Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2014, Article ID 917327, 23 pages
http://dx.doi.org/10.1155/2014/917327

Research Article

Hindawi

SPOT: A DSL for Extending Fortran Programs

with Metaprogramming

Songqing Yue and Jeff Gray

Department of Computer Science, University of Alabama, Tuscaloosa, AL 35401, USA

Correspondence should be addressed to Songqing Yue; syue@cs.ua.edu

Received 8 July 2014; Revised 27 October 2014; Accepted 12 November 2014; Published 17 December 2014

Academic Editor: Robert J. Walker

Copyright © 2014 S. Yue and J. Gray. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Metaprogramming has shown much promise for improving the quality of software by offering programming language techniques
to address issues of modularity, reusability, maintainability, and extensibility. Thus far, the power of metaprogramming has not
been explored deeply in the area of high performance computing (HPC). There is a vast body of legacy code written in Fortran
running throughout the HPC community. In order to facilitate software maintenance and evolution in HPC systems, we introduce
a DSL that can be used to perform source-to-source translation of Fortran programs by providing a higher level of abstraction
for specifying program transformations. The underlying transformations are actually carried out through a metaobject protocol
(MOP) and a code generator is responsible for translating a SPOT program to the corresponding MOP code. The design focus
of the framework is to automate program transformations through techniques of code generation, so that developers only need
to specify desired transformations while being oblivious to the details about how the transformations are performed. The paper
provides a general motivation for the approach and explains its design and implementation. In addition, this paper presents case

studies that illustrate the potential of our approach to improve code modularity, maintainability, and productivity.

1. Introduction

High performance computing (HPC) provides solutions to
problems that demand significant computational power or
problems that require fast access and processing of a large
amount of data. HPC programs are usually run on systems
such as supercomputers, computer clusters, or grids, which
can offer excellent computational power by decomposing a
large problem into pieces, where ideally all of these pieces can
be processed concurrently.

In the past decades, the hardware architectures used in
HPC have evolved significantly from supercomputers to clus-
ters and grids, while the progress in software development
has not progressed at the same rate [1]. In fact, HPC was
once the primary domain of scientific computing, but the
recent advances in multicore processors as a commodity in
most new personal computers are forcing traditional software
developers to also develop skills in parallel programming in
order to harness the newfound power. The recent advances in
hardware capabilities impose higher demands on the software
in HPC. In this work, we have investigated a number of

challenges in developing HPC software, some of which might
be improved with approaches and practices that have long
existed in the area of software engineering but not yet fully
explored in HPC.

The initial motivation toward our work comes from the
observation that utility functions, such as logging, profiling,
and checkpointing, are often intertwined with and spread
between both sequential code and parallel code. This results
in poor cohesion where multiple concerns are tangled
together and, at the same time, poor coupling where indi-
vidual concerns are scattered across different methods within
multiple modules of a program [2]. In addition, these utility
functions are often wrapped within conditional statements
so that they can be toggled on or off on demand. Such
condition logic can exacerbate maintenance problems with
code evolution. As shown in our early work [2], the utility
functions can represent up to 20% of the total lines of code in
real-world HPC applications. Therefore, one major challenge
we deal with in our work involves implementing utility
functions in a modularized way without impairing the overall
performance.

To facilitate parallelization, several parallel computing
models have been invented to accommodate different types of
hardware and memory architecture, for example, the Message
Passing Interface (MPI) [3] for distributed memory systems
and OpenMP [4] for shared memory systems. These models
allow programmers to insert compiler directives or API
calls in existing sequential applications at the points where
parallelism is desired. This method of explicit parallelization
has been widely employed in the area of HPC due to its
flexibility and the performance it can provide; however, it puts
the burden on the developers to identify and then express
parallelism in their original sequential code.

The parallelization process introduces its own set of main-
tenance issues because of its characteristic of invasive reengi-
neering of existing programs [5]. The process of developing
a parallel application with existing parallel models usually
begins with a working sequential application and often
involves a number of iterations of code changes in order
to reach maximum performance. It is very challenging to
evolve a parallel application where the core logic code is often
tangled with the code to achieve parallelization. This situation
often occurs when the computation code must evolve to adapt
to new requirements or when the parallelization code needs
to be changed according to the advancement in the parallel
model being used or needs to be totally rewritten to use a
different model.

It could be very beneficial with regard to improving
maintainability and reducing complexity if we can provide
an approach where the sequential and parallel components
are maintained in different files and can evolve separately, and
the parallelized application can be generated on demand with
the latest sequential and parallel code. In addition, the idea of
separating management for the sequential and parallel code
can help to facilitate simultaneous programming of parallel
applications where the domain experts can focus on the
core logic of the application while the parallel programmers
concentrate on the realization of parallelism [5]. The preced-
ing discussion has led us to the question that motivates the
primary focus of this paper: is there an approach to parallelize
a program without having to directly modify the original
source code?

1.1. Metaprogramming. Manually modifying source code is
an error-prone and tedious task. Even a conceptually slight
change may involve numerous similar but not identical
modifications to the entire code base. Many software engi-
neering problems can be addressed through source-to-source
program transformation techniques, the objective of which is
to increase productivity through automating transformation
tasks.

Metaprogramming is a paradigm for building software
that is able to automate program transformations through
code generation or manipulation [6]. The program that
generates or manipulates other programs is called a metapro-
gram and the program that is manipulated is the object
program or base program. Unlike common programs that
operate on data elements, metaprograms take more complex
components (code or specification) as input and transform or

Advances in Software Engineering

generate new pieces of code according to input specifications.
Metaprogramming has been shown as a useful approach in
the advanced areas of software development and maintenance
[6]. By automatically generating code, metaprogramming can
bring many benefits to increase the productivity of software
development. For instance, with automatic code generation
programmers can be relieved from tedious and repetitive
coding tasks, so that they can concentrate efforts on crucial
and new problems. Automatic code generation can reduce
the possibility of inserting errors into code and increase the
reusability of a general software design by customization.

Metaprogramming can usually be achieved through one
of the following three avenues. First, metaprogramming
facilities are created particularly for a programming language
to offer developers access to its internal implementation. Sec-
ondly, a language itself owns the ability to generate, compile,
and dynamically invoke new code. For example, standard
Java is able to generate code at runtime and then compile
and load it into the same virtual machine dynamically. The
generated code can be invoked in the same way as ordinary
compiled Java code [7]. Finally, program transformation
engines (PTEs), such as the Design Maintenance System
(DMS) [8] and Turing eXtender Language (TXL) [9], are used
to apply arbitrary transformations to languages.

1.2. Contributions. In our previous work [10], we presented
the initial solution to bringing the capacity of metaprogram-
ming to HPC programs by creating a compile-time MOP
(OpenFortran) for Fortran, one of the most widely used
languages in HPC. With OpenFortran, extension libraries can
be developed to perform arbitrary source-to-source trans-
lation for Fortran programs. We also briefly introduced the
initial work of a domain-specific language (DSL) [11-13],
named SPOT, as an approach to simplifying the use of Open-
Fortran.

The major contribution of this paper focuses on how a
higher level DSL like SPOT can be used to not only specify
crosscutting concerns as an aspect-oriented extension to
Fortran, but also how SPOT provides language constructs to
fully support the definition of more general transformations
in a way that removes much of the accidental complexities.
This paper presents the detailed design and implementa-
tion decisions for SPOT and demonstrates through case
studies how to use SPOT to deal with the challenges of
both crosscutting and parallelization concerns in HPC. The
extensions provided in SPOT can be used to address problems
in a particular application domain by adding new language
constructs capturing the domain knowledge.

A survey of various existing solutions for automating
program transformations is another contribution of this
work. The survey is presented in the section of background
related work and includes comparisons between solutions of
different methodologies and a rationale of how our approach
is different. Two primary features that make our approach
different from other solutions are that (1) it allows users
to express their intent of code modification in an intuitive
manner that is more tied to the programming model they
use in their core development process, and (2) the strategy

Advances in Software Engineering

module exampleStrategoXT
rules
For2While:

Block(]

Assign(a, expl),
Assign(b, exp2),

)
D
where new => b
IfThen2IfElse:

For(a, expl, exp2, stmt”)->

DeclarationTyped(b, TypeName("int")),

While(Leq(Var(a), Var(b)),
<conc>(stmt *, [Assign(a, Add(Var(a), Int("1")))])

IfThen(exp, stmt) -> IfElse(exp, stmt, [])

ALGORITHM I: An example of rules defined with Stratego/XT.

of multiple scopes empowers our approach to be able to
address context-sensitive transformation problems (e.g., with
deliberately designed constructs and built-in actions, SPOT
can be used to specify various fine-grained transformations
at arbitrary locations in the code base).

The paper is organized as follows. Section 2 describes
background and related work. Sections 3 and 4 mainly discuss
the design and implementation details of OpenFortran and
SPOT. Section 5 describes three case studies to show how our
approach can be used to answer the research questions we
have discussed in Section1 and to demonstrate how SPOT
can be extended to derive a new DSL for a particular domain.
In Section 6, we suggest future work and conclude the paper.

2. Background and Related Work

This section provides an overview of the techniques that are
used in our approach to raise the level of abstraction for spec-
ifying program transformations. A summary of various pro-
gram transformation approaches is first presented, followed
by some of the techniques used by OpenFortran and SPOT
(e.g., metaobject protocols, aspect-oriented programming,
and domain-specific languages).

2.1. Program Transformation Engine. Metaprogramming can
be achieved using PTEs, many of which support formally
specified source-to-source program transformations at com-
pile time [8, 9, 14-16]. Some systems support complex code
modifications through direct manipulation of specialized
data structures, such as ASTs, representing the source code.
For instance, ROSE [14] allows developers to address trans-
lation tasks in C++ by directly traversing and modifying
ASTs, which is described in the next section. DMS [8] also
allows developers to manipulate ASTs through procedural
methods written in a parallel transformation language called
PARLANSE [8].

Some PTEs support transformations with more abstract
representations in order to hide low-level complexities,

among which term rewriting is most widely used for mod-
elling modification of terms through a set of rewrite rules that
define a matching pattern and the desired transformations
[17]. A rewrite rule specifies one-step transformation for a
fragment of the target program by mapping the left-hand side
(“matching this”) to the right-hand side (“replaced by that”),
and the mapping is usually denoted by “->”. Representative
examples include Stratego/XT [15] and ASF+SDF [16] where
complex translation is performed through a set of rewrite
rules that are formulated and arranged strategically to achieve
desired effects. Algorithm 1 demonstrates two rewriting rules
written in Stratego/XT, the first one translating a for statement
to a while statement and the second translating an if-then
statement to an if-else statement.

Some transformation systems provide an extended syntax
or incorporate a DSL to specify rewriting rules for the
target programming language, which results in better main-
tainability and readability of transformation libraries, for
example, DMS [8], TXL [9], and REFINE [18]. DMS allows
developers to build transformation rules in the rule specifica-
tion language (RSL), which provides primitives for declaring
patterns, rules, and conditions [8]. Transformations are
expressed with the extended syntax (i.e., the primitives)
together with the concrete syntax of the target programming
language. The matching pattern on the left-hand side and the
desired transformations specified on the right-hand side are
both expressed in the surface syntax of the target language.
Algorithm 2 shows an RSL rule for desugaring the conditional
operator to a traditional condition statement in C where the C
syntax is contained inside double quotes to distinguish it from
that of the RSL primitives indicated in bold. The backslash is
used before a variable to indicate that the variable can match
any language constructs whose type is specified in the rule
signature; for example, expl, exp2, and exp3 can match any
expressions in C. The conditional clause at the end of the rule
enforces a limitation to the application of this rule; that is,
lv, the left-hand side of an assignment statement should not
cause any conflicts in the target language, determined by the
analyzer no_side_effect.

