n-1,k}, BW_{n-1,k-1} \} \rightarrow BW_{n,k} \).

<table>
<thead>
<tr>
<th>(B = p_1p_2\ldots p_{n-1})</th>
<th>Position (i)</th>
<th>Condition</th>
<th>(B' \in BW_{n,k})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B \in BW_{n-1,k})</td>
<td>(i = 1)</td>
<td>(p_i > p_1)</td>
<td>(B' = p_1p_2\ldots p_{n-1}p_{i+1}\ldots p_{n-1}p_i)</td>
</tr>
<tr>
<td>(1 < i < n - 1)</td>
<td></td>
<td>(p_i < p_1) and (p_1 > i)</td>
<td>(B' = p_1p_2\ldots p_{i+1}p_{i+1}\ldots p_{n-1}p_{n-1}p_i)</td>
</tr>
</tbody>
</table>

Case (c3)

| \(B \in BW_{n-1,k-1} \) | \(i = n - 1 \) | \(p_{n-1} = n - 1 \) | \(B' = p_1p_2\ldots p_{n-1}p_{n-1}p_i \) |
| \(1 < i < n - 1 \) | | \(p_{n-1} > p_1 \) | \(B' = p_1p_2\ldots p_{i+1}p_{i+1}\ldots p_{n-1}p_{n-1}p_i \) |

Case (c4)

| \(B \in BW_{n-1,k-1} \) | \(i = n - 1 \) | \(p_i > p_1 \) | \(B' = p_1p_2\ldots p_{n-1}p_{n-1}p_i \) |
| \(1 < i < n - 1 \) | | \(p_i < p_1 \) and \(p_1 < i \) | \(B' = p_1p_2\ldots p_{i+1}p_{i+1}\ldots p_{n-1}p_{n-1}p_i \) |

Case (c5)
Similarly, for each $B' = \pi_1\pi_2\pi_3\ldots\pi_n \in BW_{n,k}$, then $\pi_1 > \pi_n$. We classify B' into the following disjoint cases.

Case c. Consider that $\pi_i = n$ with $1 < i \leq n - 1$. So $B' = \pi_1\pi_2\ldots \pi_{i-1}n\pi_{i+1}\ldots \pi_{n-1}\pi_n$:

- (c1) $\pi_1 > \pi_{n-1}$, and $\pi_n \geq i$;
- (c2) $\pi_1 > \pi_{n-1}$, and $\pi_n < i$;
- (c3) $\pi_1 < \pi_{n-1} < n-1$, $\pi_{n-1} \geq i$;
- (c4) $\pi_1 < \pi_{n-1} < n-1$, $\pi_{n-1} < i$;
- (c5) $\pi_{n-1} = n - 1$;
- (c6) $\pi_{n-1} = n$.

Case d. Consider that $\pi_1 = n$. So $B' = n\pi_2\ldots \pi_{n-2}\pi_{n-1}$:

- (d1) $\pi_{n-2} < \pi_{n-1}$;
- (d2) $\pi_{n-2} > \pi_{n-1}$.

To prove (19), we use a similar idea of proof as shown above. If $B_1 = p_1p_2p_3\ldots p_{n-1} \in BW_{n-1,k}$, for each position i with $p_i \geq i$, we insert n into a certain place of B_1 to get $B'_1 \in AW_{n,k}$. If $B_2 = p_1p_2p_3\ldots p_{n-1} \in BW_{n-1,k-1}$, for each position i with $p_i < i$, and the position i where $p_i = n-1$, we insert n into a specific position of B_2 to obtain $B'_2 \in AW_{n,k}$. Such a map $g : \{BW_{n-1,k}, BW_{n-1,k-1}\} \rightarrow BW_{n,k}$ is illustrated in Table 2. And the distinct images under g exhaust all the permutations in $BW_{n,k}$.

Here is a concrete example for the constructions illustrated in Table 2.

Example 16. Suppose $n = 4$, $k = 2$. We want to obtain $BW_{4,2} = \{3142, 3412, 3421, 4132, 4213, 4312, 4321\}$ from $BW_{3,2} = \{321, 231\}$ and $BW_{3,1} = \{312\}$. For $321 \in BW_{3,2}$, $p_1 = 3 \geq 1$, then it corresponds to $B' = 4213$ which is case (d1) in Table 2; $p_2 = 2 \geq 2$, then it corresponds to $B' = 3412$ which is case (c1) in Table 2. Similarly, we can construct $\{4312, 4321\}$ from $231 \in BW_{3,2}$ and $\{3421, 3412, 4132\}$ from $312 \in BW_{3,1}$ using Table 2.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

Submit your manuscripts at
http://www.hindawi.com