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This paper is concerned with a local method for the solution of one-dimensional parabolic equation with nonlocal boundary
conditions. The method uses a coordinate transformation. After the coordinate transformation, it is then possible to obtain exact
solutions for the resulting equations in terms of the local variables.These exact solutions are in terms of constants of integration that
are unknown. By imposing the given boundary conditions and smoothness requirements for the solution, it is possible to furnish
a set of linearly independent conditions that can be used to solve for the constants of integration. A number of examples are used
to study the applicability of the method. In particular, three nonlinear problems are used to show the novelty of the method.

1. Introduction

In this paper we consider a numerical method for 1-D heat
conduction problems with nonlocal boundary conditions.
Such problems appear very naturally in a number of physical
systems including heat conduction [1], elastic deformation of
thermoelastic rods [2, 3], chemical reactions [4, 5], popula-
tion dynamics [6], and petroleum exploration [7]. A recent
review of problems with nonlocal boundary conditions can
also be found in [8] and references therein. Traditional
finite difference methods have been shown to have problems
in accuracy [9]; therefore, a number of investigators have
developed various numericalmethods for the above problem.
Recent results include methods based on 𝜃-based finite
difference [10], reproducing kernel space [11], and Adomian
expansion [12].

The purpose of this paper is to apply a method based
on local coordinates. We have developed this method for the
solution of a Stefan problem [13]. The algorithm transforms
the working equations onto a local coordinate system. It is
then possible to write down an exact solution which is valid

and can be used within a small local region. The procedure
leads to an implicit scheme that is first order accurate in time.
However, the accuracy in time can be easily improved. The
novelty of the method is in the fact that it can obtain exact
solutions in space based on local coordinates. In addition,
the algorithm can be applied to a large class of nonlinear
problems. The formulation provides a natural way to obtain
a numerical solution to the problem without any iterations
which is often the case using the existing methods. The
present method can provide an effective way to numerically
investigate the behavior of linear and nonlinear singular
parabolic equations with nonlocal source terms that lead to
blowup [14, 15].

Section 2 introduces the method in detail for a 1-D
parabolic problem. Section 3 studies the stability of the
method and the invertibility of the coefficient matrix.
Section 4 uses a number of examples to investigate the
applicability of the method and compares the results to exact
solutions. In particular, three nonlinear problems are studied.
The last two nonlinear problems are used to show the novelty
of the present method.
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Figure 1: Finite difference mesh showing the local coordinate.

2. A numerical Method Based on
Local Coordinates

Consider a one-dimensional heat equation with nonlocal
boundary conditions given by

𝑢
𝑡
= 𝑢
𝑥𝑥
+ 𝑞 (𝑡, 𝑥) , 𝑥 ∈ [0, 1] , 𝑢 (0, 𝑥) = 𝑓 (𝑥) ,

𝑢 (𝑡, 0) = ∫

1

0

𝜙 (𝑥) 𝑢 (𝑡, 𝑥) 𝑑𝑥,

𝑢 (𝑡, 1) = ∫

1

0

𝜓 (𝑥) 𝑢 (𝑡, 𝑥) 𝑑𝑥,

(1)

where the term 𝑞(𝑡, 𝑥) is the heat generation,𝑓(𝑥) is the initial
condition, and the boundary conditions are of nonlocal type.
Assume that the domain is divided into 𝑚 equal intervals.
Consider a finite difference mesh given in Figure 1.

For a typical node 𝑘, consider an implicit expansion of the
equation at time interval (𝑛 + 1) given by

𝑢 − 𝑢
𝑛

𝑘

Δ𝑡
= 𝑢
𝑥𝑥
+ 𝑞, (2)

where the value of 𝑢𝑛
𝑘
is known. Now, consider a transforma-

tion to the local coordinate, 𝜂, according to

𝜂 =
(𝑥 − 𝑥

𝑘
)

Δ𝑥
. (3)

In terms of the local coordinate, (2) simplifies to

𝑢
𝜂𝜂
− 𝜆
2
𝑢 = −𝜆

2
𝑢
𝑛

𝑘
− Δ𝑥
2
𝑞
𝑘
,

𝜂 ∈ [−1, 1] , with, 𝜆2 = Δ𝑥
2

Δ𝑡
.

(4)

The variable 𝑞
𝑘
denotes the heat generation function 𝑞(𝑡, 𝑥)

evaluated at time (Δ𝑡(𝑛 + 1)) and location 𝑘. (In general, it
is a function of space 𝜂; however, for a first-order accurate
method, the value at 𝑥 = (𝑘 − 1)Δ𝑥 can be used. Using Taylor
series expansion, it is possible to obtain a more accurate
description in terms of 𝜂; that is, ∑∞

ℓ=0
𝑎
ℓ
𝜂
ℓ, for which exact

solution can be obtained.) Treating 𝑞
𝑘
as a local constant in 𝜂

function allows us to write down the exact solution of 𝑢(𝑡, 𝜂)
around every node given by

𝑢 (𝑡, 𝜂) = 𝑐
𝑘
𝑒
𝜆𝜂
+ 𝑑
𝑘
𝑒
−𝜆𝜂

+ 𝜉
𝑛+1

𝑘
, 𝜉
𝑛+1

𝑘
= 𝑢
𝑛

𝑘
+ Δ𝑡𝑞

𝑛+1

𝑘
, (5)

where now 𝑐
𝑘
and 𝑑

𝑘
are constants of integration. For 𝑚

intervals, there are (𝑚 + 1) nodes. Therefore, there are𝑀 =

𝑚+1 equations similar to (5), which describe the temperature
profile; that is, 𝑘 = 1, 2, . . . ,𝑀. It follows that there are 2𝑀
constants, that is, 𝑐

𝑘
, 𝑑
𝑘
(𝑘 = 1, 2, . . . ,𝑀) that are unknown

and should be computed at each time interval. It is possible
to introduce 2𝑀 linearly independent conditions. These
conditions are not unique. However, a linearly independent
set of conditions is given by the following.