Advances in Software Engineering

rule desugar_conditional_assignment_stmt (1v:left_hand_ side, expl:expression, exp2:expression, exp3:expression) :

statement -> statement
= “\lv=\expl?\exp2:\exp3;” ->

“if (\expl) \lv=exp2; else \lv=exp3;
if no_side_effects (1v) ;

ALGORITHM 2: An example of RSL rule defined with DMS.

TXL supports structural program transformations
through functional programming at a higher abstraction level
and pattern-based rewriting at the lower level [9]. It pro-
vides functional constructs to specify rewriting patterns,
which helps to conceal the low-level term structures from
developers. A typical TXL program is composed of a gram-
mar in Extended Backus-Naur Form (EBNF) describing the
input and a set of rewriting rules specified in the pattern of
“replace A by B” combined with auxiliary functional con-
structs. TXL allows the expression of desired changes using
the syntax of the source and target languages. Unlike DMS
and ROSE, TXL provides no facilities for developers to
directly manipulate ASTs but only language constructs to
specify rewrite rules at a higher level.

Instead of providing a full-fledged PTE, another area of
research has been focused on integrating the functionality
of automatic refactoring with interactive development envi-
ronments (IDEs). Refactoring tools often provide transla-
tion primitives of high-level abstraction without exposing
any low-level data structures and thus most of them are
lightweight and easy to use [19]. An example is Photran [20],
which is a refactoring tool for Fortran based on Eclipse.
Photran provides transformations like renaming and function
extraction in an interactive manner. However, refactoring
tools are limited to translation types in which the semantics
of the code should be preserved. In addition, developers do
not have the freedom to create their own.

Though some PTEs may be powerful and flexible in
performing certain types of source transformation, there is
a steep learning curve for average developers to master the
skills needed to use them. In contrast, in our solution trans-
lation specifications can be expressed in a way that resembles
more a developer’s mental model of program transformation
than coding with metaprogramming capabilities or directly
manipulating an AST as required by many PTEs.

Another weakness of transformation tools is the frequent
dependence on pattern matching and term rewriting in a
context-free style. Usually a rewrite rule only has knowledge
of the matched construct, which makes those systems pow-
erless to address context-sensitive translation problems, such
as function inlining and bound variable renaming [17]. On
the contrary, our approach incorporates a scheme of multiple
scopes, which allows developers to express transformations
either at a specific point or at multiple points matched with
a wildcard. Developers are allowed to express higher-level
scopes with “Within (Entity name)” and to identify precise
locations with control-flow clauses (IF-ELSE and FORALL)
and location keywords (Before and After). In addition, users

can define handlers to represent particular language entities,
for which translation can be specified by directly invoking
built-in operations (e.g., addEntity, replaceEntity, and dele-
teEntity where Entity may refer to any program entities of a
programming language). Moreover, the structural informa-
tion of higher-level scopes that encompass a translation point
is accessible, which makes our approach a candidate solution
for solving context-sensitive problems.

All of the transformation systems mentioned in this
section are in the category of source-to-source transfor-
mation. Another primary type of transformation involves
manipulation of binary code where a binary object program is
modified or augmented in order to observe or alter program
behaviors. Among many systems that use the technique of
binary transformation, Hijacker [21] is a tool that can be
utilized to alter the execution flow of an application based
on a set of rules. With built-in tags, users can specify XML
file rules of inserting or modifying assembly instructions
and the XML file then instructs Hijacker to perform the
intended transformations towards the binary code. Com-
pared with source transformation, binary transformation is
advantageous when the source code is not accessible and is
disadvantageous because it is more challenging to manipulate
machine code at a low abstraction level.

2.2. Metaobject Protocol. A metaobject protocol (MOP) pro-
vides metaprogramming capabilities to a language by ena-
bling extension or redefinition of a language’s semantics [22].
MOPs can be implemented with object-oriented and reflec-
tive techniques by organizing a metalevel architecture [23].
To allow transformation from a metalevel, there must be a
clear representation of the base program’s internal structure
and entities (e.g., the classes and methods defined within
an object-oriented program), in addition to well-defined
interfaces through which these entities and their relations
can be manipulated [24]. MOPs add the ability of metapro-
gramming to programming languages by providing users
with standard interfaces to modify the internal implementa-
tion of programs. Through the interface, programmers can
incrementally change the implementation and the behaviour
of a program to better suit their needs. Furthermore, a
metaprogram can capture the essence of a commonly needed
feature and be applied to several different base programs.

A MOP may perform adaptation of the base program
at either runtime or compile-time. Runtime MOPs function
while a program is executing and can be used to perform real-
time adaptation, for example, the Common Lisp Object Sys-
tem (CLOS) [25] that allows the mechanisms of inheritance,

Advances in Software Engineering

method dispatching, class instantiation, and other language
details to be modified during program execution. In con-
trast, metaobjects in compile-time MOPs only exist during
compilation and may be used to manipulate the compilation
process. Two examples of compile-time MOPs are OpenC++
[26] and OpenJava [27]. Though not as powerful as runtime
MOPs, compile-time MOPs are easier to implement and offer
an advantage in reducing runtime overhead.

MOPs have been implemented for a few mainstream
object-oriented languages such as Java and C++ [26, 27].
However, there are no MOPs existing for Fortran, which
is why we implemented OpenFortran in order to support
program adaptation for HPC needs. In the HPC community,
there is a substantial base of scientific code written in Fortran
to address HPC concerns, and even today Fortran remains
a dominant programming language in HPC [28]. It is often
very expensive to make changes to legacy code on a large scale
[29]. The procedural paradigm and lower-level programming
constructs make Fortran applications even more difficult to
maintain and evolve [28].

2.3. Aspect-Oriented Programming. Aspect-oriented pro-
gramming (AOP) [30] is a programming paradigm closely
linked with MOP. AOP is designed specifically to deal with
crosscutting concerns (i.e., concerns that are not isolated to
one module, such as logging and profiling), by providing
new language constructs to separate those concerns. Aspect]
[31], one of the most popular languages supporting AOP,
encapsulates such a concern in a special modularity construct
called an aspect. For instance, an aspect is able to identify
a group of execution points in source code (e.g., method
invocation and field access) via the means of predicate
expressions and at those matched points perform concern-
specific behaviour.

Scientific computing is one of the earliest application
areas of AOP [32]. Existing works are mainly applications
of aspect languages for programming languages widely used
in HPC, such as C [33] and Fortran [34]. In [34], the
authors present the implementation of an aspect weaver for
supporting AOP in Fortran using DMS [8]. In the initial
phase of our research [2], we also investigated the technique
of AOP to solve the problems of crosscutting concerns.
Our approach, named Modulo-F, can be used to modularize
crosscutting concerns in Fortran programs by providing
constructs to isolate these concerns in a modular unit that
can be woven into an application when needed.

AOP is powerful in modularizing utility functions by
separating crosscutting concerns; however, the inherent lim-
itations of AOP make it challenging to address problems
like separating the sequential and parallel concern in parallel
applications. For example, AOP supports software extension
around join points (e.g., function calls and data access)
referring to matched locations in an application where
crosscutting concerns appear. Nevertheless, the process of
parallelization often involves performing desired parallel
tasks for for-loops and it is very difficult to express for-loops
as join points in any existing AOP languages [31]. Moreover,
AOP allows programmers to specify the same actions (advice)

to be performed at each associated join point, but in very
rare cases parallel code added to parallelize sequential code
is exactly the same. Therefore, AOP may not be the best fit
for addressing problems of separating sequential and parallel
concerns. Compared with AOP, MOP is a better solution that
can be used to express more fine-grained transformations
around the points of not only certain types of join points, but
also arbitrary places.

2.4. Domain-Specific Languages. A DSL is a “programming
language or executable specification language that offers,
through appropriate notations and abstractions, expressive
power focused on, and usually restricted to, a particular prob-
lem domain” [35]. DSLs trade generality, a feature enjoyed
by general-purpose programming languages (GPLs), for
expressiveness in a particular problem domain via tailoring
the notations and abstractions towards the domain. A DSL
can assist in a more concise description of domain problems
than a corresponding program in a GPL [36]. There are
several benefits available when using a DSL. By raising the
abstraction level, DSLs are able to offer substantial gains in
productivity [36]. With the aid of generative programming,
a few lines of code in a DSL might be transformed to an
executable computerized solution including a hundred lines
of code in a GPL [37]. The common declarative characteristic
of a DSL offers significant benefits to individuals who have
expertise about a particular domain but lack necessary
programming skills to implement a computational solution
with a GPL. A DSL often can be declarative because the
domain semantics are clearly defined, so that the declarations
have a precise interpretation [36].

In the context of automating source-to-source code trans-
lation to solve problems in HPC, DSLs have already been
used in many approaches, where the research goal with regard
to raising the level of abstraction of parallelization is the
same. Hi-PaL [5] is a DSL that can be used to automate the
process of parallelization with MPI. The developer can use
Hi-Pal to specity parallelization tasks without having to know
anything about the underlying parallelizing APIs of MPI.
Liszt [38] is a DSL that is designed particularly to address
the problem of mesh-based partial differential equations on
heterogeneous architectures. Spiral [39] provides high-level
specifications in order to automate the implementation and
optimization libraries for parallelizing HPC code. It can be
used to support multiple platforms and utilizes a feedback
mechanism to achieve an optimal solution for a particular
platform.

Another similar work is POET [40], a scripting language,
originally developed to perform compiler optimizations for
performance tuning. As an extension to the ROSE compiler
optimizer [14], POET can be used to parameterize program
transformations so that system performance can be empir-
ically tuned. The features of POET were then enriched to
support ad hoc program translation and code generation
of DSLs. However, available transformation libraries (built-
in xform routines) are mainly predefined for the purpose
of performance tuning towards particular code constructs
such as loops and matrix manipulation. POET includes

Metalevel
transformation| :>

code H

Base-level :>
Fortran

code H

OpenFortran I:>

Advances in Software Engineering

Extended Common

Xtende Fortran

Fortran :> parser
code

FIGURE 1: Overview of the OpenFortran transformation process.

a combination of both imperative and declarative constructs
and developers have to know them well in order to define
their own scripts to perform code translation. Compared
with POET’s parameterization scheme, our approach raises
the abstraction for program translation and thus aligns more
with developers’ understanding of program transformations
by allowing direct manipulation of language constructs.

Our approach can be used to add parallelism to serial
Fortran applications with different parallel programming
models. Unlike most existing DSL solutions, the core portion
of SPOT is application-domain neutral and can serve as the
base for building many other DSLs concerning code changes
in different domains.

3. The OpenFortran Framework

Similar to OpenC++ [26] and OpenJava [27], OpenFortran
provides facilities for developing transformation libraries.
The libraries work at the metalevel providing the capability
of structural reflection [41] to inspect and modify static
internal data structures. OpenFortran also supports partial
behavioural reflection, which assists in intercepting function
calls and variable accesses to add new behaviours to base-level
programs written in Fortran. By their nature, most systems
in HPC are computationally intensive and thus applying
transformations should not impair the overall performance.
Therefore, we pursued an implementation of OpenFortran
that offers control over compilation rather than the runtime
execution in order to avoid runtime penalties.

