Supporting Information

To accompany

Clicked cinnamic/caffeic esters and amides as radical scavengers and 5lipoxygenase inhibitors.

Jérémie A. Doiron ${ }^{\text {a }}$, Benoît Métayer ${ }^{\text {a }}$, Ryan R. Richard ${ }^{\text {a }}$, Dany Desjardins ${ }^{\text {a }}$, Luc H. Boudreau ${ }^{\text {a,b }}$, Nathalie A. Levesque ${ }^{\text {a }}$, Jacques Jean-François ${ }^{\text {a }}$, Samuel J. Poirier ${ }^{\text {a }}$, Marc E. Surette ${ }^{\text {a }}$, Mohamed Touaibia ${ }^{\text {a }}$.

${ }^{\text {a }}$ Département de chimie et biochimie, Université de Moncton, Moncton, NB, Canada
${ }^{\text {b }}$ Centre de Recherche en Rhumatologie et Immunologie et Faculté de Médecine, Université Laval, Québec, Canada QC
*Author to whom correspondence should be addressed;
E-Mail: mohamed.touaibia@umoncton.ca;
Tel.: +1-506-858-4493; Fax: +1-506-858-4541.

Chemistry

All chemicals used were purchased from Aldrich (CA) and used without further purification. Purification of compounds was carried out by silica gel circular chromatography (Chromatotron ${ }^{\circledR}$, model 7924, Harrison Research) or by flash chromatography. TLC was run on silica gel coated aluminium sheets (SiliaPlate TLC, Silicycle ${ }^{\circledR}$) with detection by UV light (254 nm , UVS-11, Mineralight ${ }^{\circledR}$ shortwave UV lamp). Melting points were obtained using a MELTEMP ${ }^{\circledR}$ (model 1001D) melting point apparatus. FTIR spectra were recorded on a Nicolet ${ }^{\circledR}$ Impact 400 spectrometer. NMR spectra were recorded on a Bruker ${ }^{\circledR}$ Avance III 400 MHz spectrometer using TMS as an internal standard. High-resolution mass measurements were performed on a Bruker® Doltonics' micrOTOF instrument in positive or negative electrospray.

General procedure I - Monosubstituted triazoles from organic azides and acetylene

To a vigorously stirred solution of the appropriate organic azide ($1 \mathrm{mmol}, 1$ eq.) in 6 mL DMSO is added copper (I) iodide ($0.1 \mathrm{mmol}, 0.1 \mathrm{eq}$), after which the reaction vessel is thoroughly flushed with acetylene gas and sealed under balloon pressure. Triethylamine ($1.2 \mathrm{mmol}, 1.2 \mathrm{eq}$.) is then added and the mixture is left to react overnight at room temperature. The resulting solution is partitioned between 125 mL of brine and 25 mL ethyl acetate, after which the aqueous phase is extracted three more times with 25 mL ethyl acetate. The organic phase is then washed twice with brine, treated with charcoal, dried over MgSO_{4} and concentrated. The resulting oil is purified by silica gel circular chromatography (Chromatotron ${ }^{\circledR}$ model 7924, Harrison Research, eluent: $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$).

General procedure IIA - Anhydrous CuAAC reaction

To a vigorously stirred solution of the appropriate organic azide ($0.5 \mathrm{mmol}, 1 \mathrm{eq}$.$) and alkyne$ (0.75 mmol , 1.5 eq.) in 4 mL THF, is added copper (I) iodide ($0.025 \mathrm{mmol}, 0.05 \mathrm{eq}$) followed by triethylamine ($0.6 \mathrm{mmol}, 1.2 \mathrm{eq}$). The reaction mixture is stirred overnight under argon atmosphere. The resulting solution is partitioned between 30 mL AcOEt and $30 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$, after
which the aqueous phase is extracted twice more with 30 mL AcOEt. The combined organic fractions are washed twice with saturated ammonium chloride (20 mL), twice with brine, dried over MgSO_{4} and concentrated. The resulting oil is purified by silica gel circular chromatography (Chromatotron ${ }^{\circledR}$ model 7924, Harrison Research, eluent: $\mathrm{AcOEt} / \mathrm{Hex}$ or $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$).

General procedure IIB - Aqueous CuAAC reaction

To a vigorously stirred solution of the appropriate organic azide ($0.5 \mathrm{mmol}, 1 \mathrm{eq}$.$) and alkyne$ ($0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$.) in 2.5 mL THF is added $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.05 \mathrm{mmol}, 0.1 \mathrm{eq})$ dissolved in 2.5 $\mathrm{mL} \mathrm{H}_{2} \mathrm{O}$ followed by sodium ascorbate ($0.05 \mathrm{mmol}, 0.1 \mathrm{eq}$), after which the mixture is left to react overnight. The resulting solution is then diluted to 30 mL with water and extracted three times with AcOEt (20 mL). The organic fractions are then combined, washed twice with water, twice with saturated ammonium chloride, twice with brine, dried over MgSO_{4} and concentrated. The resulting oil is purified by silica gel circular chromatography (Chromatotron ${ }^{\circledR}$ model 7924, Harrison Research, eluent: $\mathrm{AcOEt} / \mathrm{Hex}$ or $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$).

General procedure III - Deacetylation of diacetylcaffeoyl derivatives

The appropriate diacetylcaffeoyl derivative ($0.25 \mathrm{mmol}, 1 \mathrm{eq}$) is dissolved in 2 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under N_{2}, to which is added 4 mL MeOH . To the resulting stirred solution is added guanidinium hydrochloride ($0.81 \mathrm{mmol}, 3.25 \mathrm{eq}$.) followed by triethylamine ($2.44 \mathrm{mmol}, 9.75$ eq). After consumption of the diacetylated precursor (about 2 h), the reaction mixture is concentrated and partitioned between 60 mL AcOEt and 30 mL water. The organic phase is then washed again with water, twice with saturated ammonium chloride, twice with brine, treated with charcoal, dried over MgSO_{4} and concentrated to give the resulting pure caffeoyl derivative as fine powders.

