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Fractional diffusion equations for three-dimensional latticemodels based on fractional-order differences of theGrünwald-Letnikov
type are suggested. These lattice fractional diffusion equations contain difference operators that describe long-range jumps from
one lattice site to another. In continuum limit, the suggested lattice diffusion equations with noninteger order differences give the
diffusion equations with the Grünwald-Letnikov fractional derivatives for continuum. We propose a consistent derivation of the
fractional diffusion equation with the fractional derivatives of Grünwald-Letnikov type. The suggested lattice diffusion equations
can be considered as a new microstructural basis of space-fractional diffusion in nonlocal media.

1. Introduction

Fractional calculus and differential equation of noninteger
orders [1–5] have a long history that is connected with
the names of famous scientists such as Liouville, Riemann,
Grünwald, Letnikov, Marchaud, and Riesz. Derivatives and
integrals of noninteger orders have a lot of applications
in different areas of physics [6–10]. Fractional calculus is
a powerful tool to describe processes in continuously dis-
tributed media with nonlocal properties. As it was shown in
[11, 12], the continuum equations with fractional derivatives
are directly connected [7] to lattice models with long-range
interactions. The lattice equations for fractional nonlocal
media and the correspondent continuum equations have
been considered recently in [13–15]. Fractional-order dif-
ferences and the correspondent derivatives have been first
proposed by Grünwald [16] and by Letnikov [17]. At the
present time these generalized differences and derivatives
are called the Grünwald-Letnikov fractional differences and
derivatives [1–3, 18]. One-dimensional lattice models with
long-range interactions of the Grünwald-Letnikov type and
the correspondent fractional differential and integral contin-
uum equations have been suggested in [19]. The suggested
form of long-range interaction is based on the form of
the left-sided and right-sided Grünwald-Letnikov fractional
differences. A possible form of lattice vectors calculus based

on the fractional-order differences of the Grünwald-Letnikov
type has been suggested in [20]. In this paper, we apply
this approach to describe diffusion on lattices with long-
range jumps and to derive fractional diffusion equations for
nonlocal continuum with power-law nonlocality.

The diffusion equations describe the change of proba-
bility of a random function in space and time in transport
processes, and they usually have the form of second-order
partial differential equation of parabolic type. Unfortunately,
for complex nonlocalmedia, the usual second-order diffusion
equation cannot adequately describe real processes. For
example, the diffusion processes with the Poissonian waiting
time and the Lévy distribution for the jump length cannot
be described by equation with second-order derivatives with
respect to coordinates. The Lévy distribution describes the
Lévy flights [21, 22] that are random walks, where the jump
lengths have probability distributions with heavy tails. The
Lévy motion can be described by equation with spatial
derivatives of noninteger orders 𝜇, [22]. In this case, the
moment of order 𝛿 for the Lévy motion has the form
⟨|𝑥(𝑡)|

𝛿
⟩ ∼ 𝑡

𝛿/𝜇, where 0 < 𝛿 < 𝜇 ≤ 2. Usually the space-
fractional diffusion equations are obtained from the second-
order differential equations by replacing the second-order
space derivatives by fractional-order derivatives. Fractional
diffusion equations with coordinate derivatives of noninte-
ger order have been suggested in [23]. The solutions and
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properties of these equations are considered in [24–26]. The
diffusion equations with fractional coordinate derivatives
were also considered in [8, 9, 27].

In this paper we propose a consistent derivation of the
space-fractional diffusion equation with Grünwald-Letnikov
derivatives of noninteger orders by using lattice models with
long-range jumps that is considered new microstructural
basis to describe fractional diffusion processes in nonlocal
media. In this paper, we suggest a lattice equation for
probability density of particle in unbounded homogeneous
three-dimensional lattice with long-range jumps between
lattice sites. We prove that continuous limit for the suggested
lattice diffusion equation gives the space-fractional diffusion
equation for nonlocal continuum. The fractional differential
equation for continuum contains the Grünwald-Letnikov
derivatives on noninteger orders. Continuum models can be
considered as a continuous limit of lattice models, where
the length-scales of a continuum element are much larger
than the distances between the lattice sites. The suggested
approach to derive the space-fractional diffusion equations
can serve as a microstructural basis to describe the spatial-
fractional diffusion processes.