(i) The temperature distribution at 𝑡(𝑛+1) = (𝑛 + 1)Δ𝑡

should be continuous. We can impose this condition
at mid-points between nodes. It leads to

𝑐
𝑘
𝑒
(1/2)𝜆

+ 𝑑
𝑘
𝑒
−(1/2)𝜆

+ 𝜉
𝑛+1

𝑘

= 𝑐
𝑘+1
𝑒
−(1/2)𝜆

+ 𝑑
𝑘+1
𝑒
(1/2)𝜆

+ 𝜉
𝑛+1

𝑘+1
,

for, 𝑘 = 1, . . . , 𝑚.

(6)

(ii) The flux at 𝑡(𝑛+1) should be continuous. In the present
case, it follows that the temperature at 𝑡(𝑛+1) should
have a continuous first derivative.We can also impose
this condition at mid-points between nodes. It leads
to

𝑐
𝑘
𝑒
(1/2)𝜆

− 𝑑
𝑘
𝑒
−(1/2)𝜆

= 𝑐
𝑘+1
𝑒
−(1/2)𝜆

− 𝑑
𝑘+1
𝑒
(1/2)𝜆

,

for, 𝑘 = 1, . . . , 𝑚.
(7)

The above conditions furnish (2𝑚) linearly independent
equations. The additional two conditions needed are given
by the boundary conditions. The solution must satisfy the
boundary conditions at 𝑥 = 0 and 𝑥 = 1. These conditions
are nonlocal and can be imposed according to

𝑢 (𝑡
𝑛+1
, 0) = 𝑐

1
+ 𝑑
1
+ 𝜉
𝑛+1

1
= ∫

1

0

𝜙 (𝑥) 𝑢 (𝑡
𝑛+1
, 𝑥) 𝑑𝑥 (8)

𝑢 (𝑡
𝑛+1
, 1) = 𝑐

𝑀
+ 𝑑
𝑀
+ 𝜉
𝑛+1

𝑀
= ∫

1

0

𝜓 (𝑥) 𝑢 (𝑡
𝑛+1
, 𝑥) 𝑑𝑥. (9)

The integral terms on the right hand side of the above
equations can be computed in terms of the solutions given in
(5) according to the following convention. For the first node,
the domain of integration can be chosen to be [0, Δ𝑥/2]. For
the nodes 𝑘 = 2, 3, . . . , 𝑚, the domains can be chosen to be
[(𝑘−1)Δ𝑥−(Δ𝑥/2), (𝑘−1)Δ𝑥+(Δ𝑥/2)]. For the last node, the
domain can be chosen as [1− (Δ𝑥/2), 1]. In terms of the local
coordinates 𝜂, for the interior nodes, the individual domains
of integrations are all [−1/2, 1/2]. Similarly, the domain of
integration is [0, 1/2] for the first node and [−1/2, 0] for the



International Journal of Computational Mathematics 3

last node. Using these domains, the integral condition at 𝑥 =
0 is given by

𝑐
1
+ 𝑑
1
+ 𝜉
𝑛+1

1

= ∫

1

0

𝜙 (𝑥) 𝑢 (𝑡
𝑛+1
, 𝑥) 𝑑𝑥

= Δ𝑥∫

1/2

0

𝜙 (𝜂) [𝑐
1
𝑒
𝜆𝜂
+ 𝑑
1
𝑒
−𝜆𝜂

+ 𝜉
𝑛+1

1
] 𝑑𝜂

+

𝑚

∑

𝑘=2

Δ𝑥∫

1/2

−1/2

𝜙 (𝜂) [𝑐
𝑘
𝑒
𝜆𝜂
+ 𝑑
𝑘
𝑒
−𝜆𝜂

+ 𝜉
𝑛+1

𝑘
] 𝑑𝜂

+ Δ𝑥∫

0

−1/2

𝜙 (𝜂) [𝑐
𝑀
𝑒
𝜆𝜂
+ 𝑑
𝑀
𝑒
−𝜆𝜂

+ 𝜉
𝑛+1

𝑀
] 𝑑𝜂,

(10)

and for 𝑥 = 1, it is given by

𝑐
𝑀
+ 𝑑
𝑀
+ 𝜉
𝑛+1

𝑀

= ∫

1

0

𝜓 (𝑥) 𝑢 (𝑡
𝑛+1
, 𝑥) 𝑑𝑥

= Δ𝑥∫

1/2

0

𝜓 (𝜂) [𝑐
1
𝑒
𝜆𝜂
+ 𝑑
1
𝑒
−𝜆𝜂

+ 𝜉
𝑛+1

1
] 𝑑𝜂

+

𝑚

∑

𝑘=2

Δ𝑥∫

1/2

−1/2

𝜓 (𝜂) [𝑐
𝑘
𝑒
𝜆𝜂
+ 𝑑
𝑘
𝑒
−𝜆𝜂

+ 𝜉
𝑛+1

𝑘
] 𝑑𝜂

+ Δ𝑥∫

0

−1/2

𝜓 (𝜂) [𝑐
𝑀
𝑒
𝜆𝜂
+ 𝑑
𝑀
𝑒
−𝜆𝜂

+ 𝜉
𝑛+1

𝑀
] 𝑑𝜂.