2-(4-Cyclohexyl-1H-1,2,3-triazol-1-yl)ethyl cinnamate (8c)

Following general procedure IIA with azide $\mathbf{6}$ and ethynylcyclohexane, compound 8c was obtained as a white solid after silica gel circular chromatography ($0-25 \% \mathrm{AcOEt} / \mathrm{Hex}$), yield $=$ $38 \% . \mathrm{Mp}=119^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.37(50 \% \mathrm{AcOEt} / \mathrm{Hex}) .{ }^{\mathrm{I}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=$ $7.71\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 7.56-7.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.43-7.40\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.35(\mathrm{~s}, 1$ $\mathrm{H},=\mathrm{CHN}), 6.44(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz},=\mathrm{CHCO}), 4.68\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.62(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $5.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}$), $2.81-2.77$ (m, 1H, CH-triazole), $2.09-2.04$ (m, 2H, cyclohexyl), $1.86-1.80$ (m, 2H, cyclohexyl), $1.49-1.36$ (m, 4H, cyclohexyl), $1.31-1.25$ (m, 2H, cyclohexyl); ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=166.3,154.0,146.0,134.0,130.7,129.0,128.2$, $119.9,116.9,62.6,49.0,35.3,33.0,26.1,26.0$. HRMS m/z calc. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{H}^{+}: 326.1863$; detected: 326.1860.

2-(4-(Cyclohex-1-en-1-yl)-1H-1,2,3-triazol-1-yl)ethyl cinnamate (8d)

Following general procedure IIA with azide $\mathbf{6}$ and 1-ethynylcyclohex-1-ene, compound 8d was obtained as a white solid after silica gel circular chromatography ($0-30 \% \mathrm{AcOEt} / \mathrm{Hex}$), yield $=$ $79 \% . \mathrm{Mp}=101-103{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.51(50 \% \mathrm{AcOEt} / \mathrm{Hex}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right.$), δ $(\mathrm{ppm})=7.71\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 7.56-7.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.50(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 7.43-$ $7.39\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 6.56-6.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}-$ triazole $), 6.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz},=\mathrm{CHCO}), 4.70$ $\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.62\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.42-2.40(\mathrm{~m}, 2 \mathrm{H}$, cyclohexenyl), $2.25-2.21$ (m, 2H, cyclohexenyl), $1.82-1.76$ (m, 2H, cyclohexenyl), $1.72-1.65(\mathrm{~m}, 2 \mathrm{H}$, cyclohexenyl); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=166.4,149.8,146.1,134.0,130.7$, 129.0, 128.3, 127.2, 125.3, 118.8, 116.9, 62.6, 49.1, 26.4, 25.3, 22.5, 22.2. HRMS m/z calc. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{H}^{+}: 324.1707$; detected: 324.1707.

2-(4-Phenyl-1H-1,2,3-triazol-1-yl)ethyl cinnamate (8e)

Following general procedure IIA with azide 6 and ethynylbenzene, compound $8 \mathbf{e}$ was obtained as a white solid after silica gel circular chromatography ($0-25 \% \mathrm{AcOEt} / \mathrm{Hex}$), yield $=67 \% \mathrm{Mp}$ $=122-123{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.40(50 \% \mathrm{AcOEt} / \mathrm{Hex}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=$
$7.88-7.86\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}+=\mathrm{CHN}\right), 7.73\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 7.55-7.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right)$, $7.47-7.35\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 6.45(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz},=\mathrm{CHCO}), 4.78\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.69$ (t, 2H, J = $\left.5.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=166.4,148.1,146.3$, $134.0,130.7,130.5,129.0,128.9,128.3,125.8,120.2,116.8,62.5,49.3$. HRMS m/z calc. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{H}^{+}: 320.1394$; detected: 320.1319 .

2-(4-(p-Tolyl)-1H-1,2,3-triazol-1-yl)ethyl cinnamate ($8 f$)

Following general procedure IIA with azide $\mathbf{6}$ and 1-ethynyl-4-methylbenzene, compound $\mathbf{8 f}$ was obtained as a white solid after silica gel circular chromatography ($0-25 \% \mathrm{AcOEt} / \mathrm{Hex}$), yield $=$ $67 \% . \mathrm{Mp}=139-140{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.67(60 \% \mathrm{AcOEt} / \mathrm{Hex}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$), δ $(\mathrm{ppm})=7,83(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 7.76-7.70\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}+=\mathrm{CHC}_{\mathrm{ar}}\right), 7.55-7.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.42$ $-7.41\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.26\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.45(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16,0 \mathrm{~Hz},=\mathrm{CHCO}), 4.76(\mathrm{t}, 2 \mathrm{H}$, $\mathrm{J}=4.9 \mathrm{~Hz}, \mathrm{OCH}_{2}$), $4.68\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=166.4,148.2,146.2,138.1,134.0,130.7,129.6,129.0,128.3,127.6$, 125.7, 119.8, 116.8, 62.6, 49.3, 21.3. HRMS m/z calc. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{H}^{+}: 334.1550$; detected: 334.1549 .

2-(4-(4-Fluorophenyl)-1H-1,2,3-triazol-1-yl)ethyl cinnamate (8g)

Following general procedure IIA with azide $\mathbf{6}$ and 1-ethynyl-4-fluorobenzene, compound $\mathbf{8 g}$ was obtained as a white solid after silica gel circular chromatography ($0-25 \% \mathrm{AcOEt} / \mathrm{Hex}$), yield $=$ $83 \% . \mathrm{Mp}=134-135{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.51(50 \% \mathrm{AcOEt} / \mathrm{Hex}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$), δ $(\mathrm{ppm})=7.85-7.81\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}+=\mathrm{CHN}\right), 7.73\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 7.54-7.52(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}$), $7.42-7.41\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.14\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.45(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz}$, $=\mathrm{CHCO}$), $4.77\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.69\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=166.4,164.0,161.5,147.3,146.3,134.0,130.8,129.0,128.3,127.6$, 127.5, 126.7, 126.7, 119.9, 116.7, 116.0, 115.8, 62.5, 49.3. HRMS m/z calc. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{FN}_{3} \mathrm{O}_{2}+$ $\mathrm{H}^{+}: 338.1299$; detected: 338.1294.

2-(4-(4-Formylphenyl)-1H-1,2,3-triazol-1-yl)ethyl cinnamate (8h)

Following general procedure IIA with azide $\mathbf{6}$ and 4-ethynylbenzaldehyde, compound $\mathbf{8 h}$ was obtained as a white solid after silica gel circular chromatography ($0-50 \% \mathrm{AcOEt} / \mathrm{Hex}$), yield $=$ $79 \% . \mathrm{Mp}=127-128{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.39(50 \% \mathrm{AcOEt} / \mathrm{Hex}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$), δ $(\mathrm{ppm})=10.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.05\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.98\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.73(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 7.55-7.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.45-7.39\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 6.45(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $16.0 \mathrm{~Hz},=\mathrm{CHCO}), 4.81\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.71\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=166.3,146.8,146.4,136.2,135.9,133.9,130.8,130.4$, 129.0, 128.3, 126.1, 121.3, 116.6, 62.4, 49.5. HRMS m/z calc. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}: 348.1343$; detected : 348.1339 .