3.1. OpenFortran Design. In the infrastructure shown in
Figure 1, the base-level program is Fortran source code. The
metalevel program refers to the libraries written in C++ to
perform transformations on the base-level code. OpenFor-
tran takes the metalevel transformation libraries and base-
level Fortran code as input and generates the extended
Fortran code. The extended Fortran code is composed of both
the original and newly generated Fortran codes that can be
compiled by a traditional Fortran compiler like gfortran.
When choosing the underlying code translation engine,
we mainly evaluated each system from the following criteria:
(1) whether it supports an object-oriented programming
(OOP) language to specify code transformations (A MOP

by nature is more natural in an object-oriented context),
(2) whether it can accept language specifications for real
languages, (3) whether it supports source-to-source trans-
lation, (4) whether it can be applied reliably, (5) whether
it supports Fortran, and (6) whether it has been used to
address industrial strength problems and has been applied
to a large-scale code base. Out of several potential PTEs,
we chose ROSE [14] because it meets all the six criteria and
it integrates the Open Fortran Parser (OFP) [42] (similar
name, but a different project from our OpenFortran) as a
front-end to support Fortran 77/95/2003. ROSE is an open
source compiler infrastructure for building source-to-source
transformation tools that are able to read and translate
programs in large-scale systems [14]. It is powerful and
flexible in supporting program translation by providing a
rich set of interfaces for constructing an AST from the input
source code, traversing and manipulating and regenerating
source code from the AST.

Though ROSE is powerful in supporting specified pro-
gram transformations, it is quite a challenge for average
developers to learn and use. Manipulation of an AST is greatly
different from most programmers’ intuitive understanding of
program transformation. In contrast, the MOP mechanism
of program transformation allows direct manipulation of
language constructs (e.g., variables, functions, and classes)
in the base program via the interfaces provided. Through a
MOP, some language constructs that are not a first-class cit-
izen can be promoted to first-class to allow for construction,
modification, and deletion [22].

In a MOP, for a target top-level entity (e.g., a function
and a module definition) in the base-level program, an
object, referred to as a metaobject, is created in the metalevel
program to represent the entity. The class from which the
metaobject is instantiated is called the metaclass. A metaob-
ject contains sufficient information representing the structure
and behavior of an entity in the base-level code and interfaces
carefully designed to alter them. For instance, for a function
definition in a Fortran application, a corresponding metaob-
ject will be created in the metaprogram. The metaobject holds
adequate structural and behavioral information to describe
the function (e.g., function name, parameter list, return type,
local variables defined within the function, and statements
in the function). The metaobject also provides interfaces for

Advances in Software Engineering

developers to make changes to itself and the corresponding
changes will be reflected in the function in the base program.

The interfaces a MOP can provide may manifest as a
set of classes or methods so that users can create variants
of the default language implementation incrementally by
subclassing, specialization, or method combination [25].In a
MOP implemented in a class-based object-oriented language,
the interfaces typically include at least the basic functionality
of instantiating a class, accessing attributes, and invoking
methods. For instance, in OpenC++ [26], developers are
allowed to define metaclasses specializing certain types of
transformation by subclassing standard built-in metaclasses.

The working mechanism of OpenFortran can be
described as source-to-source translation performed in the
following steps.

(i) An AST is built after parsing the base-level Fortran
source code and the top-level definitions are identi-
fied.

(ii) The AST is traversed. For any interested top-level def-
initions, a corresponding metaobject is constructed.

(iii) The member function in a metaobject, OFExtendDef-
inition, is called to modify the subtree to perform
transformations.

(iv) The subtrees modified or created by all metaobjects
are synthesized and regenerated back to Fortran code,
which is then passed on to a traditional Fortran com-
piler.

3.2. OpenFortran Implementation

3.2.1. Built-In Metaclasses. OpenFortran provides facilities to
develop translation tools that are able to transform Fortran
code in multiple scopes (e.g., manipulating a procedure,
a module, and a class) or even a whole project including
multiple files. As an example, in the case when a programmer
would like to create a new subroutine in a module, the
translation tools need to be designed to focus the transfor-
mation on a module level. If a user would like to create a
procedure and call it from the main program, the translation
scope becomes the whole project. It is worth noting that
project-wide translations are realized through procedure-
wide, module-wide, and class-wide translations. Usually, a
typical transformation tool involves translations in multiple
scopes.

The purpose of designing OpenFortran to perform trans-
lations in multiple scopes was to make it applicable to code
written in different versions of the Fortran language. For
example, the concept of a module as a data structure was
introduced in Fortran 90 and the class type declaration state-
ment supporting object-oriented programming appeared in
Fortran2003. Therefore, for code in versions before Fortran
90, only procedure-wide and project-wide translations are
needed to create a translator.

According to this design goal and based on the backward
compatible syntax of Fortran2008, we designed four types
of metaobjects: global metaobjects (objects of class Meta-
Global), file metaobjects (objects of class MetaFile), module

metaobjects (objects of class MetaModule), and function
metaobjects (objects of class MetaFunction). The four built-in
metaclasses are all derived from the same MetaObject meta-
class and need to be inherited by user-defined metaclasses
to apply transformations by calling methods deliberately
defined within them for specific constructs (e.g., procedure,
module, and class) or for a whole project.

The member function OFExtendDefinition declared in
MetaObject should be overridden by all subclasses to perform
callee-side adaption for the definition of a module, a class,
and a function (e.g., changing the name of a class, adding
a new subroutine in a module, and inserting some state-
ments in a procedure). OpenFortran also supports caller-side
translations via overriding the following member functions of
MetaObject:

(i) OFExtendFunctionCall(string funName): to manipu-
late a function invocation where it is called,

(ii) OFExtendVariableRead(string varName): to intercept
and translate the behavior of a variable read,

(iii) OFExtendVariableWrite(string varName): to intercept
and translate the behavior of a variable write.

Translating the definition of a function is the basic level
that OpenFortran supports. The manipulation of a module
definition, a file, or even the whole project is ultimately
delegated to that of function definition. Therefore, in the
implementation of OpenFortran, MetaFile is composed of a
set of MetaFunctions and MetaModules, MetaGlobal consists
of several MetaFiles, and most of the facilitating member
functions are defined in the class of MetaFunction.

Usually, different types of metaobjects can be used col-
laboratively in a transformation tool. If multiple-level trans-
lations are involved, the correct order of invoking metaobjects
has to be arranged carefully to avoid conflicts. Developers of
transformations are advised to perform translations first on
a low level then on a higher level, for example, translating a
member procedure contained by a module before performing
the module-wide translations.

3.2.2. Code Normalization. Code normalization refers to a
type of transformation that reduces a program that has
multiple possible representations to a standard or normal
form in order to decrease its syntactic complexity. OpenFor-
tran is able to normalize code written in different styles of
syntax. For a GPL-like Fortran, programmers have multiple
choices in coding with different syntax to realize the same
semantics, as long as their code conforms to a Fortran
grammar. However, the variety in syntax leads to complexity
when performing transformations. For example, suppose we
would like to intercept all function calls in a program. For
a statement like “Y = sin(X) + cos(Z)” the translation
should not simply find the statement and insert helper
functions before and after it. If so, miscalculation may be
incurred because the statement contains two function calls. A
transformation framework’s ability to normalize source code
greatly affects the precision of the final transformation.

Two types of normalization are supported in Open-
Fortran: function normalization and data normalization.

The purpose of function normalization is to make sure that
no statement contains more than one function call. This is
realized by adding new temporary variables and by inserting
the appropriate types of statements to replace each function
call while preserving the semantics of the code. The normal-
ization process iterates over all statements in order to identify
function calls, especially those statements whose component
parts may contain direct function calls (e.g., the condition
or increment part in a loop statement), because condition or
increment is in the form of expressions instead of standalone
statements.

The purpose of data normalization is to rewrite original
code to guarantee that for a particular variable the read and
write actions should not appear within one statement. The
normalization process loops over source code to search for
potential points for normalization, particularly in assignment
statements and expressions. For example, in a statement “a =
b + a,” both a and b are of integer type and the normalized
code would look like

integer temp
temp = a

a =b + temp

Code normalization plays an important role in the pro-
cess of code transformation, but the overhead is quite large
and also the normalized code may look slightly different from
the original code. However, developers typically do not access
the generated copy of the transformed code; its purpose is to
serve as an intermediate step before compilation by the native
Fortran compiler. Therefore, we only choose to perform func-
tion or data normalization whenever a user-defined metaclass
overrides OFExtendFunctionCall, OFExtendVariableRead, or
OFExtendVariableWrite to perform caller side translations
and whenever it is necessary when OFExtendDefinition is
being overridden.

3.2.3. Lazy Evaluation. It can be very expensive, with regard
to time and space, to build and maintain a complete metalevel
for all of the source code within a program. To reduce
overhead, instead of creating a metaobject for each high-
level definition beforehand, our approach only constructs
metaobjects for those of interest at the last moment. Suppose
we would like to rename a function definition, the trans-
formation library is supposed to locate the place where the
method is defined and all other points in the code where
the method is invoked and replace its name with the new
one. In this case, it suffices to construct metaobjects only
for this function definition and all other function definitions
within which this method is called. Lazy evaluation is made
possible by the underlying transformation engine ROSE that
maintains a whole AST for the source code and it also
provides an interface to traverse the AST to find the nodes
that meet certain requirements.

Advances in Software Engineering

4. SPOT: A DSL for Specifying
Program Translation

MOP facilities offered by OpenFortran are more straight-
forward with respect to expressing the design intent of
program transformation, compared to the APIs provided by
the underlying ROSE transformation engine, which involves
much manipulation of ASTs. However, it is still very chal-
lenging for developers attempting to understand the idea of
metaprogramming and to use the APIs provided by MOPs. In
addition, it is usually the case that MOP programs are created
to serve as a library for the purpose of enabling certain types
of code transformation. Conflicts very likely occur when the
functionality provided by a library can no longer satisfy the
needs of application programmers. It will be a great benefit
for programmers if there is a simpler way to tailor existing
libraries to meet their new needs or ideally even build a new
library, without having to learn how to use OpenFortran.

We have noticed in retrospect that several coding patterns
appear repeatedly when using OpenFortran, for instance,
iterating over an array of metaobjects to identify an interest-
ing point of transformation or adding, removing, or altering
an entity. In order to make the idea of MOPs more accessible
to average developers, we investigated techniques of code
generation and DSLs. To free developers from the burden
of programming with APIs of OpenFortran, we have created
SPOT to provide a higher level of abstraction for expressing
program transformations. The design goal is to provide
language constructs that allow developers to perform direct
manipulation on program entities and hide the accidental
complexities of using OpenFortran and ROSE. The core
syntax and semantics of SPOT are listed in Table 1.

To raise the level of abstraction of program transfor-
mation, high-level programming concepts (e.g., modules,
functions, variables, and statements) are used in SPOT
as building constructs. Built-in functions are provided to
perform systematic actions on programming concepts, such
as add, delete, and update. For developers, coding with SPOT
means to manipulate the entities of Fortran code in a direct
manner, which resembles more their thoughts on program
transformation than coding with other facilities such as exist-
ing metaprogramming tools or platforms. In addition, the
functional features make SPOT easy to learn and use such that
the series of underlying transformations are accomplished
automatically and transparently. Thus, developers do not
need to have deep knowledge about program transformation.