(11)

The functions 𝜙(𝑥) and 𝜓(𝑥) are known, and the above
integrals can be evaluated in closed forms. After evaluating
the integrals, (10) leads to

(1 − Δ𝑥∫

1/2

0

𝜙 (𝜂) 𝑒
𝜆𝜂
𝑑𝜂) 𝑐
1

+ (1 − Δ𝑥∫

1/2

0

𝜙 (𝜂) 𝑒
−𝜆𝜂
𝑑𝜂)𝑑

1

−

𝑚

∑

𝑘=2

Δ𝑥(∫

1/2

−1/2

𝜙 (𝜂) 𝑒
𝜆𝜂
𝑑𝜂) 𝑐
𝑘

−

𝑚

∑

𝑘=2

Δ𝑥(∫

1/2

−1/2

𝜙 (𝜂) 𝑒
−𝜆𝜂
𝑑𝜂)𝑑

𝑘

− Δ𝑥(∫

0

−1/2

𝜙 (𝜂) 𝑒
𝜆𝜂
𝑑𝜂) 𝑐
𝑀

− Δ𝑥(∫

0

−1/2

𝜙 (𝜂) 𝑒
𝜆𝜂
𝑑𝜂)𝑑

𝑀

= −𝜉
𝑛+1

1
+ ∫

1

0

𝜙 (𝑥) 𝜉
𝑛+1
𝑑𝑥.

(12)

Note that 𝜉𝑛+1 is known for all nodes, and the integral on the
right hand side of (12) can be evaluated. Similarly, evaluating
the integrals in (11) leads to

− (Δ𝑥∫

1/2

0

𝜓 (𝜂) 𝑒
𝜆𝜂
𝑑𝜂) 𝑐
1

− (Δ𝑥∫

1/2

0

𝜓 (𝜂) 𝑒
−𝜆𝜂
𝑑𝜂)𝑑

1

−

𝑚

∑

𝑘=2

Δ𝑥(∫

1/2

−1/2

𝜓 (𝜂) 𝑒
𝜆𝜂
𝑑𝜂) 𝑐
𝑘

−

𝑚

∑

𝑘=2

Δ𝑥(∫

1/2

−1/2

𝜓 (𝜂) 𝑒
−𝜆𝜂
𝑑𝜂)𝑑

𝑘

+ Δ𝑥(1 − ∫

0

−1/2

𝜓 (𝜂) 𝑒
𝜆𝜂
𝑑𝜂) 𝑐
𝑀

+ Δ𝑥(1 − ∫

0

−1/2

𝜓 (𝜂) 𝑒
𝜆𝜂
𝑑𝜂)𝑑

𝑀

= − 𝜉
𝑛+1

1
+ ∫

1

0

𝜓 (𝑥) 𝜉
𝑛+1
𝑑𝑥.

(13)

The above two conditions furnish the last two necessary
equations that are needed before the coefficient matrix can be
stably inverted. In the next section, we study the invertibility
of the coefficient matrix and the stability of the proposed
numerical scheme.

3. Analysis of the Method

The above conditions provide (2𝑀) linearly independent
equations that can be solved for the unknown coefficients
𝑐
𝑘
, 𝑑
𝑘
, 𝑘 = 1, 2, . . . ,𝑀, at each time increment. To prove

the invertibility of the coefficient matrix we consider the case
where 𝜙(𝑥) = 𝜓(𝑥) = 1. Other kernels can be treated in a
similar way. It is appropriate to group the above conditions
in the following order. It is possible to place (6) (which is
evaluated at 𝜂 = 1/2, or, 𝑥 = Δ𝑥/2) in the first row. Next,
one can place (7) (which is evaluated at 𝜂 = 1/2) in the
second row. Following this pattern as well as evaluating two
equations for every mid-point leads to (2𝑚) equations that
can be placed in the first (2𝑚) rows of thematrix.The last two
rows can be used to impose the boundary conditions given in
(12) and (13). Following thismanner, it is possible to group the
above equations at every time interval 𝑡𝑛+1 in the form of

Ak𝑛+1 = g𝑛+1, (14)
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or

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

[
𝑒
𝜃
𝑒
−𝜃

𝑒
𝜃
−𝑒
−𝜃
] [

−𝑒
−𝜃

−𝑒
𝜃

−𝑒
−𝜃

𝑒
𝜃
] [

0 0

0 0
] . . .