N-(2-(1H-1,2,3-Triazol-1-yl)ethyl)cinnamamide (9a)

Following general procedure I with azide 7, compound 9a was obtained as a beige powder after silica gel circular chromatography ($0-1.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$), yield $=68 \% . \mathrm{Mp}=140-141{ }^{\circ} \mathrm{C}$, $\mathrm{R}_{\mathrm{f}}=0.25\left(7.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathrm{I}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2{ }^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=7.70(\mathrm{~s}, 1 \mathrm{H}$, $=C H N$), $7.65\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right.$), $7.61(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 7.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.37(\mathrm{~m}, 3 \mathrm{H}$, H_{ar}), $6.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 6.45(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHCO}), 4.63\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{CH}_{2^{-}}\right.$ triazole), $3.95\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{NHCH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=$ 166.51, 141.70, 134.56, 133.82, 129.92, 128.86, 127.89, 124.64, 120.00, 49.45, 39.58. HRMS m / z calc. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}+\left(\mathrm{H}^{+}\right): 243.1240$; detected : 243.1244.

N-(2-(4-Propyl-1H-1,2,3-triazol-1-yl)ethyl)cinnamamide. (9b)

Following general procedure IIA with azide $\mathbf{7}$ and 1-pentyne, compound 9b was obtained as white crystals after silica gel circular chromatography ($0-6 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$), yield $=39 \%$. Mp $=156-157{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.53\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=$ $7.65\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.6 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 7.54-7.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.42-7.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}+=\mathrm{CHN}\right)$, 6.15 (br s, 1H, NH), 6.43 (d, 1H, J = $15.6 \mathrm{~Hz},=\mathrm{CHCO}$), $4.54\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$-triazole), $3.94\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=5.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right), 2.69\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathbf{C H}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.65-1.75(\mathrm{~m}, 2 \mathrm{H}$,
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.98\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=$ $166.38,141.63,134.61,129.87,128.85,127.87$, 120.08, 49.38, 39.47, 27.62, 22.66, 13.78. HRMS m/z calc. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}+\mathrm{H}^{+}: 285.1710$; detected: 285.1702.

N-(2-(4-Cyclohexyl-1H-1,2,3-triazol-1-yl)ethyl)cinnamamide (9c)

Following general procedure IIA with azide 7 and ethynylcyclohexane, compound 9c was obtained as white crystals after silica gel circular chromatography ($0-4 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$), yield $=18 \% . \mathrm{Mp}=159-161{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.40\left(6 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$, $\delta(\mathrm{ppm})=7.65\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.6 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 7.52-7.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.41-7.37\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}+\right.$ $=\mathrm{CHN}), 6.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 6.46(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.6 \mathrm{~Hz},=\mathrm{CHCO}), 4.50\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.6 \mathrm{~Hz}, \mathrm{CH}_{2}-\right.$ triazole), $3.95\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=5.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right), 2.72-2.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$-triazole), $1.81-1.71(\mathrm{~m}, 4 \mathrm{H}$, cyclohexyl), $1.38-1.42\left(\mathrm{~m}, 4 \mathrm{H}\right.$, cyclohexyl), $1.27-1.24$ (m, 2H, cyclohexyl); ${ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=166.43,141.53,134.65,129.84,128.84,127.88,120.23,49.52$, 39.42, 35.26, 32.92, 26.09, 25.98. HRMS m/z calc. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}+\mathrm{H}^{+}: 325.2023$; detected: 325.2014.

N-(2-(4-(Cyclohex-1-en-1-yl)-1H-1,2,3-triazol-1-yl)ethyl)cinnamamide (9d)

Following general procedure IIA with azide 7 and 1-ethynylcyclohex-1-ene, compound 9d was obtained as a white solid after silica gel circular chromatography ($0-4 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$), yield $=24 \% . \mathrm{Mp}=170-171{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.44\left(6 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, acetone- $\mathrm{d}_{6}, 25$ $\left.{ }^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=7.90(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 7.59-7.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NH}+=\mathrm{CHC}_{\mathrm{ar}}+\mathrm{H}_{\mathrm{ar}}\right), 7.42-7.36(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}$), $6.68(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.6 \mathrm{~Hz},=\mathrm{CHCO}), 6.48-6.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}-$ triazole $), 4.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $5.6 \mathrm{~Hz}, \mathrm{CH}_{2}$-triazole), 3.82 (q, 2H, J = $5.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}$), $2.40-2.34$ (m, 2H, cyclohexenyl), 2.20 - 2.14 (m, 2H, cyclohexenyl), 1.77 - 1.70 (m, 2H, cyclohexenyl), 1.70 - 1.61 (m, 2H, cyclohexenyl); ${ }^{13} \mathrm{C}$ NMR (101 MHz , acetone- $\mathrm{d}_{6}, 25{ }^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=165.49,148.61,139.73$, 135.22 , 129.43, 128.82, 127.93, 123.26, 121.51, 119.47, 49.14, 39.48, 25.98, 24.88, 22.34, 22.16. HRMS m/z calc. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}+\mathrm{H}^{+}$: 323.1866; detected: 323.1857.

Following general procedure IIA with azide 7 and ethynylbenzene, compound $\mathbf{9 e}$ was obtained as a white solid after silica gel circular chromatography $\left(0-7 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, yield $=16 \%$. $\mathrm{Mp}=171-173{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.40\left(36 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 25^{\circ} \mathrm{C}\right), \delta$ $(\mathrm{ppm})=8.60(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 8.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 7.87-7.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.60-7.25(\mathrm{~m}, 9 \mathrm{H}$, $\left.=\mathrm{CHC}_{\mathrm{ar}}+\mathrm{H}_{\mathrm{ar}}\right), 6.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.6 \mathrm{~Hz},=\mathrm{CHCO}), 4.54\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$-triazole $), 3.70$ $\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.\mathrm{d}_{6}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=165.88,146.75$, $139.56,135.20,131.31,130.01,129.39,129.35,128.26,128.03,125.57,122.17,49.62,39.45$. HRMS m/z calc. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}+\mathrm{H}^{+}: 319.1553$; detected: 319.1553 .