4.1. An Example SPOT Program. Algorithm 3 demonstrates
an example of SPOT code with the basic structure and
language constructs. The purpose of this SPOT program is
to perform a source-to-source transformation for a function
named fun, so that whenever the variable vName is assigned
with a value, both its name and the value are saved to a file. As
indicated by the code snippet, a typical SPOT program starts
with a keyword “Transformer,” followed by a user-defined
name, “printResult2File” in this case, which is used as the file
name of the generated metaprogram (described in the next
section). A transformer is usually composed of one or more

Advances in Software Engineering

TABLE 1: Overview of SPOT syntax and semantic.

Language constructs

Project Project-wide transformation
File File-wide transformation
Scope constructs Module Indicate module definition
Class Indicate class definition
Function Indicate function definition
Integer Define an integer variable
User defined type - . .
String Define a string variable
FunctionCall Indicate expression of function call
VariableRead Indicate expression of variable read
. VariableWrite Indicate expression of variable write
Basic constructs
VariableDecl Indicate expression of variable declaration
Statement Indicate statement of any type
StatementType” Indicate statement of a particular type

Keywords for scope clock

Within(construct <name>)

Get the scope of transformation. Supported scopes include a project, a file, a module, a
function, and statements implying a scope (e.g., condition or loop statement)

Before(<para>")/Before

Perform transformation before an entity

After(<para>)/After Perform transformation after an entity
Keywords for control flow
IF(<expr>") ELSE Proceed based on the value of expr

FORALL(construct<name>/<Pattern>)

List all constructs specified with name

Primary actions

RenameFunction(<oldName>, <newName>)

Function

FindFunctionCall(<funName>)

AddVariable(<type>, <name>, <intialValue>)
AddVariables(<type>, <namel>, <name2>,...) //with the same type

Variable

DeleteVariable(<name>)

RenameVariable(<oldName>, <newName>)

FindVariableRead/Write(<name>)

AddStatement(< “stmt
AddcCallStatement(<loc>, <targetStmt>, <funName>, <parameterList>)
DeleteStatement(< “stmt”>)/ DeleteStatement(<loc>, <targetStmt>,< “stmt”>)

Statement

EED

>)/ AddStatement(<loc>, <targetStmt>, <“stmt”>)

ReplaceStatement(< ‘0ldStmt”>, < “newStmt”>)

Auxiliary functionality

Function <fun> = getFunctionDef (<name>)
Module <md> = getModuleDef (<name>)
StatementType %<stList> = getStatementType()
Statement %<stList> = getStatementAll(< “stmt”™>/<pattern>)

Retrieve functions

Statement <st> = getStatement(lineNumber)

Statement <st> = getStatement(< stmt”>/<pattern>)
Statement <st> = getStatementIndex” (< “stmt”>/<pattern>)
VariableWrite %<vw>=getVariableWrite(<varName>)
VariableRead %<vr>=getVariableRead(<varName>)
VariableDecl <vd> = getVariableDecl(<name>)

Include block

IncludeCode {source code in Fortran}
IncludeCode {source code in Fortran} into <filename>

w»>

(1) Fortran syntax needs to be included within double quotes

(2) para can be a construct variable or an expression (expr) or statement (stmt); stmt indicates a Fortran statement (within double quotes) or a pattern described
with %var substituting for real expressions within a statement; expr indicates an actual Fortran expression or a pattern described with %var.

(3) %var is a user-defined variable representing a collection of entities, using $var to access an element in the collection.

(4) statementType indicates statement of a particular type (e.g., StatementFOR and StatementIF).

(5) statementIndex indicates the index-th statement with the same stmt or pattern.

scope blocks where action statements, nested scope blocks, or
condition blocks are included.

The code defines a scope block from line 2 to line 5.
“Within (Function fun)” indicates that the following transla-
tion is performed for the function “fun.” Line 3 calls “getState-
mentAssignment” to search out all assignment statements

where the variable varName is at the left-hand side. Line
4 inserts a function-call statement “call SAVE(“varName”,
varName)” after each assignment statement. The operators
“%” and “$” are used in pairs with “%s” indicating the list
of all assignment statements matched and “$s” representing
any statement in the list (referring to Table 1). The including

10

Advances in Software Engineering

(1) Transformer printResult2File{
(2) Within (Function fun) {

(3) StatementAssignment %s=getStatementAssignment (varName) ;

(4) AddCallStatement (After, $s.Statement, SAVE, “varName”, varName);
(5) }

6) 1}

(7) IncludeCode{

(8) subroutine SAVE(varName, value)

(9) lcode in the subroutine

(10) end

1}

ALGORITHM 3: An example of a simple SPOT program.

block (lines 7 to 11) is optional and is designed for providing
additional code needed by the transformer. The functions
or variables defined within an include block will be directly
inserted into the beginning of the file being translated, unless
otherwise specified. The developers are expected to use this
section to implement helper code used by transformers.

A feature of our approach lies in supporting string-
based translation. Developers are allowed to embed Fortran
code in a SPOT program. For example in Algorithm 3 line
4 can be replaced with “AddStatement(After, $s.Statement,
“call save(“varName”, varName)”)” to achieve the same effect
of adding a function call statement after the statement
indicated by $s.Statement, where the last parameter “call
save(“varName”, vName)” is actually a Fortran statement. In
addition, a real Fortran statement can also be used as the
parameter in “getStatementAll(“stmt”)” to obtain its handler.
For instance, as in “Statement %st = getStatementAll(“result =
a + b7)) all statements containing “result = a + b” within
current scope are matched and their handlers are put into the
list represented by “st” One thing needs to be noted is that all
embedded Fortran code should be contained within double
quotes for the purpose of differentiation.

One side effect of using Fortran statements to match
possible translation points is that if the source code to be
transformed has been modified, (e.g., a has been renamed
to d as in “result = d + b”), the transformer will skip this
translation point. This is called the lexical pointcut problem
in AOP [43]. Another scenario is that instead of matching an
exact Fortran statement, the transformer would like to match
a pattern, for instance, matching all assignment statements
with the right-hand side being a plus expression. In order
to avoid the drawback and to support the desired feature,
we allow developers to define a pattern with special literals
%varl, %var2, %var3. .. that can be used to substitute for real
expression in a Fortran statement. The pattern that matches
all assignment statements with their right-hand side being a
plus expression can be depicted as “%varl = %var2 + %var3”.

4.2. SPOT Design Architecture. Figure 2 shows the transfor-
mation process after integrating SPOT with OpenFortran. A
SPOT program represents desired translation tasks specified
directly with SPOT constructs for the source code in Fortran.
A code generator is used to automate the translation from

the SPOT program to C++ metalevel transformation code.
OpenFortran is responsible for carrying out the specified
transformations on the Fortran base program with the assis-
tance of the low-level transformation engine ROSE. As shown
in Figure 3, the code generator consists of a parser that is able
to recognize the syntax of both SPOT and Fortran and then
builds an AST for the recognized program. A template engine
is used to generate C++ code while traversing the AST.

The parser is generated with ANTLR [44] from the
grammars of both SPOT and Fortran expressed in EBNE. We
chose ANTLR because it is a powerful generator that can
not only be used to generate a recognizer for the language,
but can also be used to build an AST for the recognized
program, which can then be traversed and manipulated.
In Algorithm 4, we list the core EBNF grammar of SPOT.
To implement the generator, we have specified the essential
portion of the Fortran 90 grammar and combined it with
SPOT’s grammar. Besides generating a recognizer for SPOT
and Fortran statements, ANTLR creates an AST for an input
program. As shown in Algorithm 4, below each generation
rule in the grammar there is an annotation in the form of
“->(root, childl, childl...)” The annotation specifies how a
subtree is shaped related to which node is the root and which
nodes are the children [44].

We also have implemented a tree grammar that matches
desired subtrees and maps them to the output models. A sam-
ple rule of the tree grammar is listed in Algorithm 5(a). The
output models are built with StringTemplate [45], a template
engine for generating formatted text output. The basic idea
behind building the output models with StringTemplate is
that we create a group of templates representing the output
and inject them with attributes while traversing the ASTs.
The generation rule in Algorithm 5(a) matches a subtree built
for a SPOT statement like “Within(Project programName)”
and passes “transformerName” and “programName” to the
template in Algorithm 5(b). The actual parameter “trans-
formerName” is a global variable that is populated with the
user-defined name of the transformer and “programName”
holds the name of the Fortran PROGRAM. The template is
actually a class definition in OpenFortran with several holes
that are populated with values passed in during tree traversal.
In this case, the definition of a metaclass is generated that
inherits the built-in metaclass MetaGlobal.

Advances in Software Engineering

Transformation

Antlr +
r StringTemplate

1

specified in
SPOT

l

Metalevel

code

transformation :
code
Transformed
Fortran code
Original ’
Fortran t

Rose

FIGURE 2: Overview of the transformation process with SPOT.

Code generator

Transformation

specified in

generated with
Antlr

SPOT
L grammar

Parser < ‘

SPOT

Fortran

grammar

[StringTemplate] <:I
store

|

U

Meta-level

transformation

code

FIGURE 3: The implementation structure of the code generator.

Using ANTLR [44] and StringTemplate [45], all the logic
is kept in the tree grammar and all the output text in the tem-
plates, which strictly enforces model-view separation. One
benefit is that, from the same copy of a SPOT program (in
the form of a single tree grammar), different implementations
can be generated with different templates. In addition to
generating a metaprogram in OpenFortran, a SPOT program
may also be translated into an implementation in other PTEs
or transformation tools (e.g., DMS [8] or Xtext [46]). Another
advantage of model-view separation is that the same group of
templates may be reused with different tree grammars.

Compared with OpenFortran, SPOT is easier to learn
and use due to its functional features. When programming

with SPOT, developers can be more focused on their design
intention of transformations with constructs and actions
provided. The underlying generation and translation are
performed in a transparent way. Moreover, SPOT provides
mechanism for developers to specify translation scope and to
pick up a specific point of translation using an exact construct
name or a wildcard to match multiple points. Therefore, no
annotation to the source code is necessary to use libraries
developed in the DSL, which makes the solution nonintrusive
because translations are performed on a generated copy of the
original code and the original code is kept intact.