[
0 0

0 0
] [

𝑒
𝜃
𝑒
−𝜃

𝑒
𝜃
−𝑒
−𝜃
] [

−𝑒
−𝜃

−𝑒
𝜃

−𝑒
−𝜃

𝑒
𝜃
] . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . [
0 0

0 0
] [

𝑒
𝜃
𝑒
−𝜃

𝑒
𝜃
−𝑒
−𝜃
] [

−𝑒
−𝜃

−𝑒
𝜃

−𝑒
−𝜃

𝑒
𝜃
]

[
𝜇
0

1
]0
1

𝜇
1

1
]1
1

] [
𝜖 𝜖

𝜖 𝜖
] . . . [

𝜇
0

𝑀
]0
𝑀

𝜇
1

𝑀
]1
𝑀

]

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

×

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑐
1

𝑑
1

𝑐
2

𝑑
2

𝑐
3

𝑑
3

.

.

.

𝑐
𝑚

𝑑
𝑚

𝑐
𝑀

𝑑
𝑀

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑔
1

0

𝑔
2

0

𝑔
3

0

.

.

.

𝑔
𝑚

0

𝜎

𝛿

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(15)

where 𝜃 = 𝜆/2, the unknown vector k𝑛+1 contains the
constants of itegrations at every time interval, and g𝑛+1 is the
known right hand side. In the above matrix equation, the
constants on the right hand side are given by

𝑔
𝑘
= 𝜉
𝑛+1

𝑘+1
− 𝜉
𝑛+1

𝑘
, for 𝑘 = 1, 2, . . . , 𝑚

𝜎 = (−1 +
Δ𝑥

2
) 𝜉
𝑛+1

1
+ Δ𝑥

𝑚

∑

𝑘=2

𝜉
𝑛+1

𝑘
+
Δ𝑥

2
𝜉
𝑛+1

𝑀

𝛿 =
Δ𝑥

2
𝜉
𝑛+1

1
+ Δ𝑥

𝑚

∑

𝑘=2

𝜉
𝑛+1

𝑘
+
Δ𝑥

2
(−1 +

Δ𝑥

2
) 𝜉
𝑛+1

𝑀
,

(16)

and the parameters 𝜇0
1
, 𝜇1
1
and ]0
𝑀
, ]1
𝑀
are given by

𝜇
0

1
= 1 −

Δ𝑥

𝜆
(𝑒
𝜃
− 1) , ]0

1
= 1 +

Δ𝑥

𝜆
(𝑒
−𝜃
− 1) ,

𝜇
0

𝑀
= −

Δ𝑥

𝜆
(1 − 𝑒

−𝜃
) , ]0

𝑀
=
Δ𝑥

𝜆
(1 − 𝑒

𝜃
) ,

𝜖 =
Δ𝑥

𝜆
(𝑒
−𝜃
− 𝑒
𝜃
) ,

𝜇
1

1
= −

Δ𝑥

𝜆
(𝑒
𝜃
− 1) , ]1

1
=
Δ𝑥

𝜆
(𝑒
−𝜃
− 1) ,

𝜇
1

𝑀
= 1 −

Δ𝑥

𝜆
(1 − 𝑒

−𝜃
) , ]1

𝑀
= 1 +

Δ𝑥

𝜆
(1 − 𝑒

𝜃
) .

(17)

It is now possible to denote and partition the above coefficient
matrix according to

[
[
[
[
[

[

D C 0 0 0

0 D C 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 D C
E
1

F . . . F E
𝑚

]
]
]
]
]

]

, or, [
Γ
11
Γ
12

Γ
21
Γ
22

] , (18)

where the submatricesD,C,E
1
,E
𝑚
, and F are (2×2)matrices.

The partitioned matrices are Γ
11
∈ 𝑅
(𝑀−2)×(𝑀−2), Γ

22
∈ 𝑅
(2×2),

Γ
12
∈ 𝑅
(𝑀−2)×2, and Γ

22
∈ 𝑅
(2×2) and are given by

Γ
11
=
[
[
[

[

D C 0 0

0 D C 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 D

]
]
]

]

, Γ
12
=
[
[
[

[

0

0

⋅ ⋅ ⋅

C

]
]
]

]

,

Γ
21
= [E
1
F . . . F] , Γ

22
= E
𝑚
.

(19)

The determinant of the coefficient matrix in (18) is given by

det (A) = det(Γ
11
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Θ
1

det(Γ
22
− Γ
21
Γ
−1

11
Γ
12
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Θ
2

. (20)

It is sufficient to show that the two determinants on the right
hand side in the above equation are nonzero. The matrix Γ

11

can be inverted since it is an upper blockmatrix, and det(D) =
−2 ̸= 0. In order to show that the second determinant is
nonzero, one can denote G = D−1C and note that

Γ
−1

11
=

[
[
[
[
[
[
[
[
[

[

D−1 − [GD−1] [G2D−1] ⋅ ⋅ ⋅

0 D−1 − [GD−1] [G2D−1]

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ D−1 − [GD−1]

0 0 0 D−1

]
]
]
]
]
]
]
]
]

]

. (21)

It is also helpful to note that

G = −H = −[
𝑒
−𝜆

0

0 𝑒
𝜆
] ,

Gℓ = (−1)ℓHℓ = (−1)ℓ [𝑒
−ℓ𝜆

0

0 𝑒
ℓ𝜆
] .