2. Fractional Diffusion Equation for Lattice

The differences of fractional order and the correspondent
fractional derivatives have been introduced by Grünwald in
1867 and independently by Letnikov in 1868.

Differences of noninteger orders are defined as a general-
ization of the integer order difference

∇
𝑚

𝑎,±
𝑓 (𝑥) =

𝑚

∑

𝑛=1

(−1)
𝑛
𝑚!

𝑛! (𝑚 − 𝑛)!
𝑓 (𝑥 ∓ 𝑛𝑎) , (𝑎 ∈ R+, 𝑚 ∈ N) .

(1)

The Fourier transformation 𝐹 of the fractional-order differ-
ences of Grünwald-Letnikov type (see Section 20 of [1, 2]) has
the form

F {∇
𝛼

𝑎,±
𝑓 (𝑥)} (𝑘) = (1 − 𝑒

±𝑎𝑘
)
𝛼

F {𝑓} (𝑘) . (2)

The differences of integer orders (1) are defined by the finite
series.The differences of noninteger order 𝛼 ∈ R+ are defined
as infinite series (see Section 20 of [1, 2]). Fractional-order
differences of Grünwald-Letnikov type are defined by

∇
𝛼

𝑎,±
𝑓 (𝑥) =

∞

∑

𝑛=0

(−1)
𝑛
Γ (𝛼 + 1)

Γ (𝑛 + 1) Γ (𝛼 − 𝑛 + 1)
𝑓 (𝑥 ∓ 𝑛𝑎) , (𝑎 > 0) .

(3)

The difference ∇𝛼
𝑎,+

is called left-sided fractional difference,
and ∇

𝛼

𝑎,−
is called the right-sided fractional difference. We

note that the series in (3) converges absolutely and uniformly
for every bounded function 𝑓(𝑥) and 𝛼 > 0.

Using the fractional-order differences (3), we can con-
sider the derivatives of noninteger orders.The left- and right-
sided Grünwald-Letnikov derivatives of fractional order 𝛼 >

0 are defined by

GL
𝐷
𝛼

𝑥,±
𝑓 (𝑥) = lim

𝑎→0+

∇
𝛼

𝑎,±
𝑓 (𝑥)

|𝑎|
𝛼

. (4)

For integer values of 𝛼 = 𝑚 ∈ N the Grünwald-Letnikov
derivatives (4) are equal to the usual integer order derivatives
up to the sign in the form

GL
𝐷
𝑚

𝑥,±
𝑓 (𝑥) = (±1)

𝑚 𝑑
𝑚
𝑓 (𝑥)

𝑑𝑥𝑚
. (5)

We can note that the Grünwald-Letnikov fractional deriva-
tives coincide with the Marchaud fractional derivatives for
the functions from 𝐿𝑟(R), where 1 ⩽ 𝑟 < ∞ (see Theorem
20.4 in [1, 2]).

Let us consider three-dimensional unbounded and
bounded lattices. Physical lattices are characterized by space
periodicity. For unbounded lattices we can use three non-
coplanar vectors a1, a2, and a2 that are the shortest vectors
by which a lattice can be displaced and be brought back
into itself. Sites of this lattice can be characterized by the
number vector n = (𝑛1, 𝑛2, 𝑛3), where 𝑛𝑗 (𝑗 = 1, 2, 3) are
integer. For simplification, we consider a lattice withmutually
perpendicular primitive lattice vectors a𝑗 (𝑗 = 1, 2, 3). We
choose directions of the axes of the Cartesian coordinate
system that coincide with the vector a𝑗. In this case a𝑗 =

𝑎𝑗e𝑗, where 𝑎𝑗 = |a𝑗| > 0 and e𝑗 are the basis vectors of
the Cartesian coordinate system. This means that we use a
primitive orthorhombic Bravais lattice.Then the vector n can
be represented as n = 𝑛1e1 + 𝑛2e2 + 𝑛3e3.