On the other hand, the MOP coincides with SPOT in
regard to resembling developers’ comprehension of program

12

Advances in Software Engineering

programFile
:‘Transformer’ ID {’ transformBody (‘;’ transformBody) * ‘}
-> " (TRANSFORMER.ND ID transformBody+);
transformBody
:transformScope " transformStatement+ Y}
-> " (TFBODY_ND transformScope transformStatement+)
|'IncludeCode’ {" statement+ ¥ (‘into’ fileName)
-> " (SOURCE_CODE statement+) ;
transformScope
: Within’ ‘C scopelndicator ID °)’
-> " (‘Within’ scopeIndicator ID);
scopeIndicator
:‘Function’
|'Module’
|'Project’
|'Statement’;
pointIndicator
:‘FunctionCall’
|'VariableRead’
|'VariableWrite’
| statementTypeName //collect all statements of a type
| " statement ’;//collect all statements with original source code, e.g. "a=b+c"
transformStatement
: operation
| subTransform
| spotCondition;
spotCondition
‘IF ‘C condition)’{ transformStatement %}
-> " (‘IF’ condition transformStatement+)
|'ELSE IF ‘C condition)’{’ transformStatement+ }
-> ‘ELSE IF condition transformStatement+
|'ELSE’ {’ transformStatement+ ‘}’
-> ‘ELSE’ transformStatement+;

operation

:actionVariable ;’

-> " (ACTION.ND actionVariable)

|actionStatement °;’

-> " (ACTION.ND actionStatement)

|actionFunction °;’

-> " (ACTION.ND actionFunction)

|scopeIndicator)7 ID ‘= actionRetrieve °;’

-> " (RETRIEVEND scopelndicator 4’? ID ‘=" actionRetrieve);
subTransform

:transformLocation {’ operation+ }

- A (SUB_TRANSFORMER transformLocation operation+);
transformLocation

: locationKeyword ‘(’ pointIndicator (ID|™’|');’ ID)?%)’

-> " (TRANS_LOCATION locationKeyword pointIndicator (ID|”’[%” ID))

| ForAll’ ‘C ‘Procedure’ () ID))’ // ForAll (Procedure Y%procs)

-> " (ForAl1.ND ‘Procedure’ (|4 ID))

| ‘ForAll’ ‘C ‘Module’ ()4’ ID)*)’

-> " (ForAl1l.ND ‘Module’ (‘|4 ID))

| ForAll’ ‘C pointIndicator ID? (“’| ID))’

-> " (ForAll ND pointIndicator ID? (|4 ID));
actionVariable

:‘AddVariable’ ‘C typeName ‘,” ID (°,” initializedVal)?)’

-> " (‘AddVariable’ typeName ID initializedVal?)

|'DeleteVariable’ ‘C ID)’

-> " (‘DeleteVariable’ ID)

|'RenameVariable’ ‘C oldName=ID ‘,” newName=ID)’

-> " (‘RenameVariable’ $oldName $newName) ;

ALGORITHM 4: Continued.

Advances in Software Engineering

actionStatement
:‘AddCallStatement’ ‘ClocationKeyword °,” spotCurrentStatement °,’
ID (‘,’callArgumentList)?)’
-> " (‘AddCallStatement’ locationKeyword spotCurrentStatement ID callArgumentList?)
|‘AddDirectiveStatement’ (" directive)’
-> " (‘AddDirectiveStatement’ directive)
|‘AddIncludeStatement’ ‘C ID)’
-> " (‘AddIncludeStatement’ ID)
|'ReplaceStatement’ ‘(C oldStmt=statementType ‘,” newStmt=statementType)’
-> " (‘ReplaceStatement’ $01dStmt $newStmt)
|DeleteStatement’ ‘C statementType)’
-> " (‘DeleteStatement’ statementType);

ALGORITHM 4: Primary EBNF grammar of SPOT.

()
transformScope
" (‘Within’ ‘Project’ programName=ID)
-> createMetaGlobal (transformer={$transformerName}, progName={$programName.text});
(b)
createMetaGlobal (transformer, progName, funName, varName)::=<<
class MetaClass_<transformer> _ <progName>: public MetaGlobal
{
public:
MetaClass_<transformer> _ <progName> (string name) ;
virtual bool ofExtendDefinition();
<if (funName)>virtual bool ofExtendFunctionCall(string “<funName>”)<endif>;
<if (VarName)>virtual bool ofExtendVariableRead(string “<varName>”)<endif>;
<if (VarName)>virtual bool ofExtendVariableRead(string “<varName>”)<endif>;

13

ALGORITHM 5: (a) A rule in the tree grammar; (b) a template for generating OpenFortran code.

transformation by allowing direct manipulation of language
constructs. This makes it more practical to realize the transla-
tion via code generation from SPOT programs to the imple-
mentation in OpenFortran. The benefits of SPOT are partially
achieved through the richness which the OpenFortran MOP
is able to provide. In addition, SPOT can also evolve to
address new needs that are discovered from any capability
that cannot be captured by a user need. The case studies in
the next section served to evolve SPOT to its current state and
additional cases studies may further identify ways in which
SPOT can be improved.

5. Case Studies

In this section, we describe three cases studies that show how
SPOT and OpenFortran can be used to address the challenges
mentioned in Section 1, utility functions and separation of the
sequential and parallel concern of an HPC program, and how
to extend SPOT with new notations and functions to facilitate
checkpointing for Fortran applications.

5.1. Supporting AOP in Fortran. To support AOP, the solution
has to be capable of encapsulating a crosscutting concern in

one place. A SPOT transformer is able to modify the structure
and behaviour of the source code by applying actions (or
advice as in Aspect] [31]) at various interesting points (or join
points) with commonality specified with a qualification (or
pointcut). Developers are allowed to choose a particular point
of translation or to specify multiple points using a wildcard.
In this case study, we first outline the implementation of a
profiling metaprogram (first in OpenFortran and then with
SPOT) to illustrate how to use our approach to modularize
this typical crosscutting concern.

A primary issue which the developers of HPC software
need to consider is how to make full use of available resources.
Therefore, it is crucial for developers to understand the per-
formance characteristics of the computational solution being
implemented. Profiling is known as a useful technique in the
area of HPC to help developers obtain an overview of system
performance [47]. Via a profiling tool, detailed temporal
characteristics of the runtime execution are collected to allow
thorough analysis that provides a general view on source
locations where time is consumed. To implement a profiling
library with OpenFortran, we first need to figure out what
the application code looks like before and after applying
the library and then choose the appropriate interfaces to

14

(1) PROGRAM exampleProg

(2) USE profiling_mod

3 IMPLICIT NONE

(4) REAL a, b, c, result

(5 REAL calculation

) CALL profiling(“exampleProg:Input”)
(8) CALL Input(a, b, c)

(9 CALL profiling(“exampleProg:Input”)
(10) CALL profiling(“exampleProg:Calc”)
(11) result = Calc (a, b, c)

(12) CALL profiling(“exampleProg:Calc”)
(13) END

ArcoriTHM 6: The translated example code with the profiling
library.

implement it. Algorithm 6 shows the example program after
being translated (the original code is without the statements
in bold). The statements in bold are generated and added
to the source code. A helper module named profiling_mod
is designed to provide the facilities for calculating time. The
subprogram profiling in the module is called before and after
a function is invoked to get the elapsed execution time.
To achieve this, the internal subroutine SYSTEM_CLOCK is
utilized. For each statement containing a function call in the
source code (e.g., “input (a, b, ¢)” and “result = Calc (a, b,
¢)”), the profiling metaprogram should be able to locate the
statement and insert profiling before and after it.

In this example, the program only has two function calls.
It may not seem like a challenge to code manually for the pur-
pose of implementing the profiling functionality. However,
the situation becomes labor intensive and error prone when
many more function calls are involved. It is always costly to
change code back and forth in a manual fashion, which is
what this metaprogram automates. OpenFortran provides the
ability to build a profiling library that automatically generates
and integrates a new copy of the original application code
and profiling code on a metalevel. To manually implement the
profiling library within the scope of a file, we need to create
a new metaclass inherited from class MetaFile, as shown in
Algorithm 7.

The member function OFExtendDefinition() needs to
be overridden in MetaClass_Profiling_exampleProg to build
the library, as shown in Algorithm 7. The member variable
functionList in line 7 is defined in MetaFile, which holds all
the MetaFunction objects representing the main program,
subroutines, functions, and subprograms in modules and
type-bound procedures. Line 7 loops through all the func-
tions to perform translations. Line 10 iterates through all
statements in the target procedure that contain a function
call. Two additional call-subroutine statements are gener-
ated and inserted before and after the located function-
call statement, as indicated from line 11 to line 18. We call
buildFunctionCallStmt(. . .) to build a function-call statement
where the first parameter indicates the function name (profil-
ing), the second parameter represents the return type (void),
and the third parameter corresponds to the argument list.

Advances in Software Engineering

The argument list contains only the identifier of the function
call, composed by combining the caller’s function name
(exampleProg) and the callee’s function name (Input or Calc).
The resulting translation is shown in Algorithm 6.

Algorithm 8 demonstrates how to specify the same trans-
lation challenge with constructs provided by SPOT. The
code generator is responsible for generating the metalevel
implementation in OpenFortran (shown in Algorithm 7).
The generated code will be saved in Profiling.cpp, whose name
is from the transformer’s name specified in line 1. Line 2 uses
awildcard to make the transformation applicable to all source
files. Line 3 loops over all function definitions within a cur-
rent file by calling FORALL(...). Line 4 inserts a use-module
statement at the beginning of the current function. From
line 5 to line 8 the code matches all statements containing a
function call and then adds two new function calls before and
after the statement by invoking AddCallStatement(. ..) where
the first argument indicates the relative location (Before or
After), the second corresponds to the handler of the statement
matched, and the third refers to the function name to be
added. All of the remaining parameters are interpreted as the
parameters passed to the added function call. In the code, all
built-in constructs are highlighted in bold.

SPOT is able to intercept not only function calls and
variable access (featured by most of AOP implementations
such as Aspect] [31] and aspect-oriented C [48]), but also a
broader range of join points. For example, wildcards can be
utilized in “FORALL (%varl = %var2 + %var3)” to match
all assignment statements whose right-hand side is a plus
expression. Actually, with the support from the underlying
MOP, the DSL can treat any arbitrary line of code as a join
point, thus being able to enable more complex and flexible
translations.

Lack of abstraction in most AOP implementations results
in their inability to maintain the relations between program-
ming entities, which limits the awareness of the context
around a join point. For example, both Aspect] and aspect-
oriented C only support limited context exposure (i.e., using
args() and result() to get the arguments and the result of a
method invocation). However, in OpenFortran the structural
information of different entities in the base-level code and the
relations between them are clearly described and accessible by
a hierarchy of metaobjects. SPOT provides a mechanism for
developers to access this context. For instance, in Algorithm 8
we can also access the attributes of a function call statement
via $funCall.funName. For the sake of safety, all enclosing
contexts exposed within a transformer are read-only. SPOT
is able to support AOP in Fortran by providing mechanisms
to represent crosscutting concerns, thus being able to solve
the problem of utility functions; however, it is more than an
AOP extension to Fortran. With the underlying assistance
of OpenFortran, SPOT can be used to perform more fine-
grained types of transformations at more rich types of
locations.

5.2. Separating the Sequential and Parallel Concern. In this
section, we use a case study to illustrate that with our
approach a parallel model can be utilized without directly

Advances in Software Engineering 15

(1) class MetaClass_Profiling exampleProg: public MetaFile{

(2) public:

(3) MetaClass_Profiling exampleProg(string name) ;

(4) virtual bool OFExtendDefinition();

&)}

(6) bool MetaClass Profiling exampleProg::0FExtendDefinition(){

@) for(int i=0; i<functionList.size(); i++){

(8) pushScopeStack(functionList [i]->getFunctionBodyScope());

(9) functionList[i]->addUsingModuleStatement (“profiling mod”) ;

(9) functionList[i]->functionNormalization();

(10) vector<SgFunctionCallExp * > funCalllist = functionList[i]->getFunctionCallList();

11 for(int j=0; j<funCalllList.size(); j++){

(12) string callerName = functionList[i]->getName();

(13) string calleeName = get_name(funCallList[j]);

(14) SgStatement* targetStmt = functionList[i]->getStmtsContainFunctionCall(funCallList[j]);

(15) string identifier = callerName + ":" + calleeName;

(16) insertStatementBefore (targetStmt, buildFunctionCallStmt("profiling", new SgTypeVoid(),\
buildParalList(identifier)));

an insertStatementAfter(targetStmt, buildFunctionCallStmt("profiling", new SgTypeVoid(),\
buildParalist(identifier)));

(18) }

(19) popScopeStack() ;

200}

(21) }

ALGORITHM 7: The metaclass implemented for the profiling library.