(22)

Therefore, the second determinant on the right hand side of
(20) is simplified to

Θ
2
= det (Γ

22
− Γ
21
Γ
−1

11
Γ
12
)

= det(E
𝑚
+ E
1
H𝑚 + F

𝑚−1

∑

𝑗=1

H𝑗) ,

Θ
2
= det([

[

𝜇
0

𝑀
+ 𝑑
1
𝜇
0

1
]0
𝑀
+ ]1
1
𝑑
2

𝜇
1

𝑀
+ 𝑑
1
𝜇
1

1
]1
𝑀
+ ]1
1
𝑑
2

]

]

+ 𝜖 [
𝑐
1
𝑐
2

𝑐
1
𝑐
2

]) ,

(23)
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where, for simplicity, 𝜖 = −(Δ𝑥/𝜆)(𝑒
𝜃
− 𝑒
−𝜃
) = −(2Δ𝑥/𝜆)

sinh(𝜃), and

𝑑
1
= 𝑒
−𝑚𝜆

, 𝑑
2
= 𝑒
𝑚𝜆
, 𝑑

1
𝑑
2
= 1,

𝑐
1
=

𝑚−1

∑

ℓ=1

𝑒
−ℓ𝜆
, 𝑐

2
=

𝑚−1

∑

ℓ=1

𝑒
ℓ𝜆
.

(24)

The abovematrices are (2×2)matrices, and one can obtain an
expression for the determinant. It is possible to simplify the
above determinant which leads to

Θ
2
= 2√Δ𝑡 (𝑒

𝜃
+ 𝑒
−𝜃
− 2) + 4√Δ𝑡 sinh (𝜃)

𝑚−1

∑

ℓ=1

sinh (ℓ𝜆)

+ 4√Δ𝑡 sinh (𝜃)
𝑚−1

∑

ℓ=1

sinh ((𝑚 − ℓ) 𝜆)

+ (1 − 2√Δ𝑡 (𝑒
𝜃
− 1)) 𝑒

−𝑚𝜆

− (1 + 2√Δ𝑡 (𝑒
−𝜃
− 1)) 𝑒

𝑚𝜆
.

(25)

By letting 𝑘 = 𝑚 − ℓ in the second summation, the above
relation is further simplified to

Θ
2
= 2√Δ𝑡 (𝑒

𝜃
+ 𝑒
−𝜃
− 2) + 8√Δ𝑡 sinh (𝜃)

𝑚−1

∑

ℓ=1

sinh (ℓ𝜆)

+ (1 − 2√Δ𝑡 (𝑒
𝜃
− 1)) 𝑒

−𝑚𝜆

− (1 + 2√Δ𝑡 (𝑒
−𝜃
− 1)) 𝑒

𝑚𝜆
.

(26)

Converting the rest of the terms to hyperbolic functions leads
to

Θ
2
= (4√Δ𝑡 cosh(𝜆

2
) + 8√Δ𝑡 sinh(𝜆

2
)

×

𝑚−1

∑

ℓ=1

sinh (ℓ𝜆) + 4√Δ𝑡 cosh (𝑚𝜆))

− (4√Δ𝑡 + 2 sinh (𝑚𝜆) + 4√Δ𝑡 cosh ((𝑚 + 1
2
) 𝜆)) .

(27)

For a fixed Δ𝑡, 𝜆 = Δ𝑥/√Δ𝑡 and the above determinant
is equal to the difference between two positive monotonic
functions of Δ𝑥 with different slopes. Therefore, there are
infinite values of Δ𝑥 for which the determinant is not equal
to zero.

Note that, for the case where the kernels in the boundary
conditions, 𝜙(𝑥), 𝜓(𝑥), are not constants, the matrix Γ

11

remains the same, that is, (det(Γ
11
) ̸= 0), and one needs to

only check the Θ
2
in (20).

In order to study the stability of the method, one notes
that the right hand side of (14) includes the terms 𝑔

𝑘
.

Following (14), it follows that

𝑔
𝑘
= 𝜉
𝑛+1

𝑘+1
− 𝜉
𝑛+1

𝑘
= 𝑢
𝑛

𝑘+1
− 𝑢
𝑛

𝑘
+ Δ𝑡 (𝑞

𝑛+1

𝑘+1
− 𝑞
𝑛

𝑘+1
) . (28)
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Figure 2: Norm of the largest eigenvalue of the matrix A−1B as a
function of the order of the approximation𝑚.

The temperature fields 𝑢𝑛
𝑘
can be written in terms of the

coefficients 𝑢𝑛
𝑘
= 𝑐
𝑛

𝑘
+𝑑
𝑛

𝑘
+𝜉
𝑛

𝑘
. It follows that (14) can be written

in terms of the coefficients at the previous time according to

Ak𝑛+1 = Bk𝑛 + h, (29)

where A is given as before, and B is given by

Ak𝑛+1 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

[
−1 −1

0 0
] [

1 1

0 0
] [

0 0

0 0
] . . .

[
0 0

0 0
] [

−1 −1

0 0
] [

1

0 0
] . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . [
0 0

0 0
] [

−1 −1

0 0
] [

1 1

0 0
]

[
0 0

0 0
] [

0 0

0 0
] . . . [

0 0

0 0
]

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

×

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑐
1

𝑑
1

𝑐
2

𝑑
2

𝑐
3

𝑑
3

.

.

.

𝑐
𝑚

𝑑
𝑚

𝑐
𝑀

𝑑
𝑀

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

+

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑔
1

0

𝑔
2

0

𝑔
3

0

.