N-(2-(4-(p-Tolyl)-1H-1,2,3-triazol-1-yl)ethyl)cinnamamide (9f)

Following general procedure IIA with azide 7 and 1-ethynyl-4-methylbenzene, compound $\mathbf{9 f}$ was obtained as a white solid after silica gel circular chromatography ($0-3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$), yield $=11 \% . \mathrm{Mp}=208{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.32\left(6 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 25^{\circ} \mathrm{C}\right), \delta$ $(\mathrm{ppm})=8.53(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 8.33(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{NH}), 7.73\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.60-$ $7.30\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}+=\mathrm{CHC}_{\mathrm{ar}}\right), 7.25\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz},=\mathrm{CHCO})$, $4.52\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$-triazole), $3.69\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.\mathrm{d}_{6}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=165.86,146.81,139.54,137.53,135.20,130.01$, $129.90,129.40,128.54,128.03,125.51,122.16,121.74,49.57,39.45,21.29 . \operatorname{HRMS} \mathrm{m} / \mathrm{z}$ calc. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}+\mathrm{H}^{+}$: 333.1710; detected: 333.1700.

N-(2-(4-(4-Fluorophenyl)-1H-1,2,3-triazol-1-yl)ethyl)cinnamamide (9g)

Following general procedure IIA with azide 7 and 1-ethynyl-4-fluorobenzene, compound $9 \mathbf{g}$ was obtained as a white solid after silica gel circular chromatography ($0-6 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$), yield $=41 \% . \mathrm{Mp}=193-196^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.52\left(10 \% \mathrm{MeOH}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}\right.$, acetone- $\mathrm{d}_{6}, 25$ $\left.{ }^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=8.39(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 7.96-7.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.60-7.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NH}+=\mathrm{CHC}_{\mathrm{ar}}\right.$ $\left.+\mathrm{H}_{\mathrm{ar}}\right), 7.43-7.37\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.24-7.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 6.68(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz},=\mathrm{CHCO})$, $4.66\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$-triazole), $3.88\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$,
acetone $\left.-\mathrm{d}_{6}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=165.54,163.55,161.12,146.01,139.79,135.20,129.45,128.83$, 127.97, 127.93, 127.62, 127.25, 127.17, 121.46, 120.89, 115.64, 115.42, 49.46, 39.50. HRMS m / z calc. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{FN}_{4} \mathrm{O}+\mathrm{H}^{+}: 337.1459$; detected: 337.1450.

N-(2-(4-(4-Formylphenyl)-1H-1,2,3-triazol-1-yl)ethyl)cinnamamide (9h)

Following general procedure IIA with azide $\mathbf{7}$ and 4 -ethynylbenzaldehyde, compound $\mathbf{9 h}$ was obtained as a white solid after silica gel circular chromatography ($0-4 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$), yield $=21 \% . \mathrm{Mp}=200-201{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.42\left(6 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 25$ $\left.{ }^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=10.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.81(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 8.35(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.6 \mathrm{~Hz}, \mathrm{NH}), 8.08(\mathrm{~d}$, $\left.2 H, J=8.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.79\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.60-7.30\left(\mathrm{~m}, 6 \mathrm{H},=\mathrm{CHC}_{\mathrm{ar}}+\mathrm{H}_{\mathrm{ar}}\right), 6.59(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=15.6 \mathrm{~Hz},=\mathrm{CHCO}), 4.57\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$-triazole $), 3.71(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=5.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{NH}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}_{6}, 25{ }^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=192.98,165.89,145.67,139.58$, $136.93,135.78,135.18,130.79,130.02$, 129.40, 128.03, 125.95, 123.81, 122.13, 49.81, 39.42. HRMS m/z calc. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}+\mathrm{H}^{+}: 347.1503$; detected: 347.1497.
(E)-4-(3-(2-(1H-1,2,3-Triazol-1-yl)ethoxy)-3-oxoprop-1-en-1-yl)-1,2-phenylene diacetate (13a)

Following general procedure I with azide 11, compound 13a was obtained as a white powder after silica gel circular chromatography $\left(1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, yield $=81 \% . \mathrm{Mp}=123-125{ }^{\circ} \mathrm{C}$, $\mathrm{R}_{\mathrm{f}}=0.43\left(4 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=7.76(\mathrm{~s}, 1 \mathrm{H}$, $=C H N), 7.67(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 7.63\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz}, \mathrm{CHC}_{\mathrm{ar}}\right), 7.42(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, 1.9 \mathrm{~Hz}$, $\left.\mathrm{H}_{\mathrm{ar}}\right), 7.38\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.25\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.36(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz}$, $=\mathrm{CHCO}), 4.76\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.64\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}\right)$, $2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=168.08,167.96,165.88$, $144.23,143.82,142.50,134.14,132.81,126.62,124.04,122.87,117.93,62.65,48.99,20.67$, 20.63. $\mathrm{HRMS} \mathrm{m} / \mathrm{z}$ calc. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{6}+\left(\mathrm{H}^{+}\right): 360.1190$; detected : 360.1184.
(E)-4-(3-(2-(4-Cyclohexyl-1H-1,2,3-triazol-1-yl)ethoxy)-3-oxoprop-1-en-1-yl)-1,2-phenylene diacetate (13c)

Following general procedure IIB with azide 11 and ethynylcyclohexane, compound 13c was obtained as a white solid after silica gel circular chromatography ($0-2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$), yield $=78 \% . \mathrm{Mp}=121-124{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.31\left(2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$, $\delta(\mathrm{ppm})=7.64\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 7.42\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.38(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.33(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 7.26\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.38(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16,0 \mathrm{~Hz}$, $=\mathrm{CHCO}), 4.67\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.61\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.81-2.77(\mathrm{~m}, 1 \mathrm{H}$, CH-triazole), 2.33 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}$), 2.32 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}$), 2.09 - 2.04 ($\mathrm{m}, 2 \mathrm{H}$, cyclohexyl), $1.87-1.81\left(\mathrm{~m}, 4 \mathrm{H}\right.$, cyclohexyl), $1.49-1.36\left(\mathrm{~m}, 4 \mathrm{H}\right.$, cyclohexyl); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=168.1,168.0,165.9,154.1,144.1,143.8,142.5,132.9,126.6,124.0,122.9$, $119.8,118.1,62.8,53.4,48.9,35.3,33.0,26.1,26.0,20.7,20.6$. HRMS m/z calc. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{6}$ $+\mathrm{H}^{+}: 442.1973$; detected: 442.1964 .
(E)-4-(3-(2-(4-(Cyclohex-1-en-1-yl)-1H-1,2,3-triazol-1-yl)ethoxy)-3-oxoprop-1-en-1-yl)-1,2phenylene diacetate (13d)