(1) Transformer Profiling {

(2) Within(File *){

(3) FORALL (Function %fun){

(4) AddUseModuleStatement (profiling mod) ;

(5) FORALL (FunctionCall %funCall){

(6) AddcCallStatement (Before, $funCall.statement, profiling, $fun.funName+“:”+$funCall.funName) ;
(7 AddCallStatement (After, $funCall.statement, profiling, $fun.funName+“:”+$funCall.funName) ;
(8) }

9) }

(10) '}

1 }

ALGorITHM 8: The profiling library specified in SPOT.

modifying the original sequential code. This case study
mainly demonstrates the process of using an extended ver-
sion of SPOT to specify the task of parallelizing Dijkstra’s
minimum graph distance algorithm [49] (implemented in
Fortran90) with OpenMP.

SPOT is designed to model the process of code mod-
ification by providing notations and built-in functions for
systematic change of an entity (e.g., adding, updating, or
deleting a statement), which makes it extensible by adding
new language elements to capture a particular domain involv-
ing code evolution. For this case study, we have extended
SPOT by developing a set of new constructs and actions
particularly for instrumenting serial code with the parallel
capabilities of OpenMP. The design goal is to separate

the management of the sequential and parallel code by
automating their integration. That is, the serial code and
the parallelizing operations expressed in extended SPOT are
maintained separately and the parallelized application can
be generated on demand in a new copy, while keeping the
original serial code intact.

OpenMP [4] is a parallel model for developing multi-
threaded programs in a shared memory setting. It provides a
flexible mechanism to construct programs with multithreads
in languages like C, C++, and Fortran via a set of compiler
directives (in the form of comments for Fortran) and run-
time library routines. In OpenMP, a master thread forks a
number of threads and tasks are divided among them. The
runtime environment is responsible for allocating threads

16 Advances in Software Engineering
TaBLE 2: SPOT functions for using openMP directives and APIs.
SPOT constructs OpenMP directive & API Type

OmpUseDirective(<startStmt>, <endStmt>, <clauses>)
OmpUseDirective(<targetStmt>, <clauses>)

PARALLEL, PARALLEL DO,
DO, ORDERED, SECTIONS,
WORKSHARE, SINGLE, TASK,
MASTER, CRITICAL

Pair directives

OmpUseDirectiveBefore (<targetStmt>, <clauses>)
OmpUseDirectiveAfter (<targetStmt>, <clauses>)

ATOMIC, BARRIER,
SCHEDULE, TASKWAIT,
FLUSH, THREADPRIVATE

Single directives

OmpGetEnvironmentVariable(<var>)
OmpSetEnvironmentVariable (<var>)
OmpUnsetEnvironmentVariable (<var>)
OmpDestroyEnvironmentVariable (<var>)
OmpTestEnvironmentVariable (<var>)
OmplnitEnvironmentVariable (<var>)
OmplnFinal (<var>)

OMP_SET_NUM_THREADS
OMP_GET_NUM_THREADS
OMP_GET_-THREAD _NUM
OMP_SET_DYNAMIC
OMP_GET_DYNAMIC

Runtime library calls

TaBLE 3: Examples of calling OpenMP functions of SPOT.

Type Example

Transformation effect

Pair directives

OmpUseParallel(startStmt, endStmt,
Private(varl, var2), Shared(var3),...)

1$0MP PARALLEL PRIVATE(varil, var2)
SHARED (var3)
startStatement
other sequential code
endStatement
1$0MP END PARALLEL

Single directives

OmpUseBarrierBefore(targetStmt)

'$0MP BARRIER
targetStatement
other equential code

Runtime library

OmpGetNumThreads (var)
calls

var = omp_get_num_threads()

to different processors on which they run concurrently.
OpenMP performs parallelization transparently to program-
mers.

We are not trying to create a new language to replace
OpenMP, because OpenMP itself is well designed and flexible
to use. Instead, we have added new functions in SPOT (listed
in the first column of Table 2) to express the behaviour of
utilizing OpenMP directives and APIs and thus to improve
the flexibility of usage by facilitating the separation of
management for the sequential and parallel code. Two types
of directives were added to SPOT: pair directives that are
inserted by wrapping a sequence of statements (using start-
Stmt and endStmt to identify the points of insertion and
targetStmt if only one statement is wrapped) and single
directives that are inserted before or after a target statement
(using targetStmt). All clauses, if any, can be directly added
in these functions as arguments. Table 3 illustrates the final
transformation effects of calling different types of OpenMP
functions of SPOT. The rest of this section illustrates how
to create a parallel program in SPOT that captures the
operations to add parallelism of OpenMP into Dijkstra’s
minimum graph distance algorithm.

Dijkstra’s minimum graph distance algorithm is known
as a graph search algorithm for determining all shortest
paths from a single node in a graph to all other nodes. The

algorithm works by maintaining the set, denoted as T, of
vertices for which shortest paths need to be found, and as Di
the shortest distance from the source node as Vs to vertex Vi.
Initially, a large number is assigned to all Di. At each step of
the algorithm, remove the vertex Vn in T with the smallest
distance value from T and examine each neighbor of Viin T
to determine whether a path through Vn would be shorter
than the current best-known path. The core code snippet
of the sequential version of Dijkstra’s algorithm is shown in
Algorithm 9.

To parallelize the algorithm with OpenMP, we need to
manually divide the nodes of the graph among multiple
threads such that each thread is responsible for computing the
assigned group of nodes. Algorithm 10 indicates the resulting
parallel program in which a parallel region (around the do
statement) is identified and expressed with “$omp parallel
private (...)” and “$omp end parallel.” Several other advanced
OpenMP directives are used to make sure the algorithm
works correctly, such as “$omp critical;” “$Somp single, and
“Somp barrier?

Algorithm 11 shows the final parallelization code in SPOT
using the extended set of functions that add the OpenMP
directives and APIs. We defined a transformer with the name
of “paraDijkstra” All translations are performed within a
function named dijkstra_distance as indicated in line 2. Most

Advances in Software Engineering

17

call find nearest (nv,mind,connected,md mv)

call update mind (nv,connected,ohd,mv,mind)

(1) subroutine dijkstra._distance (nv,ohd,mind)
(2) 'some other code

(3) connected(1) =.true.

(4) connected(2:nv) =.false.
(5) mind(1:nv) = ohd(1,1:nv)
(6) do step = 2, nv

7

(8) if (mv/=-1) then

9) connected(mv) =.true.
(10) end if

(11) if (mv/=-1) then

(12)

13 end if

(14) end do

(15) end

ArGoriTHM 9: The core code snippet of Dijkstra’s algorithm.

(1) subroutine dijkstra.distance (nv, ohd, mind)

(2) use omp_lib

(3) !some other code including variable declarations
(4) !'$omp parallel private(my_first, my_id, my_last, my_md, my_mv, my_step)
(5) !'$omp shared (connected, md, mind, mv, nth, ohd)

(6) my_id = omp_get_thread_ num ()

€0) nth = omp_get_num_threads ()

(8) my first = (my_id % nv) / nth + 1

9 my-last = ((my-id + 1) % nv) / nth

(10) do step = 2, nv

(11) call find nearest(my_first, my_last, nv, mind, connected, my.md, my mv)
(12) !'$omp critical

(13) if (mymd < md) then

(14) md = my.md

(15) mv = my.mv

(16) end if

(17) !'$omp end critical

(18) !'$omp barrier

(19) !$omp single

(20) if (mv/=-1) then

(21) connected(mv) =.true.

(22) end if

(23) !$omp end single

(24) !$omp barrier

(25) if (mv/=-1) then

(26) call updatemind(my_first, my_last, nv, connected, ohd, mv, mind)
27 end if

(28) !'$omp barrier

(29) end do

(30) !'$omp end parallel

(31) end

ArcoriTHM 10: The snippet of parallelized Dijkstra’s algorithm.

of the SPOT code is self-explanatory with the names suggest-
ing their meaning. In line 7, we use the function “OmpGet-
LoopIndexes4Thread(firstindex, lastIndex)” to model the task
that is often manually performed to divide loop iterations
among available threads. The resulting generated code cor-
responds to lines 6 to 9 in Algorithm 10, where the first and

last indices for each thread are held, respectively, by firstIndex
and lastIndex.

One challenging issue facing most program transforma-
tion systems is how to allow users to precisely express the
location for translation. As shown in Algorithm 9, there are
two if-statements with the same condition (line 8 and line 11).

18

Advances in Software Engineering

(1) Transformer paraDijkstraf
(2) Within(Function dijkstra_distance){

(3) AddUseModuleStatement (omp_1ib) ;

(4) AddVariablesSameType (Integer, my_id, my_first, my_last, my md, mymv, nth);
(5) Statement doStmt = getStatement("do step = 2, nv");

(6) Before(doStmt) {

€0) OmpGetLoopIndexes4Thread(my_first, my_last);

(8) }

9 OmpUseParallel (doStmt, private(my_first,my_id,my_last,my.md,my mv,step),

shared(connected, md, mind, mv, nth, ohd));

SetParameters(callfind, my first, my_last, nv, mind, connected, my.md, my mv);

(10) StatementFunctionCall callfind=getStatement(“call find nearest()”);

11)

(12) Statement ifST = AddStatement(After, callfind.Statement,
“if (my_md<md) then md=my.md mv=my mv end if”);

(13) OmpUseCritical (i£ST);

(14) OmpUseBarrierAfter (ifST);

(15) Statement ifST2 = getStatement (“if (mv/=-1)");

(16) OmpUseSingle (ifST2) ;

an Statement ifST3 = getStatement2(“if (mv/=-1)");

(18) OmpUseBarrierBefore (1£ST3);

(19) OmpUseBarrierAfter (ifST3) ;

(20) }

@21 }

ALGORITHM 11: The SPOT program for parallelizing the algorithm.

In order to distinguish them, we call “getStatement(“if
(mv/=-1)")" to get the first matched if-statement in line 15
in Algorithm 11 and “getStatement2(“if (mv/=—1)")” to obtain
the handler of the second if-statement, where the number 2
can be replaced by any arbitrary number 7 to represent the nth
statement within the current scope showing the same pattern.
In addition, “getStatementALL” can be used to return a list of
all statements matched.

The parallelization specification in SPOT as indicated in
Algorithm 11 will be translated into a metaprogram in Open-
Fortran. The metaprogram will automate on demand the
insertion of OpenMP directives or API calls to the sequential
version of Dijkstra’s program in a generated copy of code,
as in Algorithm 10, while the original source code, as in
Algorithm 9, is kept intact. Compared with the resulting
parallelized program, the original algorithm is more readable
without any pollution from the parallel facilities. In a similar
way, for the same Dijkstra’s algorithm, our approach can be
used to implement some other parallelization libraries with
different parallel programming models, for example, MPI [3],
CUDA [50], and OpenAcc [51]. In this case, the core logic of
the application and the parallel code can be developed and
evolved separately. One problem that needs to be solved in
our future work is how to facilitate simultaneous program-
ming between domain experts and parallel programmers by
decreasing the dependency of a specific parallelization library
on code changes in the source code.

This case study mainly illustrates that our framework
can be used to deal with the parallelization concerns. It also
provides evidence to show that SPOT is extensible to support
application domains that involve source code modification.
In this case study new functions were designed to capture

the operations for adding parallelism into the sequential code,
including rewriting some portion of the original code and
inserting OpenMP directives or APIs.