.

.

𝑔
𝑚

0

𝜎

𝛿

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(30)

For stability, we require that all eigenvalues of the matrix
A−1B be inside the unit circle. Figure 2 shows the magnitude
of the largest eigenvalue as a function of the order of the
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Figure 3: The error in the numerical solution at 𝑥 = 0.3, 𝑥 = 0.5,
and 𝑥 = 0.7 for Example 1.

approximation 𝑚. As the mesh is refined, and Δ𝑥 → 0,
the magnitude of the largest eigenvalue increases. However,
it stays within the unit circle, and the scheme is stable. The
above stability test can also be applied to problems with
variable kernel functions.

4. Numerical Examples

Example 1. Consider the heat conduction given by (1) and (2)
where

𝑞 (𝑡, 𝑥) = (1 + 𝑥) (2𝑒
−𝑡
− 1 − 𝑡𝑒

−𝑡
) ,

𝜙 (𝑥) = 1.2𝑥, 𝜓 (𝑥) = 4/3.

(31)

The exact solution for the above problem is given by 𝑢(𝑡, 𝑥) =
(1 + 𝑥)(1 − 𝑒

−𝑡
− 𝑡 + 𝑡𝑒

−𝑡
). Choosing the values of Δ𝑥 = 0.01

and Δ𝑡 = 0.00001 for the present method, Figure 3 presents
the error at three locations within the domain. The method
can produce numerical solution that compares well with the
exact solution.

Example 2. Consider the heat conduction given by (1) and (2)
where

𝑞 (𝑡, 𝑥) = −𝑒
−𝑡
(𝑥 (𝑥 − 1) +

𝛿

6 (1 + 𝛿)
+ 2) ,

𝜙 (𝑥) = −𝛿, 𝜓 = −𝛿.

(32)

This example was considered in [9, 10] to compare the
standard finite difference approximations. The exact solution
is given by 𝑒−𝑡(𝑥(𝑥−1)+(𝛿/6(1+𝛿))) for the initial condition
given by 𝑓(𝑥) = (𝑥(𝑥 − 1) + (𝛿/6(1 + 𝛿))). Using the values
of 𝛿 = 0.0144, Δ𝑡 = 0.0025, and Δ𝑥 = 0.0025 for the
present method, Figure 4 compares the computed values of
temperature at 𝑥 = 0.32, 𝑥 = 0.5, and 𝑥 = 0.64 to the exact
values.

We next apply the present method to three nonlinear
problems with nonlocal conditions.

t
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Figure 4: The error in the numerical solution at 𝑥 = 0.32, 𝑥 = 0.5,
and 𝑥 = 0.64 for Example 2, with 𝛿 = 0.0144.

Example 3. Consider the parabolic system given by

𝑢
𝑡
= 𝑢
𝑥𝑥
, 0 < 𝑥 < 1, 𝑡 > 0,

𝑢
𝑥
(𝑡, 0) = 0, 𝑡 > 0

𝑢
𝑥
(𝑡, 1) =

𝐸𝑚

1 + 𝐿
(𝐿𝜃 (𝑡) − (1 − 𝜃 (𝑡)) 𝑢 (𝑡, 1))

𝑢 (0, 𝑥) = 1, 0 < 𝑥 < 1, 𝜃 (0) = 0,

(33)

with

𝑚𝜃 (𝑡) + ∫

1

0

𝑢 (𝑡, 𝑥) 𝑑𝑥 = 1, 𝑡 > 0, (34)

where 𝐸, 𝐿, and 𝑚 are given constants. The above problem
involves a reaction between two reactants [16].The nonlinear
term appears in the boundary condition at 𝑥 = 1. Applying
the present method leads to the field variable given by

𝑢 (𝑡, 𝜂) = 𝑐
𝑘
𝑒
𝜆𝜂
+ 𝑑
𝑘
𝑒
−𝜆𝜂

+ 𝑢
𝑛

𝑘
, (35)

and formulating similar continuity conditions at mid-points
leads to equations similar to (6) and (7). Equation (34)
can also be treated similar to (9). The nonlinear boundary
condition in (33) leads to

(𝜆 + 𝛽) 𝑐
𝑀
+ (−𝜆 + 𝛽) 𝑑

𝑀
− 𝛽 (𝐿 − 𝑢

𝑛

𝑀
) 𝜃 − 𝛽𝜃𝑐

𝑀
− 𝛽𝜃𝑑

𝑀

= −𝛽𝑢
𝑛

𝑀
,

(36)

where 𝛽 = 𝐸𝑚Δ𝑥/(1 + 𝐿). Note that in addition to 𝑐
𝑘
, 𝑑
𝑘
, for

𝑘 = 1, . . . ,𝑀, the scalar 𝜃(𝑡) is also unknown. The nonlinear
condition in (33) leads to quadratic nonlinear terms 𝜃𝑐

𝑀
and

𝜃𝑑
𝑀
in (36). A common approach is to set up an iteration at

every time step according to

(𝜆 + 𝛽 − 𝛽𝜃) 𝑐
𝑀
+ (−𝜆 + 𝛽 − 𝛽𝜃) 𝑑

𝑀
− 𝛽 (𝐿 − 𝑢

𝑛

𝑀
) 𝜃

= −𝛽𝑢
𝑛

𝑀
,

(37)
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Figure 5: Calculated values of 𝜃(𝑡) and 𝑢(𝑡, 1) using present method
for Example 3 from [16] for the case of 𝐸 = 100, 𝐿 = 0.01, 𝑚 = 1.
The comparison to the reported values is presented in Table 1.