Following general procedure IIB with azide 11 and 1-ethynyl-1-cyclohexene, compound 13d was obtained as a white solid after silica gel circular chromatography $\left(0-0.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, yield $=67 \% . \mathrm{Mp}=118-120{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.40\left(4 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=7.64\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 7.48(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 7.42(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.4$ $\left.\mathrm{Hz}, 1.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.38\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.26\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.56-6.54(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}=$ C-triazole $), 6.37(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz},=\mathrm{CHCO}), 4.69\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.62(\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 2.42-2.40\left(\mathrm{~m}, 2 \mathrm{H}\right.$, cyclohexenyl), $2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}\right), 2.33(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{COO}$), $2.25-2.21(\mathrm{~m}, 2 \mathrm{H}$, cyclohexenyl), $1.82-1.76$ (m, 2 H , cyclohexenyl), $1.72-1.65$ (m, 2H, cyclohexenyl); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=168.08,167.97,165.95$, $149.95,144.15,143.79,142.49,132.88,127.15,126.63,125.35,124.04,122.86,118.78,118.06$, $62.73,49.02,26.40,25.27,22.44,22.19,20.67,20.63$. HRMS m/z calc. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}+\mathrm{H}^{+}$: 440.1816; detected: 440.1817 .
(E)-4-(3-oxo-3-(2-(4-Phenyl-1H-1,2,3-triazol-1-yl)ethoxy)prop-1-en-1-yl)-1,2-phenylene diacetate (13e)

Following general procedure IIB with azide 11 and ethynylbenzene, compound $\mathbf{1 3 e}$ was obtained as a white solid after silica gel circular chromatography ($0-40 \% \mathrm{AcOEt} / \mathrm{Hex}$), yield $=46 \%$. Mp $=158-160{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.41(60 \% \mathrm{AcOEt} / \mathrm{Hex}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=$ $7.88-7.85\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}+=\mathrm{CHN}\right), 7.65\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 7.47-7.34\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right)$, $7.24\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4, \mathrm{H}_{\mathrm{ar}}\right), 6.38(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz},=\mathrm{CHCO}), 4.76\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, $4.68\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}\right) .2 .32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}\right) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=168.1,168.0,165.9,148.1,144.3,143.8,142.5,132.8,130.4$, $128.9,128.3,126.7,125.8,124.0,122.9,120.2,118.0,62.7,49.3,20.7,20.6 . \operatorname{HRMS} \mathrm{m} / \mathrm{z}$ calc. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6}+\mathrm{H}^{+}$: 436.1503; detected: 436.1499.
(E)-4-(3-oxo-3-(2-(4-(p-Tolyl)-1H-1,2,3-triazol-1-yl)ethoxy)prop-1-en-1-yl)-1,2-phenylene diacetate (13f)

Following general procedure IIB with azide 11 and 1-ethynyl-4-methylebenzene, compound 13f was obtained as a white solid after silica gel circular chromatography $\left(0.4 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, yield $=78 \% . \mathrm{Mp}=156-158{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.47\left(3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \cdot{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=7.82(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 7.75\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.65(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz}$, $\left.=\mathrm{CHC}_{\mathrm{ar}}\right), 7.41\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz} ; 1.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.37\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.28-7.23(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{ar}}\right), 6.38(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz},=\mathrm{CHCO}), 4.75\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.67(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{\mathrm{ar}}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}\right) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=168.07,167.95,165.95,148.18,144.74,143.81,142.49,138.13$, $132.84,129.56,127.61,126.66,125.70,124.02,122.87,119.81,117.99,62.68,49.21,21.30$, 20.67, 20.62. HRMS m/z calc. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}+\mathrm{H}^{+}$: 450.1660; detected: 450.1660.
(E)-4-(3-(2-(4-(4-Fluorophenyl)-1H-1,2,3-triazol-1-yl)ethoxy)-3-oxoprop-1-en-1-yl)-1,2phenylene diacetate (13g)

Following general procedure IIB with azide 11 and 1-ethynyl-4-fluorobenzene, compound $\mathbf{1 3 g}$ was obtained as a white solid after silica gel circular chromatography ($0-1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$),
yield $=93 \% . \mathrm{Mp}=138{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.41\left(2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$, $\delta(\mathrm{ppm})=7.85-7.82\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}+=\mathrm{CHN}\right), 7.65\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 7.41(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $8.4 \mathrm{~Hz}, \mathrm{~J}=1.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}$), $7.37\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.24\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.14(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{ar}}\right), 6.38(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz},=\mathrm{CHCO}), 4.76\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.9 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.68(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.9 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{~N}$), 2.33 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}$), $2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}\right.$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$), δ $(\mathrm{ppm})=168.1,168.0,165.9,164.0,161.5,147.3,144.3,143.8,142.5,132.8,127.6,127.5$, 126.7, 126.6, 124.1, 122.9, 119.9, 117.9, 116.0, 115.8, 62.6, 49.3, 20.7, 20.6. HRMS m/z calc. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{FN}_{3} \mathrm{O}_{6}+\mathrm{H}^{+}$: 454.1409; detected: 454.1405 .
(E)-4-(3-(2-(4-(4-Formylphenyl)-1H-1,2,3-triazol-1-yl)ethoxy)-3-oxoprop-1-en-1-yl)-1,2phenylene diacetate (13h)

Following general procedure IIB with azide $\mathbf{1 1}$ and 4-ethynylbenzaldehyde, compound $\mathbf{1 3 h}$ was obtained as a white solid after silica gel circular chromatography ($0-1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$), yield $=82 \% . \mathrm{Mp}=149-150{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.31\left(2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$, $\delta(\mathrm{ppm})=10.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.04\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.99-7.95\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}+=\mathrm{CHN}\right)$, $7.64\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 7.42-7.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.24(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8,4 \mathrm{~Hz}, \mathrm{~J}=1,8$ $\mathrm{Hz}, \mathrm{H}_{\mathrm{ar}}$), $6.38(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.9 \mathrm{~Hz},=\mathrm{CHCO}), 4.79\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.9 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.70(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.9$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{~N}$), 2.33 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}$), 2.32 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=191.7,168.1,168.0,165.9,146.8,144.4,144.4,143.9,142.5,136.2,135.9$, 132.7, 130.4, 126.6, 126.1, 124.1, 122.9, 121.4, 121.4, 117.8, 62.5, 49.4, 20.7, 20.6. HRMS m/z calc. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{7}+\mathrm{H}^{+}$: 464.1452; detected: 464.1447.
(E)-4-(3-((2-(1H-1,2,3-Triazol-1-yl)ethyl)amino)-3-oxoprop-1-en-1-yl)-1,2-phenylene diacetate (14a)