Choosing a coordinate origin at one of the lattice sites, the
positions of all other sites with n = (𝑛1, 𝑛2, 𝑛3) are described
by the vector r(n) = 𝑛1a1 + 𝑛2a2 + 𝑛3a3. The lattice sites
are numbered by n, so that vector n can be considered as
a number vector of the corresponding particle. We assume
that the positions of particles in the lattice coincide with
the lattice sites. The distribution function, which describes
probability density for lattice site n, will be denoted by
𝑓(n, 𝑡) = 𝑓(𝑛1, 𝑛2, 𝑛3, 𝑡).This function satisfies the conditions

+∞

∑

𝑛
1
=−∞

+∞

∑

𝑛
2
=−∞

+∞

∑

𝑛
3
=−∞

𝑓 (𝑛1, 𝑛2, 𝑛3, 𝑡) = 1,

𝑓 (𝑛1, 𝑛2, 𝑛3, 𝑡) ≥ 0 (𝑡 ≥ 0) .

(6)

To describe dynamics of the distribution function 𝑓(n, 𝑡)
in the lattice models with long-range jumps between sites, we
define fractional-order difference operators of the Grünwald-
Letnikov type in the direction e𝑗 = a𝑗/|a𝑗| of the lat-
tice. Fractional-order difference operators of the Grünwald-
Letnikov type for unbounded lattice are the operators
GL
D
±

𝐿
[
𝛼
𝑗

𝑗
] that act on the function 𝑓(m, 𝑡) as

GL
D
±

𝐿
[
𝛼𝑗

𝑗
]𝑓 (m, 𝑡) =

1

𝑎
𝛼

𝑗

+∞

∑

𝑚
𝑗
=−∞

GL
𝐾
±

𝛼
𝑗

(𝑛𝑗 − 𝑚𝑗) 𝑓 (m, 𝑡)

(𝛼𝑗 > 0, 𝑗 = 1, 2, 3) ,

(7)

where the kernels GL
𝐾
±

𝛼
(𝑛) are defined by the equation

GL
𝐾
±

𝛼
𝑗

(𝑛) =
(−1)
𝑛
Γ (1 + 𝛼𝑗) (𝐻 [𝑛] ± 𝐻 [−𝑛])

2Γ (|𝑛| + 1) Γ (1 + 𝛼𝑗 − |𝑛|)
,

(𝛼𝑗 > 0, 𝑛 ∈ Z) ,

(8)
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and Γ(𝑧) is the gamma function,𝐻[𝑛] is the discrete variable
Heaviside step function that is defined as𝐻[𝑛] = 1 for 𝑛 ≥ 0,
and 𝐻[𝑛] = 0 for 𝑛 < 0, where 𝑛 ∈ Z. The parameter 𝛼𝑗
is called the order of the operator. It should be noted that
the definition of 𝐻[0] = 1 for discrete variable Heaviside
function is significant for us, since it allows us to write
the kernels GL

𝐾
+

𝛼
(𝑛) in the simple form without allocating

repeated zero terms. Fractional-order difference operators
(7) can be called a lattice fractional partial derivative in the
direction e𝑗 = a𝑗/|a𝑗|.

It should be noted that one-dimensional lattice models
with the long-range interaction of the form GL

𝐾
+

𝛼
(𝑛) and

correspondent fractional nonlocal continuum models have
been suggested in [19]. The lattice operators (7) recently have
been proposed in [20].

It is easy to see that kernels GL𝐾
+

𝛼
(𝑛) and GL

𝐾
−

𝛼
(𝑛) are even

and odd functions such that GL𝐾
±

𝛼
(−𝑛) = ±

GL
𝐾
±

𝛼
(𝑛).The form

of the lattice operators (7) can be defined by the addition and
subtraction of the Grünwald-Letnikov fractional differences

GL
D
±

𝐿
[
𝛼

𝑗
]𝑓 (m, 𝑡)

=
1

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨

𝛼

∞

∑

𝑚
𝑗
=0

(−1)
𝑚
𝑗 Γ (1 + 𝛼)

2Γ (𝑚𝑗 + 1) Γ (1 + 𝛼 − 𝑚𝑗)

× (𝑓 (n − 𝑚𝑗e𝑗, 𝑡) ± 𝑓 (n − 𝑚𝑗e𝑗, 𝑡)) .
(9)

We should note that in (9) the summation is realized over
nonnegative values𝑚𝑗, in contrast to the sum over all integer
values in (7).