where 𝜃 is an initial guess, which is often the value of 𝜃 at
the previous time interval. It is now possible to invert the
coefficient matrix and solve for the 𝑐

𝑘
, 𝑑
𝑘
, for 𝑘 = 1, . . . ,𝑀

and 𝜃. One can use this value of 𝜃 for 𝜃 and repeat this process
until the values converge. This is often the usual approach
when one is faced with solving a nonlinear problem. We
follow this approach in this example. Using the values of 𝐸 =
100, 𝑚 = 1, and 𝐿 = 0.01 from [16], and letting Δ𝑥 = 1/50
and Δ𝑡 = 0.0005, one can obtain the numerical results for
the above problem. Figure 5 presents the numerical results
using the present algorithm for 𝜃(𝑡) and𝑢(𝑡, 1) as a function of
time. The results compare very well with the results reported
in [16]. In particular, Table 1 compares the computed values of
𝜃(𝑡) and 𝑢(𝑡, 1) for a few time instants. Note that the reported
results in [16] are also approximate solutions and are reported
after interpolation and retaining a few terms in the power
series. We next consider a fully nonlinear problem and show
the effectiveness of the present method. For a large class of
nonlinear problems, the present method can provide a linear
solution with no need for iterations at every time interval.

Example 4. Consider the reaction-diffusion system given by
[17]

𝑢
𝑡
= 𝐷𝑢
𝑥𝑥
− 𝑎𝑢 + 𝑢 (1 − 𝑢) + 𝑞 (𝑡, 𝑥) ,

0 < 𝑥 < 1, 𝑡 > 0,

𝑢 (𝑡, 0) = 0, 𝑡 > 0

𝑢
𝑥
(𝑡, 1) + 𝑢 (𝑡, 1) =

1

2
∫

1

0

𝑢 (𝑡, 𝑥) 𝑑𝑥 + 𝑔 (𝑡) ,

𝑢 (0, 𝑥) = 𝑥 (2 − 𝑥) + sin(𝜋𝑥
2
) ,

(38)

where a numerical method based on finite difference, which
involves iterations, was presented. Applying the present
method it is possible to formulate a numerical method which

Table 1: Comparison of the computed values of 𝜃(𝑡) and 𝑢(𝑡, 1)with
the truncated results reported in [16] for 𝐸 = 100, 𝐿 = 0.01, and𝑚 =

1.0.

Time
Reference

[16]
truncated 𝜃

Present

Reference
[16]

truncated
𝑢(𝑡, 1)

Present

𝑡 = 0.4 0.6739 0.6877 0.0389 0.0419
𝑡 = 1.0 0.8613 0.8788 0.0776 0.0798
𝑡 = 2.4 0.9046 0.9047 0.0951 0.0950

does not need iterations and requires the inversion of only
one matrix. Using the constant values of 𝐷 = 0.1, 𝑎 = 5 and
following the steps in (2) and (3) one can arrive at

𝑢
𝜂𝜂
− Δ𝑥
2
(40 +

10

Δ𝑡
) 𝑢 − 10Δ𝑥

2
𝑢
2

= −(
10�̂�

Δ𝑡
+ 10𝑞 (𝑡, 𝑥

𝑖
))Δ𝑥

2
.

(39)

Denoting 𝜆2 = Δ𝑥
2
(40 + (10/Δ𝑡)) and noting that 𝜖 =

10Δ𝑥
2
≪ 1, it is now possible to look for a solution in the

form of 𝑢 = 𝑢
0
+ 𝜖𝑢
1
+ 𝜖
2
𝑢
2
+ ⋅ ⋅ ⋅ . Considering various orders

of 𝜖 leads to

𝜖
0
,

𝑑
2
𝑢
0

𝑑𝜂2
− 𝜆
2
𝑢
0
= −(

10�̂�

Δ𝑡
+ 10𝑞 (𝑡, 𝑥

𝑖
))Δ𝑥

2
= 𝜙
𝑘

𝜖
1
,

𝑑
2
𝑢
1

𝑑𝜂2
− 𝜆
2
𝑢
1
= 𝑢
2

0

𝜖
2
,

𝑑
2
𝑢
2

𝑑𝜂2
− 𝜆
2
𝑢
2
= 2𝑢
0
𝑢
1

.

.

.

(40)

Applying the same procedure to the boundary condition
given in (38) leads to

𝑢
𝜂
+ Δ𝑥𝑢 =

1

2
Δ𝑥∫

1

0

𝑢𝑑𝑥 + Δ𝑥𝑔 (𝑡) (41)

and for various orders of 𝜖

𝜖
0
,

𝑑𝑢
0

𝑑𝜂

𝑥=1

+ Δ𝑥𝑢
0

𝑥=1 −
1

2
Δ𝑥∫

1

0

𝑢
0
𝑑𝑥 = Δ𝑥𝑔 (𝑡)

𝜖
1
,

𝑑𝑢
1

𝑑𝜂

𝑥=1

+ Δ𝑥𝑢
1

𝑥=1 −
1

2
Δ𝑥∫

1

0

𝑢
1
𝑑𝑥 = 0

𝜖
2
,

𝑑𝑢
2

𝑑𝜂

𝑥=1

+ Δ𝑥𝑢
1

𝑥=1 −
1

2
Δ𝑥∫

1

0

𝑢
2
𝑑𝑥 = 0.