5.3. Extending SPOT to Support Application-Level Check-
pointing. In this subsection, we use another case study to
demonstrate how to extend SPOT by designing new language
constructs to capture an application domain need that entails
modifying source code. The specific focus of this case study
is to enable some primitive form of fault-tolerance for a
system by adding checkpointing facilities into source code.
The design focus is to promote expressiveness of SPOT and
to increase code reusability and maintainability by capturing
the essence of checkpointing in a way that can be applied to
other contexts and different programs.

Checkpointing is a technique that makes a system fault
tolerant by saving a snapshot of critical data periodically to
stable storage that can be used to restart the execution in case
of failure [52]. A system with the capability of checkpointing
can tolerate most kinds of software and hardware failures as
long as the previous states are saved in a correct and consis-
tent manner. In case of failures, instead of starting all over,
the execution can be restarted from the latest checkpoint read
from the stable storage. Checkpointing is especially beneficial
to HPC applications, which usually run for a considerable
amount of time and on distributed platforms, to prevent
losing the effect of previous computation. Checkpointing
can be implemented at different abstraction levels, such
as system level and application level [53]. Application-level
checkpointing is usually achieved by inserting checkpointing
code into an application at various locations of source code,
which is where our approach can offer a solution.

Advances in Software Engineering

19

Actions:
CKPSavelnteger (<variable name>)

CKPSaveAll ()
CKPReadInteger (<variable name >)

CKPReadAll ()

Parameters:

CKPFrequencey (<number>)
CKPType(<Checkpointing Type>)

New Constructs for the Domain of Checkpointing
StartCheckpointing (<location>, <statement>){<actions> or <parameters>}
StartInitializing (<location>, <statement>){<actions> or <parameters>}

CKPSavelnteger ArraylD (<variable name>, <index>)
CKPSavelnteger Array2D (<variable name>, <row number>, <column number>)

CKPReadIntegerArraylD (<variable name>, <index>)
CKPReadIntegerArray2D (<variable name>, <row number>, <column number>)

ALGORITHM 12: Supplementary constructs for SPOT.

To supplement SPOT with new constructs needed to
support checkpointing, the first step is to obtain an under-
standing of the terminology and concepts related to check-
pointing. This can be achieved by surveying existing work
and implementations [53-56] and by observing the process
in which checkpointing is performed on legacy software.
To perform application-level checkpointing, users should be
allowed to (1) select variables and data structures that need
to be saved for any future restarting needs, (2) specify the
point in the source code where checkpointing information
is captured and the point to restart, (3) determine the
frequency of checkpointing (e.g., if the check point is within
a loop, how often should checkpointing take place), and
(4) choose the type of the system to be checkpointed, such
as sequential or parallel. As shown in Algorithm 12, we
have designed new constructs that capture the core features
involved in implementing checkpointing, where the variant
features should be specified by users while the unchanging
features can be fulfilled through automatic generation.

As shown in Algorithm 12, developers can use Star-
tCheckpointing and StartInitializing in pairs to specify the
place where to insert checkpointing code and where to restart
the program after a failure. Here, <location> can be assigned
with After or Before, and <statement> can be any Fortran
statement wrapped within double quotes or a handler of
a statement obtained by calling retrieve functions (as listed
in Table1). Users can specify the variables that need to
be saved at a checkpoint by calling CKPSaveType, where
Type can be replaced by other data types such as Integer,
Real, Logical, or Character. Accordingly, CKPSaveType can be
called to specify the variables that should be obtained from
the storage when restarting. Developers are allowed to specify
the frequency of checkpointing by calling CKPFrequencey if
a checkpoint is in a loop and to choose the type of the target
application (sequential or parallel) using CKPType. In some
special occasions, CKPSaveAll can be invoked to signal the
underlying translation framework to perform checkpointing
for every variable within a scope at every location where
the variable is updated. In this case, calling CKPReadAll is

(1) program CalculatePI

(2) integer m, i

(3) realx8 t, x, pi, f, a
(4) f(a) = 4.d0 /(1.40 + axa)
(5) pi = 0.0d0

(6) n = 100000

(7) t =1.0d0/n

(8) doi=1,n

€)) x =t (i - 0.5d0)

(10) pi = pi + £(x)

(11) end do

(12) print *, "The value of pi is ", pi
(13) end

AvrGoriTHM 13: The Fortran program for calculating the value of Pi.

optional, because even if CKPReadAll is not used explicitly,
our framework still needs to generate code to read the values
of all variables from storage before the variable values are
accessed.

Algorithm 13 shows a simple program for calculating the
value of 7 in Fortran and Algorithm 14 demonstrates the
SPOT code specifying the translation involved in generation
and insertion of checkpointing and restarting code. We first
define a transformer and name it CheckpointingCalculatePI
and call Within to locate the program CalculatePl, as indi-
cated by line 1 and line 2. For the program in Algorithm 13,
suppose we would like to save the value of pi per 5 iterations
of the loop after the statement where pi is updated. We first
obtain the handler of the statement “pi = pi + f(x)” and call
StartCheckpointing to start the process of checkpointing as
shown in line 4. Line 7 calls CKPSaveReal to specify that the
variable pi needs to be checkpointed; Line 8 and line 9 specify
the frequency and the type of the application. StartInitializing
is invoked in line 10 to specify the restarting point to occur
before the do statement, and CKPReadReal is used to specify
that variable pi needs to be restored with the value read from
the storage.

Advances in Software Engineering

20
(1) Transformer CheckpointingCalculatePI {
(2) Within (Function CalculatePI){
(3)
(4) StartCheckpointing(After, stmt){
(5) CKPSaveReal (pi) ;
€0 CKPFrequencey (5) ;
(€)) CKPType(Sequential);
(9 }
(10) StartInitializating (Before, “do i=1, n”){
(11) CKPReadReal (pi);
(13) }
(14) }
(15) }

Statement stmt = getStatement (“pi = pi + £(x)7);

AvLGoriTHM 14: The checkpointing specifications expressed in SPOT.

(1) program CalculatePI

(2) integer n, i

(3) integer start_i;

(4) real*8 t, x, pi, £, a

() f(a) = 4.d40 /(1.d0 + axa)

(6) pi = 0.0d0

(7 n = 100000

(8) t = 1.0d0/n

€) retrieveVariableReal(“pi”, pi);

(10) retrieveVariableInteger(“i”, start_i);
(11D do i =starti, n

(12) x = t=* (i -0.5d0)

(13) pi = pi + £(x)

(14) if (MOD(1,5) == 0){

(15) saveVariableReal(“pi”, pi);
(16) saveVariableInteger(“i”, i);
an }

(18) end do

(19) print *, "The value of pi is ", pi
(20) end

AvrGoriTHM 15: The generated Fortran program with checkpointing code.

Algorithm 15 illustrates the program for calculating the
value of 7 after adding checkpointing and restarting code.
As indicated by line 10 and line 16, the loop variable i is
checkpointed even though it has not been mentioned in
the SPOT specification. These two lines of code are created
whenever the underlying framework detects that the point
of checkpointing is within a loop and the point of restarting
is before the same loop. All the highlighted statements are
automatically generated and inserted and the whole process is
transparent to a developer. The responsibility of a developer is
to create a specification in SPOT indicating which data should
be saved and where as well as the frequency of checkpointing.
Instead of directly reengineering the original source code, the
code with checkpointing facilities is generated in a different
copy. Our approach is effective in realizing checkpointing as
a pluggable feature by separating the specification in SPOT
from the target applications.

6. Future Work and Conclusion

Currently, we have implemented a version of SPOT that
supports several types of HPC application needs. Together
with the underlying OpenFortran MOP, we have laid a solid
foundation for SPOT to be extended through the creation of
new language constructs. We will continue to enrich SPOT
with more constructs in order to support additional types of
translation in different application domains.

Among several programming models, transactional
memory (TM) has become a promising approach to parallel
problems by simplifying synchronization to shared data by
allowing a set of read and write instructions to be executed
in an atomic manner [57]. The implementation of a TM
system relies heavily on checkpointing and conflict detection,
which can be achieved by instrumenting binary code; for
example, JudoSTM [58] supports TM in C and C++ through

Advances in Software Engineering

binary modification. We are planning to implement TM for
Fortran through source transformation instead of binary
transformation.

More case studies will also be performed and evaluation
will be made to gain empirical information regarding pro-
ductivity, accuracy, and adaptability towards maintenance
and evolution tasks. We also plan to develop an Eclipse-
based tool that enables developers to make complex code
translation in a visual language. We will use both textual and
graphical elements to model the process of code modification,
which aligns well with developer’s mental models of program
transformations.

There is a general lack of infrastructure support for lan-
guage extension in terms of building a MOP for an arbitrary
language. Therefore, we are working to build a generalized
framework suitable for extending an arbitrary programming
language by creating a MOP for the language. Moreover,
SPOT is not limited to transforming Fortran code but can
also be extended to support other languages because it offers
a higher abstraction of program composition.

The work described in this paper is mainly focused on
SPOT and its potential as a DSL to provide a higher level
of abstraction for expressing program transformations. SPOT
allows direct manipulation of program entities based on the
underlying capabilities available in the OpenFortran MOP,
which brings the power of metaprogramming to Fortran.
With our approach, source-to-source program translation
libraries can be built and then applied in a manner that is
transparent to developers.

Although it is conceptually more straightforward to use
OpenFortran to implement transformation libraries than
directly calling APIs of ROSE to manipulate ASTs, we believe
that there is a learning curve for most developers to become
familiar with the concepts of using a MOP. Therefore, we have
created a DSL that can be used on top of OpenFortran (on
a meta-metalevel) to improve the ability to specify program
transformations. Developers can use carefully designed lan-
guage constructs to express transformation tasks in a trans-
parent manner, whereby they do not need to know the details
on how the transformations are performed underneath. Not
only can SPOT be used to support AOP in Fortran, but it
can also be used to specify more fine-grained transformations
at more diverse source locations. SPOT also supports string-
based transformations, which allows a developer to embed
real Fortran code when developing a transformer. SPOT can
be considered as an extension to Fortran in order to enable
source-to-source transformations.

Our experience has shown that our approach (i.e., a DSL
plus a MOP), as a form of program extension, can be used to
address a wide range of problems in HPC (but not limited to
HPC) by facilitating the implementation of program trans-
lators, especially suitable for those involving crosscutting
and separation of parallelization concerns. By raising the
abstraction level for code modification and through the
technique of code generation, our approach has the potential
to improve code modularity, maintainability, productivity,
and reusability.

21

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

(1] J. Dongarra, “Trends in high-performance computing: a histor-
ical overview and examination of future developments,” IEEE
Circuits and Devices Magazine, vol. 22, no. 1, pp. 22-27, 2006.

[2] E Jacob, S. Yue, J. Gray, and N. Kraft, “Modulo-F: a modulariza-
tion language for FORTRAN programs,” Journal of Convergence
Information Technology, vol. 7, no. 12, pp. 256-263, 2012.

[3] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message Passing Interface, MIT Press,
Cambridge, Mass, USA, 1999.

[4] OpenMP Architecture Review Board, “OpenMP Fortran Appli-
cation Program Interface Version 2.0,” November 2000, http://
WWWw.openmp.org.