For bounded physical lattice models the fractional-order
difference operators also can be defined. Fractional-order
difference operators of the Grünwald-Letnikov type for
bounded lattice with 𝑚

1

𝑗
≤ 𝑚𝑗 ≤ 𝑚

2

𝑗
are the operators

GL
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𝑗
] that act on the function 𝑓(m, 𝑡) as
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𝑗
]𝑓 (m, 𝑡) =
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=𝑚1
𝑗
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𝐾
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𝛼
𝑗

(𝑛𝑗 − 𝑚𝑗) 𝑓 (m, 𝑡)

(𝑗 = 1, 2, 3) ,

(10)

where kernels GL
𝐾
±

𝛼
𝑗

(𝑛) are defined by (8). The suggested
forms of fractional difference operators for bounded physical
latticemodels are based on theGrünwald-Letnikov fractional
differences on finite intervals (see Section 20.4 of [1, 2]). For
the finite interval [𝑥1

𝑗
, 𝑥
2

𝑗
], the integer values 𝑚1

𝑗
, 𝑚2
𝑗
, and 𝑚𝑗

are defined by the equations

𝑚
1

𝑗
= [

𝑥
1

𝑗

𝑎𝑗

] , 𝑚
2

𝑗
= [

𝑥
2

𝑗

𝑎𝑗

] , 𝑚𝑗 = [
𝑥𝑗

𝑎𝑗

] , (11)

where the brackets [⋅] of (11) mean the floor function that
maps a real number to the largest previous integer number.

Using the semigroup property for fractional differences
of nonnegative orders (see Property 2.29 in [3]), it is easy
to show that the semigroup property holds for the fractional
operators (7) in the form

GL
D
±

𝐿
[
𝛼

𝑗
]
GL
D
±

𝐿
[
𝛽

𝑗
] =

GL
D
±

𝐿
[
𝛼 + 𝛽

𝑗
] , (𝛼 > 0, 𝛽 > 0) .

(12)

Using this equation, it is easy to prove the commutativity and
the associativity of the lattice operator (7) of the Grünwald-
Letnikov type. The commutativity and associativity of the
fractional operators (7) of the Grünwald-Letnikov type for
different directions are obvious.

To describe isotropic physical lattices we should use the
difference operators GL

D
±

𝐿
[
𝛼
𝑗

𝑗
] and GL

𝐵 D
±

𝐿
[
𝛼
𝑗

𝑗
] with orders

𝛼𝑗 = 𝛼 for all 𝑗 = 1, 2, 3.
Let us give possible equations for distribution function

𝑓(n, 𝑡) on unbounded and bounded lattices. For unbounded
homogeneous lattice the diffusion equation for probability
density can be considered in the form

𝜕𝑓 (n, 𝑡)
𝜕𝑡

= −

3

∑

𝑖=1

𝑔𝑖
GL
D
±

[
𝛼𝑖

𝑖
] 𝑓 (m, 𝑡)

+

3

∑

𝑖,𝑗=1

𝑔𝑖𝑗
GL
D
±,±

[
𝛼𝑖 𝛽𝑗

𝑖 𝑗
] 𝑓 (m, 𝑡) .

(13)

For bounded lattice we should use the fractional difference
operators (10), and the correspondent analog of (13) has the
form

𝜕𝑓 (n, 𝑡)
𝜕𝑡

= −

3

∑

𝑖=1

𝑔𝑖
GL
𝐵 D
±

[
𝛼𝑖

𝑖
] 𝑓 (m, 𝑡)

+

3

∑

𝑖,𝑗=1

𝑔𝑖𝑗
GL
𝐵 D
±,±

[
𝛼𝑖 𝛽𝑗

𝑖 𝑗
] 𝑓 (m, 𝑡) .