Following general procedure I with azide 12, compound 14a was obtained as a white powder after silica gel circular chromatography $\left(0.5-2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, yield $=76 \%$. $\mathrm{Mp}=174-176$ ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.30\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=7.70(\mathrm{~s}, 1 \mathrm{H}$, $=C H N), 7.60(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 7.56\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 7.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$
$\left.=8.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 6.36(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHCO}), 4.60(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}$, CH_{2}-triazole), $3.91\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{NHCH}_{2}\right.$), $2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=168.18,168.14,166.03,143.09,142.36,139.73,133.58$, $126.30,124.65,123.86,12243,121.27,49.36,39.58,20.67,20.64$. HRMS m/z calc. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5}+\left(\mathrm{H}^{+}\right): 359.1350$; detected : 359.1347.
(E)-4-(3-oxo-3-((2-(4-Propyl-1H-1,2,3-triazol-1-yl)ethyl)amino)prop-1-en-1-yl)-1,2-phenylene diacetate (14b)

Following general procedure IIB with azide $\mathbf{1 2}$ and 1-pentyne, compound 14b was obtained as a white solid after silica gel circular chromatography ($0.5-1.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$), yield $=62 \%$. $\mathrm{Mp}=134-136{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.58\left(7.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$), δ $(\mathrm{ppm})=7.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 7.37\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, 1.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.33(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $\left.=1.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.31(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 7.21\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 6.36(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHCO}), 4.52\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$-triazole $), 3.91(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz}$, NHCH_{2}), $2.69\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}\right)$, $1.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.97\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$), δ $(\mathrm{ppm})=168.12,168.08,165.91,148.33,143.11,142.37,139.73,133.60,126.25,123.85$, $122.45,121.82,121.29,49.29,39.50,27.60,22.66,20.66,20.62,13.77$. HRMS m / z calc. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{5}+\left(\mathrm{H}^{+}\right): 401.1819$; detected : 401.1826
(E)-4-(3-((2-(4-Cyclohexyl-1H-1,2,3-triazol-1-yl)ethyl)amino)-3-oxoprop-1-en-1-yl)-1,2phenylene diacetate (14c)

Following general procedure IIB with azide 12 and ethynylcyclohexane, compound 14 c was obtained as a white solid after silica gel circular chromatography ($0-1.1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$), yield $=61 \% . \mathrm{Mp}=141-144{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.45\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=7.58\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 7.38\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, 1.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.33$ $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=1.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.28(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 7.21\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$,
$6.37(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHCO}), 4.52\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$-triazole), $3.91(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=5.9$ $\mathrm{Hz}, \mathrm{NHCH}_{2}$), 2.74 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}$-triazole), 2.32 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}$), 2.31 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}$), 2.05 (m, 2 H , cyclohexyl), 1.82-1.72 (m, 2 H , cyclohexyl), 1.45-1.24 (m, 6 H , cyclohexyl). ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=168.13,168.09,165.91,153.78,143.10,142.37,139.70$, $133.62,126.24,123.86,122.46,121.33,120.54,49.33,39.47,35.21,32.98,26.09,25.98,20.67$, 20.62. HRMS m/z calc. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{5}+\left(\mathrm{H}^{+}\right): 441.2132$; detected : 441.2126.
(E)-4-(3-((2-(4-(Cyclohex-1-en-1-yl)-1H-1,2,3-triazol-1-yl)ethyl)amino)-3-oxoprop-1-en-1-yl)-1,2-phenylene diacetate (14d)

Following general procedure IIB with azide 12 and 1-ethynylcyclohex-1-ène, compound $\mathbf{1 4 d}$ was obtained as a white solid after silica gel circular chromatography $\left(0-1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, yield $=70 \% . \mathrm{Mp}=160-162{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.28\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=7.57\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 7.42(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 7.37(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4$ $\mathrm{Hz}, \mathrm{H}_{\mathrm{ar}}$), $7.33\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.20\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 6.48(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{C}$-triazole), $6.37(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHCO}), 4.53\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$-triazole), 3.92 $\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{NHCH}_{2}\right), 2.36\left(\mathrm{~m}, 2 \mathrm{H}\right.$, cyclohexenyl), $2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}\right), 2.31(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{COO}$), 2.19 ($\mathrm{m}, 2 \mathrm{H}$, cyclohexenyl), 1.78-1.66 (m, 4H, cyclohexenyl). ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=168.12,168.09,165.97,149.48,143.10,142.36,139.68,133.62$, $127.05,126.24,125.35,123.85,122.47,121.34,119.49,49.45,39.59,26.34,25.26,22.40,22.14$, 20.67, 20.62. HRMS m/z calc. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{5}+\left(\mathrm{H}^{+}\right): 439.1976$; detected : 439.1976

(E)-4-(3-oxo-3-((2-(4-Phenyl-1H-1,2,3-triazol-1-yl)ethyl)amino)prop-1-en-1-yl)-1,2-phenylene diacetate (14e)

Following general procedure IIB with azide $\mathbf{1 2}$ and ethynylbenzene, compound $\mathbf{1 4 e}$ was obtained as a white solid after silica gel circular chromatography $\left(0-1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, yield $=28 \%$. $\mathrm{Mp}=142-148{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.38\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})$ $=7.77-7.74\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}+=\mathrm{CHN}\right), 7.57\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 7.41-7.30\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right)$, $7.17\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 6.39(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHCO}), 4.60(\mathrm{~m}$,
$2 \mathrm{H}, \mathrm{CH}_{2}$-triazole), $3.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right.$), $2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=168.13,168.10,166.11,147.73,143.09,142.33,139.76$, 133.57, 130.16, 128.91, 128.34, 126.28, 125.63, 123.83, 122.47, 121.30, 120.81, 49.67, 39.66, 20.66, 20.60. HRMS m/z calc. For. $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5}+\left(\mathrm{H}^{+}\right): 435.1663$; detected : 435.1660.
(E)-4-(3-oxo-3-((2-(4-(p-Tolyl)-1H-1,2,3-triazol-1-yl)ethyl)amino)prop-1-en-1-yl)-1,2-phenylene diacetate (14f)