[5] R. Arora, P. Bangalore, and M. Mernik, “Tools and techniques
for non-invasive explicit parallelization,” The Journal of Super-
computing, vol. 62, no. 3, pp. 1583-1608, 2012.

[6] D. Spinellis, “Rational metaprogramming,” IEEE Software, vol.
25, no. 1, pp. 78-79, 2008.

[7] “Dynamic Code Generation,” http://java.sys-con.com/node/
36843.

(8] I.D. Baxter, C. Pidgeon, and M. Mehlich, “DMS: program trans-
formations for practical scalable software evolution,” in Proceed-
ings of the 26th International Conference on Software Engineering
(ICSE °04), pp. 625-634, May 2004.

[9] J. R. Cordy, “The TXL source transformation language,” Science
of Computer Programming, vol. 61, no. 3, pp. 190-210, 2006.

[10] S.Yueand]. Gray, “OpenFortran: extending Fortran with meta-
programming,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and
Analysis (SC’13), WolfHPC, Denver, Colo, USA, 2013.

[11] M. Mernik, J. Heering, and A. M. Sloane, “When and how to
develop domain-specific languages,” ACM Computing Surveys,
vol. 37, no. 4, pp. 316-344, 2005.

[12] M. Fowler, Domain-Specific languages, Pearson Education,

Upper Saddle River, NJ, USA, 2010.

D. Ghosh, DSLs in Action, Manning Publications, 2010.

ROSE, http://rosecompiler.org/.

=0
A

E. Visser, “Program transformation with Stratego/XT, in
Domain-Specific Program Generation, pp. 216-238, Springer,
Berlin, Germany, 2004.

[16] M. G. van den Brand, A. van Deursen, J. Heering et al., “The
ASF+ SDF meta-environment: a component-based language
development environment,” in Compiler Construction, pp. 365-
370, Springer, Berlin, Germany, 2001.

[17] E. Visser, “A survey of strategies in rule-based program trans-
formation systems,” Journal of Symbolic Computation, vol. 40,
no. 1, pp. 831-873, 2005.

[18] S. Burson, G. B. Kotik, and L. Z. Markosian, “A program trans-
formation approach to automating software re-engineering,” in
Proceedings of the 14th Annual International Computer Software
and Applications Conference (COMPSAC °90), pp. 314-322,
Chicago, Ill, USA, November 1990.

[19] R. M. Fuhrer, A. Kiezun, and M. Keller, “Refactoring in the

eclipse JDT: past, present, and future,” in Proceedings of the 2007

Ist Workshop on Refactoring Tools, 2007.

22

(20]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(33]

(34]

J. Overbey, S. Xanthos, R. Johnson, and B. Foote, “Refactorings
for Fortran and high-performance computing,” in Proceedings
of the 2nd International Workshop on Software Engineering for
High Performance Computing System Applications, pp. 37-39,
ACM, 2005.

A. Pellegrini, “Hijacker: efficient static software instrumenta-
tion with applications in high performance computing: poster
paper;” in Proceedings of the IEEE International Conference on
High Performance Computing and Simulation (HPCS ’13), pp.
650-655, Helsinki, Finland, July 2013.

G. Kiczales, J. Rivieres, and D. Bobrow, The Art of the Metaobject
Protocol, MIT Press, 1991.

G. Kiczales, J. Ashley, L. Rodriguez, A. Vahdat, and D. Bobrow,
“Metaobject protocols: why we want them and what else they
can do,” in Object-Oriented Programming: The CLOS Perspective,
A. Paepcke, Ed., MIT Press, Cambridge, Mass, USA, 1993.

P. Maes, “Concepts and experiments in computational reflec-
tion,” in Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications, pp. 147-155,
Orlando, Fla, USA, December 1987.

L. DeMichiel and R. Gabriel, “The common Lisp object system
an overview, in European Conference on Object-Oriented Pro-
gramming, pp. 151-170, Paris, France, 1987.

S. Chiba, “A metaobject protocol for C++,” in Proceedings of
the 10th Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA ’95), pp. 285-
299, Austin, Tex, USA, 1995.

M. Tatsubori, S. Chiba, M. Killjjian, and K. Itano, “OpenJava: a
class-based macro system for Java,” in Reflection and Software
Engineering, pp. 117-133, Springer, Denver, Colo, USA, 1999.

E. Loh, “The ideal HPC programming language,” Communica-
tions of the ACM, vol. 53, no. 7, pp. 42-47, 2010.

K. H. Bennett and V. T. Rajlich, “Software maintenance and evo-
lution: a roadmap,” in Proceedings of the Conference on the
Future of Software Engineering, pp. 73-87, ACM, 2000.

G. Kiczales, J. Lamping, A. Mendhekar et al., Aspect-Oriented
Programming, Springer, Berlin, Germany, 1997.

B. Harbulot and J. Gurd, “Using Aspect] to separate concerns
in parallel scientific Java code,” in Proceedings of the 3rd Inter-
national Conference on Aspect-Oriented Software Development
(AOSD *04), pp. 122-131, 2004.

J. Irwin, J. M. Loingtier, J. R. Gilbert et al., “Aspect-oriented pro-
gramming of sparse matrix code,” in Scientific Computing in
Object-Oriented Parallel Environments, pp. 249-256, Springer,
Berlin, Germany, 1997.

P. Kang, E. Tilevich, S. Varadarajan, and N. Ramakrishnan,
“Maintainable and reusable scientific software adaptation: dem-
ocratizing scientific software adaptation,” in Proceedings of the
10th International Conference on Aspect-Oriented Software
Development (AOSD ’11), pp. 165-176, Pernambuco, Brazil,
March 2011.

S. Roychoudhury, J. Gray, and E Jouault, ‘A model-driven
framework for aspect weaver construction,” in Transactions on
Aspect-Oriented Software Development VIII, vol. 6580 of Lecture
Notes in Computer Science, pp. 1-45, Springer, Berlin, Germany,
2011.

A. Deursen, P. Klint, and J. Visser, “Domain-specific languages,”
ACM SIGPLAN Notices, vol. 35, no. 6, pp. 26-36, 2000.

J. Gray and G. Karsai, “An examination of DSLs for concisely
representing model traversals and transformations,” in Proceed-
ings of the 36th Annual Hawaii International Conference on
System Sciences, p. 10, IEEE, 2003.

(37]

(38]

(41]

(42]
(43

[48]

(49

(50

[54]

Advances in Software Engineering

R. M. Herndon Jr. and V. A. Berzins, “The realizable benefits of a
language prototyping language,” IEEE Transactions on Software
Engineering, vol. 14, no. 6, pp- 803-809, 1988.

Z. Devito, N. Joubert, E Palacios et al., “Liszt: a domain specific
language for building portable mesh-based PDE solvers,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SCII ’11), ACM,

November 2011.

M. Piischel, J. M. E. Moura, J. R. Johnson et al., “SPIRAL: code
generation for DSP transforms,” Proceedings of the IEEE, vol. 93,
no. 2, pp. 232-273, 2005.

Q. Yi, “POET: a scripting language for applying parameterized
source-to-source program transformations,” Software: Practice
and Experience, vol. 42, no. 6, pp. 675-706, 2012.

E N. Demers and J. Malenfant, “Reflection in logic, functional
and object-oriented programming: a short comparative study;’
in Proceedings of the Workshop on Reflection and Metalevel
Architectures and their Applications in AI (IJCAI ’95), vol. 95,
pp. 29-38, August 1995.

Open Fortran Parser, http://fortran-parser.sourceforge.net/.

S. Hanenberg, C. Oberschulte, and R. Unland, “Refactoring of
aspect-oriented software,” in Proceedings of the 4th Annual
International Conference on Object-Oriented and Internet-Based
Technologies, Concepts, and Applications for a Networked World

(Net. ObjectDays), pp. 19-35, 2003.

T.J. Parr and R. W. Quong, “ANTLR: a predicated-LL(k) parser
generator,” Software: Practice and Experience, vol. 25, no. 7, pp.
789-810, 1995.

T. J. Parr, “StringTemplate template engine,” 2004, http://www
.stringtemplate.org/.

M. Eysholdt and H. Behrens, “Xtext: implement your language
faster than the quick and dirty way tutorial summary; in
Proceedings of the ACM International Conference Companion
on Object Oriented Programming Systems Languages and Appli-
cations Companion (SPLASH ’10), pp. 307-309, ACM, October
2010.

K. Furlinger, M. Gerndt, and T. U. Munchen, “ompP: a profiling
tool for OpenMP;” in Proceedings of the International Workshop
on OpenMP (IWOMP °05), Eugene, Ore, USA, 2005.

M. Gong, Z. Zhang, and H. A. Jacobsen, “AspeCt-oriented C for
systems programming with C,” in Proceedings of the 6th Inter-
national Conference on Aspect-Oriented Software Development
(AOSD ’07), March 2007.
http://people.sc.fsu.edu/~jburkardt/c_src/dijkstra_openmp/
dijkstra_openmp.html.

J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable par-
allel programming with CUDA,” Queue, vol. 6, no. 2, pp. 40-53,
2008.

S. Wienke, P. Springer, C. Terboven, and D. Mey, “OpenACC—
first experiences with real-world applications,” in Euro-Par 2012
Parallel Processing, pp. 859-870, Springer, Berlin, Germany,
2012.

R. Koo and S. Toueg, “Checkpointing and rollback-recovery for
distributed systems,” IEEE Transactions on Software Engineer-
ing, vol. SE-13, no. 1, pp. 23-31, 1987.

G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill, “Auto-
mated application-level checkpointing of MPI programs,” ACM
SIGPLAN Notices, vol. 38, no. 10, pp. 84-94, 2003.

S. Kalaiselvi and V. Rajaraman, “A survey of checkpointing algo-
rithms for parallel and distributed computers,” Sadhana, vol. 25,
no. 5, pp. 489-510, 2000.

Advances in Software Engineering

(55]

(58]

P. Czarnul and M. Fraczak, “New user-guided and ckpt-based
checkpointing libraries for parallel MPI applications,” in Recent
Advances in Parallel Virtual Machine and Message Passing

Interface, pp. 351-358, Springer, Berlin, Germany, 2005.

R. Arora, P. Bangalore, and M. Mernik, “A technique for non-
invasive application-level checkpointing,” The Journal of Super-
computing, vol. 57, no. 3, pp. 227-255, 2011.

D. Dice and N. Shavit, “Understanding tradeoffs in software
transactional memory; in Proceedings of the International Sym-
posium on Code Generation and Optimization (CGO °07), pp.
21-33, IEEE, March 2007.

M. Olszewski, J. Cutler, and J. G. Steffan, “JudoSTM: a dynamic
binary-rewriting approach to software transactional memory;’
in Proceedings of the 16th International Conference on Parallel
Architecture and Compilation Techniques (PACT 07), pp. 365-
375, Brasov, Romania, September 2007.

23

Advances in k& - - . Journal of

o 0 Industrial Engineerin
. WNultimedia J .

Applied
Computational
Intelligence and Soft
. g nternational Journal of T P - Com tll'lg"
The Scientific Dieenel Qumalof e iR e

World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications

Advances in »
Artificial
Intelligence

i ‘ Advances in
Biomedica ‘H'\{'ii Artificial
‘ & NS Neural Systems

International Journal of
Computer Games in
Technology S re Engineering

Intel ional J na
Reconfigurable
Computing

Computational i

Ad S
uman-Computer Intelligence and 2y Electrical and Computer
Interaction Neuroscience Engineering

Journal of

Robotics