(14)

Equations (13) and (14) are the three-dimensional lattice dif-
fusion equations that describe fractional diffusion processes
with the lattice jumps. Here 𝑓(n, 𝑡) is the probability density
function to find the test particle at site n at time 𝑡. The italics
𝑖, 𝑗 ∈ {1; 2; 3} are the coordinate indices, and 𝑔𝑖 and 𝑔𝑖𝑗 are
lattice coupling constants.

The first and second terms of the right-hand side of
(13) and (14) describe the particle drift and diffusion on
the lattice. These correspondent kernels describe the long-
range drift and diffusion to n-site from all other m-sites.
Parameters 𝛼𝑖 and 𝛽𝑗 in the kernels are positive real numbers
that characterize how quickly the intensity of the drift and
diffusion processes in the lattice decrease with increasing
the value n − m. Kernels 𝐾±

𝛼
𝑗

(𝑛𝑗 − 𝑚𝑗), where 𝑗 = 1, 2, 3,
describe long-range jumps in direction a𝑗 with lattice step
length |𝑛𝑗 −𝑚𝑗| in the lattice. In (13), we use the combination
of the lattice operators

GL
D
±,±

[
𝛼𝑖 𝛽𝑗

𝑖 𝑗
] =

GL
D
±

[
𝛼𝑖

𝑖
]
GL
D
±

[
𝛽𝑗

𝑗
] , (15)
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where 𝑖, 𝑗 take values from the set {1; 2; 3}. The action of the
operator (15) on the lattice probability density 𝑓(m, 𝑡) is

GL
D
±,±

[
𝛼𝑖 𝛽𝑗

𝑖 𝑗
] 𝑓 (m, 𝑡)

=

+∞

∑

𝑚
𝑖
=−∞

+∞

∑

𝑚
𝑗
=−∞

𝐾
±

𝛼
𝑖

(𝑛𝑖 − 𝑚𝑖)𝐾
±

𝛽
𝑗

(𝑛𝑗 − 𝑚𝑗) 𝑓 (m, 𝑡) .

(16)

Equations (13) and (14) describe fractional diffusion processes
on the physical lattices, where long-range jumps can be
realized. The lattice diffusion equations (13) and (14) can
be considered as lattice analogs of the fractional diffusion
equations for the processes with the Poissonian waiting time
and the Lévy distribution for the jump length.

Suggested lattice equations (13) and (14) can be consid-
ered as master equations that allow us to describe time-
evolution of particles and quasiparticles on lattice since
evolution is modelled as being in exactly one of the countable
numbers of lattice sites at any given time, where switching
between sites is treated probabilistically. These equations
are differential equations for the variation over time of the
probabilities that the particle occupies each of the lattice sites.

3. Fractional Diffusion
Equation for Continuum

To describe fractional diffusion in the nonlocal continua, we
should use fractional derivatives with respect to space coor-
dinates instead of the lattice operators. Continuum analogs
of the fractional-order difference operators of the Grünwald-
Letnikov type are the fractional derivatives of Grünwald-
Letnikov type.

Fractional-order difference operators GL
D
±

𝐿
[
𝛼
𝑗

𝑗
] defined

by (7) are transformed by the continuous limit operation
into the fractional derivative of Grünwald-Letnikov typewith
respect to coordinate 𝑥𝑗 in the form
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(
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𝑗
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𝐶
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𝑗
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where GL
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𝐶
[
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] are the continuum fractional derivatives of

the Grünwald-Letnikov type that are defined by
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which contain the Grünwald-Letnikov fractional derivatives
GL
𝐷
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𝑗
,±

with respect to space coordinate 𝑥𝑗 that can be
written as
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𝑗
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𝑗
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1

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨

𝛼

∞

∑

𝑚
𝑗
=0

(−1)
𝑚
𝑗 Γ (𝛼 + 1)

Γ (𝑚𝑗 + 1) Γ (𝛼 − 𝑚𝑗 + 1)

× 𝑓 (r ∓ 𝑚𝑗a𝑗, 𝑡) , (𝛼 > 0) .