Following general procedure IIB with azide $\mathbf{1 2}$ and 1-ethynyl-4-methylbenzene, compound $\mathbf{1 4 f}$ was obtained as a white solid after silica gel circular chromatography ($0-1.4 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$), yield $=61 \% . \mathrm{Mp}=177-178{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.48$ (AcOEt). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$), δ $(\mathrm{ppm})=7.71(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 7.62\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHC})$, 7.34-7.29 (m, 2H, Har $), 7.20-7.15\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 6.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 6.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz}$, $=\mathrm{CHCO}$), 4.58 (t, 2H, J = $5.4 \mathrm{~Hz}, \mathrm{CH}_{2}$-triazole), $3.92\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{NHCH}_{2}\right.$), 2.37 ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{Ph}$), 2.30 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}$), 2.29 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$), δ $(\mathrm{ppm})=168.13,168.10,166.11,147.79,143.06,142.32,139.65,138.21,133.62,129.56$, $127.33,126.26,125.52,123.81,122.48,121.39,120.48,49.62,39.66,21.27,20.66,20.59$. HRMS m/z calc. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{5}+\left(\mathrm{H}^{+}\right)$: 449.1819; detected: 449.1820.
(E)-4-(3-((2-(4-(4-Fluorophenyl)-1H-1,2,3-triazol-1-yl)ethyl)amino)-3-oxoprop-1-en-1-yl)-1,2phenylene diacetate ($\mathbf{1 4 g}$)

Following general procedure IIB with azide 12 and 1-ethynyl-4-methylbenzene, compound $\mathbf{1 4 g}$ was obtained as a white solid after silica gel circular chromatography $\left(0-1.3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, yield $=58 \% . \mathrm{Mp}=165^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.50\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=7.79-7.75\left(\mathrm{~m}, 3 \mathrm{H},=\mathrm{CHN}+\mathrm{H}_{\mathrm{ar}}\right), 7.59\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 7.36(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $8.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}$), $7.32\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.20\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.15-7.10(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 6.39(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{NH}), 6.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHCO}), 4.62(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.7$ $\mathrm{Hz}, \mathrm{CH}_{2}$-triazole), 3.98 (q, 2H, J = $5.7 \mathrm{~Hz}, \mathrm{NHCH}_{2}$), 2.32 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}$), 2.31 (s, 3H, CH$\left.{ }_{3} \mathrm{COO}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=168.11,168.05,165.92,163.99,161.52$,
147.03, 143.20, 142.39, 140.07, 133.44, 127.47, 127.39, 126.47, 126.44, 126.28, 123.89, 122.46, $120.99,120.47,116.03,115.82,49.64,39.58,20.65,20.61$. HRMS m/z calc. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{FN}_{4} \mathrm{O}_{5}+$ $\left(\mathrm{H}^{+}\right): 453.1569$; detected: 453.1567.
(E)-4-(3-((2-(4-(4-Formylphenyl)-1H-1,2,3-triazol-1-yl)ethyl)amino)-3-oxoprop-1-en-1-yl)-1,2phenylene diacetate (14h)

Following general procedure IIB with azide 12 and 1-ethynyl-4-methylbenzene, compound 14h was obtained as a white solid after silica gel circular chromatography $\left(0-1.3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, yield $=51 \% . \mathrm{Mp}=181-182{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.33\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.\mathrm{d}_{6}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=10.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.81(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 8.35(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{NH})$, $8.10\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.99\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.51-7.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=15.7 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}$), $7.31\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHCO}), 4.58(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{CH}_{2}$-triazole), $3.71\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{NHCH}_{2}\right.$), $2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}\right), 2.29(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}, 2{ }^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=192.99,168.66,168.62$, $165.63,145.67,143.21,142.75,137.93,136.93,135.78,134.09,130.80,126.43,125.96,124.61$, 123.82, 123.23, 122.82, 49.78, 39.29, 20.82, 20.81. HRMS m/z calc. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{6}+\left(\mathrm{H}^{+}\right)$: 463.1612; detected: 463.1619.
(E)-2-(4-Propyl-1H-1,2,3-triazol-1-yl)ethyl 3-(3,4-dihydroxyphenyl)acrylate (15b)

Following general procedure III with acetylated caffeoyl derivative 13b, compound 15b was obtained as a white powder, yield $=43 \% . \mathrm{Mp}=180-181{ }^{\circ} \mathrm{C}$ (dec.), $\mathrm{R}_{\mathrm{f}}=0.41$ (5% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}, 2{ }^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=9.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 9.24(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 7.92(\mathrm{~s}, 1 \mathrm{H}=\mathrm{CHN}), 7.44\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.9 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 7.03\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 6.99(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.76\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.22(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.9 \mathrm{~Hz},=\mathrm{CHCO}), 4.64(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{OCH}_{2}$), $4.49\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.59\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathbf{C H}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 1.60 (sext., $2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathbf{C H}_{2} \mathrm{CH}_{3}$), $0.88\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- $\left.\mathrm{d}_{6}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=166.57,149.03,147.24,146.20,146.04,125.81,122.78,121.95$,
$116.18,115.36,113.73,62.75,48.90,27.48,22.72,14.01$. HRMS m$/ \mathrm{z}$ calc. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}+$ $\left(\mathrm{H}^{+}\right): 318.1448$; detected : 318.1455.

(E)-2-(4-Cyclohexyl-1H-1,2,3-triazol-1-yl)ethyl 3-(3,4-dihydroxyphenyl)acrylate (15c)

Following general procedure III with acetylated caffeoyl derivative 13c, compound 15c was obtained as a white powder, yield $=80 \% . \mathrm{Mp}=191{ }^{\circ} \mathrm{C}($ dec. $), \mathrm{R}_{\mathrm{f}}=0.33\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=9.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 9.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 7.90(\mathrm{~s}$, $1 \mathrm{H},=\mathrm{CHN}$), $7.44\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.9 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 7.04\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 6.99\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right)$, $6.76\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.9 \mathrm{~Hz},=\mathrm{CHCO}), 4.63\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.8 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, $4.48\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right.$), $2.70-2.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\right.$-triazole), 2.33 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}$), $2.32(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}$), $1.98-1.88(\mathrm{~m}, 2 \mathrm{H}$, cyclohexyl), $1.76-1.62$ (m, 4H, cyclohexyl), $1.41-1.30$ (m, 4H, cyclohexyl); ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\mathrm{d}_{6}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=166.56,152.64,149.03$, $146.21,146.04,125.82,121.95,121.54,116.18,115.37,113.75,62.72,48.90,35.01,33.02$, 26.08, 25.99. HRMS m/z calc. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}+\left(\mathrm{H}^{+}\right): 358.1761$; detected : 358.1760.
(E)-2-(4-(Cyclohex-1-en-1-yl)-1H-1,2,3-triazol-1-yl)ethyl 3-(3,4-dihydroxyphenyl)acrylate (15d)