(42)
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Figure 6: The error in the numerical solution at four points within
the domain [0, 1] for Example 4.

The above equations are linear, and applying the local for-
mulation for various orders of approximation will require the
inversion of only one matrix. The exact solution is given by

𝑢
∗
(𝑡, 𝑥) = 𝑥 (2 − 𝑥) + 0.1𝑒

−𝛼𝑡 sin(𝜋𝑥
2
) ,

with 𝛼 = 5 + 𝜋
2

40
,

(43)

where

𝑔 (𝑡) = 𝑢
∗

𝑥

𝑥=1 + 𝑢
∗𝑥=1 −

1

2
∫

1

0

𝑢
∗
(𝑡, 𝑥) 𝑑𝑥. (44)

Dividing the domain into 400 intervals, that is, Δ𝑥 = 1/400,
and using Δ𝑡 = 0.0005, Figure 6 presents the absolute values
of the error between the computed values and the exact
solution. Note that the method requires the inversion of one
matrix with dimension (401 × 401) only. For this case 𝜖 =
0.000625 and the first two terms in the expansion of 𝑢(𝜂) are
sufficient.

Example 5. Consider the reaction-diffusion system given by
[18]

𝑢
𝑡
= 𝑢
𝑥𝑥
+ 𝑢
2
− ∫

1

0

𝑢
2
𝑑𝑥, 0 < 𝑥 < 1, 𝑡 > 0,

𝑢 (0, 𝑥) = 𝜓 (𝑥) , 𝑢
𝑥
(𝑡, 0) = 𝑢

𝑥
(𝑡, 1) = 0.

(45)

For this system the quantity ∫1
0
𝑢(𝑡, 𝑥)𝑑𝑥 is conserved. The

above model appears in the study of biological and chemical
systems [18]. Our interest here is towards the numerical
simulation of this model, and in particular the appearance
of nonlinear terms. Following the approach presented here
as well as writing the above equation in terms of local
coordinates leads to

𝑢
𝜂𝜂
−
Δ𝑥
2

Δ𝑡
𝑢 + Δ𝑥

2
𝑢
2
− Δ𝑥
2
∫

1

0

𝑢
2
𝑑𝑥 = −

Δ𝑥
2

Δ𝑡
𝑢
𝑛

𝑘
. (46)
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−1e − 09

−1.2e − 09

−1.4e − 09

−1.6e − 09

∫u
0
(t, x)dx − ∫1

0
𝜓(x)dx

Figure 7: The error in the conserved value as a function of time for
Example 4.

Denoting 𝜆2 = Δ𝑥
2
/Δ𝑡 and noting that 𝜖 = Δ𝑥

2
≪ 1, it is

possible to seek a solution in the form of 𝑢 = 𝑢
0
+𝜖𝑢
1
+𝜖
2
𝑢
2
+

⋅ ⋅ ⋅ , which leads to

𝜖
0
,

𝑑
2
𝑢
0

𝑑𝜂2
− 𝜆
2
𝑢
0
= −𝜆
2
𝑢
𝑛

𝑘

𝜖
1
,

𝑑
2
𝑢
1

𝑑𝜂2
− 𝜆
2
𝑢
1
= −𝑢
2

0
+ ∫

1

0

𝑢
2

0
𝑑𝑥

𝜖
2
,

𝑑
2
𝑢
2

𝑑𝜂2
− 𝜆
2
𝑢
2
= −2𝑢

0
𝑢
1
+ 2∫

1

0

𝑢
0
𝑢
1
𝑑𝑥

.

.

.

(47)

Similar to the previous example, we only need to solve linear
systems at each order of 𝜖. In fact, they all require the inverse
of the same matrix. As a result, the present method requires
the inversion of only onematrix. Dividing the domain into 80
intervals, that is, Δ𝑥 = 1/100, as well as using Δ𝑡 = 0.000125
leads to 𝜖 = 0.0001. Depending on the initial condition, the
above system can lead to blowup or a steady-state solution
[18]. Consider the numerical solution of the above system
when the initial condition is given by

𝜓 (𝑥) = 𝑒
−(𝑥−0.5)

4
/0.004

. (48)

Starting from the above initial condition, the steady state
solution is a constant value of 𝑢 = 0.4559 = ∫

1

0
𝜓(𝑥)𝑑𝑥.

Figure 7 shows the difference between the conserved value
∫
1

0
𝑢(𝑡, 𝑥)𝑑𝑥 and its value at 𝑡 = 0, that is, ∫𝜓

0
(𝑥)𝑑𝑥. The

method requires the inversion of only one matrix.

5. Conclusion

In this paper we presented a local method for obtaining the
solution for 1-D parabolic problems with nonlocal boundary
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conditions. The method is first order accurate in time.
However, the solution is locally exact in the space dimension.
The order of accuracy in time can easily be improved to
second order. Five numerical examples were used to study
the applicability of the method. In particular, three nonlinear
problems were studied to show the strength of the method.
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