(19)

This statement can be proved by analogy with the proof for
lattice model with long-range interaction of the Grünwald-
Letnikov type suggested in [19].

It is important to note that the Grünwald-Letnikov
fractional derivatives coincide with the Marchaud fractional
derivatives (see Section 20.3 in [1, 2]) for the functions
from space 𝐿𝑟(R), where 1 ⩽ 𝑟 < ∞ (see Theorem
20.4 in [1, 2]). Moreover both the Grünwald-Letnikov and
Marchaud derivatives have the same domain of definition.
TheMarchaud fractional derivative is defined by the equation

𝑀
𝐷
𝛼,±

𝑥
𝑗
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𝑗
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where Δ𝑠,±
𝑧
𝑗

is the finite difference of integer order 𝑠,
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and 𝑎(𝛼, 𝑠) is

𝑎 (𝛼, 𝑠) =
𝑠

𝛼
∫

1

0

(1 − 𝜉)
𝑠−1

(ln (1/𝜉))𝛼
𝑑𝜉. (22)

Using (5), we can note that derivatives (18) for integer
orders 𝛼 = 𝑛 ∈ N have the forms
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D
+

𝐶
[
𝑛

𝑗
] =

1 ± (−1)
𝑛

2

𝜕
𝑛

𝜕𝑥
𝑛

𝑗

. (23)

Therefore the continuum fractional derivatives GL
D
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𝐶
[
𝑛
𝑗 ] are

the usual derivatives of integer order 𝑛 for even values 𝛼 only,
and the continuum operators GL

D
−

𝐶
[
𝑛
𝑗 ] are the derivatives of

integer order 𝑛 for odd values 𝛼 only.
For bounded lattices, the fractional-order difference

operators GL
𝐵 D
±

𝐿
[
𝛼
𝑗

𝑗
] defined by (10) are transformed by the

continuous limit

lim
𝑎
𝑗
→0+

(
GL
𝐵 D
±

𝐿
[
𝛼𝑗

𝑗
]𝑓 (m, 𝑡)) =

GL
𝐵 D
±

𝐶
[
𝛼𝑗

𝑗
]𝑓 (r, 𝑡) , (24)

into the continuum fractional derivatives of the Grünwald-
Letnikov type with respect to space coordinate 𝑥𝑗,

GL
𝐵 D
±

𝐶
[
𝛼

𝑗
] =

1

2
(

GL
𝑥1
𝑗

𝐷
𝛼

𝑥
𝑗
,+

±
GL
𝑥2
𝑗

𝐷
𝛼

𝑥
𝑗
,−

) , (25)

which contain the Grünwald-Letnikov fractional operators
defined on the finite interval [𝑥1

𝑗
, 𝑥
2

𝑗
] with 𝑥

1

𝑗
= 𝑚
1

𝑗
𝑎𝑗 and

𝑥
1

𝑗
= 𝑚
2

𝑗
𝑎𝑗, in the form

GL
𝐵 𝐷
𝛼

𝑥
𝑗
,±
𝑓 (r, 𝑡) = lim

𝑎
𝑗
→0+

1

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨

𝛼

𝑀
±

𝑗

∑

𝑚
𝑗
=0

(−1)
𝑚
𝑗 Γ (𝛼 + 1)

Γ (𝑚𝑗 + 1) Γ (𝛼 − 𝑚𝑗 + 1)

× 𝑓 (r ∓ 𝑚𝑗a𝑗, 𝑡) ,
(26)
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where

𝑀
+

𝑗
= [

𝑥𝑗 − 𝑥
1

𝑗

𝑎𝑗

] , 𝑀
−

𝑗
= [

𝑥
2

𝑗
− 𝑥𝑗

𝑎𝑗

] . (27)

The suggested forms of continuum fractional derivatives of
the Grünwald-Letnikov type allow us to consider diffusion
processes on bounded areas of nonlocal continuum.

The lattice diffusion equation (13) in the continuum limit
gives the fractional diffusion equation with derivatives of
noninteger orders with respect to space coordinates. This
space-fractional diffusion equation for the probability density
𝑓(r, 𝑡) has the form

𝜕𝑓 (r, 𝑡)
𝜕𝑡

= −

3

∑

𝑖=1

𝐷𝑖 (𝛼)
GL
D
−

𝐶
[
𝛼𝑖

𝑖
] 𝑓 (r, 𝑡)

+
1

2

3

∑

𝑖=1

3

∑

𝑗=1

𝐷𝑖𝑗 (𝛼, 𝛽)
GL
D
−,−

𝐶
[
𝛼𝑖 𝛽𝑗

𝑖 𝑗
] 𝑓 (r, 𝑡) ,

(28)

where 𝐷𝑖(𝛼) is the drift vector and 𝐷𝑖𝑗(𝛼, 𝛽) is the diffusion
tensor for the continuum that are defined by the lattice
coupling constants 𝑔𝑖 and 𝑔𝑖𝑗 by the relations 𝐷𝑖(𝛼) =

𝑔𝑖, 𝐷𝑖𝑗(𝛼, 𝛽) = 2𝑔𝑖𝑗. Similarly, the diffusion equation for
bounded lattice gives the fractional diffusion equation for
bounded region of continua

𝜕𝑓 (r, 𝑡)
𝜕𝑡

= −

3

∑

𝑖=1

𝐷𝑖 (𝛼)
GL
𝐵 D
−

𝐶
[
𝛼𝑖

𝑖
] 𝑓 (r, 𝑡)

+
1

2

3

∑

𝑖=1

3

∑

𝑗=1

𝐷𝑖𝑗 (𝛼, 𝛽)
GL
𝐵 D
−,−

𝐶
[
𝛼𝑖 𝛽𝑗

𝑖 𝑗
] 𝑓 (r, 𝑡) .

(29)

It should be noted that coincidence of orders of fractional
derivatives in the first and second terms allows us to represent
the fractional diffusion equation (28) in the formof the space-
fractional continuity equation

𝜕𝑓 (r, 𝑡)
𝜕𝑡

= −

3

∑

𝑖=1

GL
D
−

𝐶
[
𝛼𝑖

𝑖
] 𝐽𝑖 (r, 𝑡) , (30)

where 𝐽𝑖 is the probability flow

𝐽𝑖 (r, 𝑡) = 𝐷𝑖 (𝛼) 𝑓 (r, 𝑡) −
1

2

3

∑

𝑗=1

𝐷𝑖𝑗 (𝛼, 𝛽)
GL
D
−

𝐶
[
𝛽𝑗

𝑗
]𝑓 (r, 𝑡) .

(31)

Equation (31) can be considered as the fractional phe-
nomenological Fick first law for nonlocal media. If 𝛼𝑖 = 1 for
all 𝑖 = 1, 2, 3, the continuity equation (30) can be represented
as the standard form of the well-known continuity equation

𝜕𝑓 (r, 𝑡)
𝜕𝑡

= −

3

∑

𝑖=1

𝜕𝐽𝑖 (r, 𝑡)
𝜕𝑥𝑖

, (32)

where 𝐽𝑖(r, 𝑡) is defined by (31) with 𝛽𝑗 ̸= 1 in general.

For one-dimensional case with 𝐷𝑖(𝛼) = 0 and 𝑓(r, 𝑡) =
𝑓(𝑥, 𝑡), (28) can be represented in the form

𝜕𝑓 (𝑥, 𝑡)

𝜕𝑡
= 𝐾 (𝜇) ∇

𝜇
𝑓 (𝑥, 𝑡) , (33)

where𝐾(𝜇) is the generalized diffusion constant,

𝐾(𝜇) =
1

2
𝐷11 (𝛼, 𝛽) , (34)

and ∇𝜇 is the fractional derivative of order 𝜇,

∇
𝜇
=

GL
D
−

𝐶
[
𝛼1

𝑥
]
GL
D
−

𝐶
[
𝛽1

𝑥
] =

GL
D
−

𝐶
[
𝛼1 + 𝛽1

𝑥
] ,

𝜇 = 𝛼1 + 𝛽1.

(35)

Here we use the semigroup property of fractional derivatives
of the Grünwald-Letnikov type. Equation (33) describes the
fractional diffusion processes with the Poissonian waiting
time and the Lévy distribution for the jump length (see
Section 3.5 of [22]). In [22] the space-fractional diffusion
equation (33) contains the Weyl fractional derivative ∇𝜇 of
order 𝜇, of one-dimensional case. The solution of (33) can
be obtained analytically by using the Fox function 𝐻

1,1

2,2
(for

details see Section 3.5 of [22] and [28]). The exact calculation
of fractional moments [22] gives

⟨|𝑥 (𝑡)|
𝛿
⟩ =

2 (𝐾 (𝜇))
𝛿/𝜇

Γ (−𝛿/𝜇) Γ (1 + 𝛿)

𝜇Γ (−𝛿/2) Γ (1 + 𝛿/2)
𝑡
𝛿/𝜇

, (36)

where 0 < 𝛿 < 𝜇 ≤ 2.
Using (2), it is possible to demonstrate that the space-

fractional diffusion equations are connected with continuous
time random walk processes with diverging second moment
of the jump length distribution [22].

If 𝛼𝑗 = 𝛽𝑗 = 1 for all 𝑗 = 1, 2, 3, then (28) and (29) give
the well-known second-order diffusion equation

𝜕𝑓 (r, 𝑡)
𝜕𝑡

= −

3

∑

𝑖=1

𝐷𝑖

𝜕𝑓 (r, 𝑡)
𝜕𝑥𝑖

+
1

2

3

∑

𝑖=1

3

∑

𝑗=1

𝐷𝑖𝑗

𝜕
2
𝑓 (r, 𝑡)
𝜕𝑥𝑖𝜕𝑥𝑗

, (37)

where 𝐷𝑖 = 𝐷𝑖(1) is the drift vector and𝐷𝑖𝑗 = 𝐷𝑖𝑗(1, 1) is the
diffusion tensor for local continuum.

4. Conclusion

Lattice analog of the fractional-order differential equations
for bounded and unbounded three-dimensional lattices with
long-range jumps of particles is suggested. These lattice
equations can be considered as a new microscopic basis
to describe the fractional diffusion in nonlocal continua.
In the lattice diffusion equations, we use the fractional-
order difference analogs of fractional derivatives, which are
represented by kernels that describe long-range jumps of
lattice particles.The proposed kernels of long-range jumps on
the lattice can be considered for integer and fractional orders
of suggested difference operators. The continuous limits for
these diffusion equations with fractional-order differences
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give the continuum fractional derivatives of the Grünwald-
Letnikov typewith respect to space coordinates.The obtained
fractional diffusion on nonlocal continua can be considered
as a continuous limit of the suggested lattice diffusion, where
the sizes of continuum elements are much larger than the
distances between sites of the lattice. The main advantage of
the suggested approach is a possibility to consider fractional-
order difference diffusion equations as tools for formulation
of a microstructural basic model of fractional diffusion in
nonlocal continua. The proposed three-dimensional lattice
diffusion equations can play an important role in formulating
discrete models of nonlocal processes in microscale and
nanoscale.

It is interesting to generalize the suggested lattice
approach to consider lattice Lévy flights subject to exter-
nal force fields and the Galilean invariance. This transport
process on lattice can be described by lattice fractional
diffusion equations.We assume that the lattice Lévy flights in
a constant force field are similar to lattice fractional diffusion
in a constant velocity field by analogywith diffusion processes
in continuum models [29].

We assume that the proposed lattice approach to the lat-
tice fractional diffusion can be generalized to different types
of Bravais lattices such as monoclinic, triclinic, hexagonal,
and rhombohedral lattices.We also assume that the suggested
approach to the fractional diffusion can be generalized for
lattice models with the fractal spatial dispersion, which are
suggested in [30] (see also [31, 32]), and the continuum limits
of these fractal lattice models can give continuum models
of fractal media [33, 34] that are described by non-integer-
dimensional space approach [35, 36].
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