Following general procedure III with acetylated caffeoyl derivative 13d, compound 15d was obtained as a white powder, yield $=75 \% . \mathrm{Mp}=219-220{ }^{\circ} \mathrm{C}$ (dec.), $\mathrm{R}_{\mathrm{f}}=0.35(5 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{-\mathrm{d}_{6}}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=9.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 9.16(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 8.15(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 7.45\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.9 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 7.04\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right)$, $7.00\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.76\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.40-6.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}-$ triazole), $6.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.9 \mathrm{~Hz},=\mathrm{CHCO}), 2.32-2.38(\mathrm{~m}, 2 \mathrm{H}$, cyclohexenyl), 2.15-2.13(m, 2 H , cyclohexenyl), $1.72-1.66\left(\mathrm{~m}, 2 \mathrm{H}\right.$, cyclohexenyl), $1.63-1.59\left(\mathrm{~m}, 2 \mathrm{H}\right.$, cyclohexenyl), ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $_{6}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=166.60,149.03,148.57,146.25,146.04,127.91$, 125.81, 123.87, 121.97, 120.78, 116.18, 115.38, 113.72, 62.70, 49.06, 26.26, 25.11, 22.48, 22.33. HRMS m/z calc. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}+\left(\mathrm{H}^{+}\right): 356.1605$; detected : 356.1611.

(E)-2-(4-Phenyl-1H-1,2,3-triazol-1-yl)ethyl 3-(3,4-dihydroxyphenyl)acrylate (15e)

Following general procedure III with acetylated caffeoyl derivative 13e, compound 15e was obtained as a light brown powder, yield $=51 \%$. $\mathrm{Mp}=193-195{ }^{\circ} \mathrm{C}(\mathrm{dec}),. \mathrm{R}_{\mathrm{f}}=0.32$ (5% $\left.\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}_{-\mathrm{d}_{6}}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=9.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 9.17(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 8.68(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 7.67\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.49-7.43\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}+=\mathrm{CHC}_{\mathrm{ar}}\right)$, $7.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.05\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 6.99\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.76\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right)$, $6.25(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.9 \mathrm{~Hz},=\mathrm{CHCO}), 4.62\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.57(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\mathrm{d}_{6}, 25{ }^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=166.64,149.04,146.87,146.30$, $146.04,131.19,129.38,128.34,125.81,125.61,122.34,121.99,116.19,115.40,113.70,62.67$, 49.36. $\mathrm{HRMS} \mathrm{m} / \mathrm{z}$ calc. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}+\left(\mathrm{H}^{+}\right): 352.1292$; detected : 352.1302.
(E)-2-(4-(p-Tolyl)-1H-1,2,3-triazol-1-yl)ethyl 3-(3,4-dihydroxyphenyl)acrylate (15f)

Following general procedure III with acetylated caffeoyl derivative 13f, compound $\mathbf{1 5 f}$ was obtained as a white powder, yield $=79 \% . \mathrm{Mp}=181-182{ }^{\circ} \mathrm{C}$ (dec.), $\mathrm{R}_{\mathrm{f}}=0.26$ (5\% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=9.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 9.156$ (br s, 1H, OH), $8.60\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}\right.$), $7.74\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.47(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.9 \mathrm{~Hz}$, $\left.=\mathrm{CHC}_{\mathrm{ar}}\right), 7.26\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.04\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 6.99\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.75(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.25(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.9 \mathrm{~Hz},=\mathrm{CHCO}), 4.74\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.56(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}$), $2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\mathrm{d}_{6}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})$ $=166.64,149.03,146.94,146.29,146.03,137.63,129.92,128.42,125.82,125.55,122.00$, $121.89,116.17,115.38,113.72,62.67,49.31,21.30$. HRMS m/z calc. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}+\left(\mathrm{H}^{+}\right)$: 366.1448; detected : 366.1454.
(E)-2-(4-(4-Fluorophenyl)-1H-1,2,3-triazol-1-yl)ethyl 3-(3,4-dihydroxyphenyl)acrylate (15g)

Following general procedure III with acetylated caffeoyl derivative $\mathbf{1 3 g}$ compound $\mathbf{1 5 g}$ was obtained as a white powder, yield $=63 \% . \mathrm{Mp}=238-240{ }^{\circ} \mathrm{C}$ (dec.), $\mathrm{R}_{\mathrm{f}}=0.28(5 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{-\mathrm{d}_{6}}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=9.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 9.15(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 8.66(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 7.90\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.47\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.9 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right)$,
$7.29\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.04\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 6.99\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2$ $\left.\mathrm{Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.25(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz},=\mathrm{CHCO}), 4.75\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.6 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.6$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{~N}$), ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- $\mathrm{d}_{6}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=166.64,163.44,161.01,149.04$, $146.29,146.03,127.75,127.67,127.58,125.82,122.23,122.00,116.42,116.20,116.17,115.39$, 113.71, 62.65, 49.39. HRMS m/z calc. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{FN}_{3} \mathrm{O}_{4}+\left(\mathrm{H}^{+}\right): 370.1198$; detected : 370.1201.
(E)-2-(4-(4-Formylphenyl)-1H-1,2,3-triazol-1-yl)ethyl 3-(3,4-dihydroxyphenyl)acrylate (15h)

Following general procedure III with acetylated caffeoyl derivative 13h, compound $\mathbf{1 5 h}$ was obtained as a beige powder, yield $=61 \% . \mathrm{Mp}=220-230{ }^{\circ} \mathrm{C}($ dec. $), \mathrm{R}_{\mathrm{f}}=0.32(5 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=10.019(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 9.65$ (br s, 1H, OH), $9.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 8.88(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 8.10\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 8.00(\mathrm{~d}$, $\left.2 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.47\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.8 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 7.04\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 6.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2$ $\left.\mathrm{Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.75\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.9 \mathrm{~Hz},=\mathrm{CHCO}), 4.79(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.7$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2}\right), 4.58\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right),{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.\mathrm{d}_{6}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=$ $192.99,166.63,149.04,146.32,146.03,145.79,136.79,135.84,130.80,126.01,125.81,123.94$, $122.00,116.17,115.39,113.69,62.60,49.54$. HRMS m / z calc. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5}+\left(\mathrm{H}^{+}\right)$: 380.1241; detected : 380.1250.

(E)-N-(2-(1H-1,2,3-Triazol-1-yl)ethyl)-3-(3,4-dihydroxyphenyl)acrylamide (16a)

Following general procedure III with acetylated caffeoyl derivative 14a, compound 16a was obtained as a white powder, yield $=54 \% . \mathrm{Mp}=163-165{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.15\left(7.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=9.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 9.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 8.19$ (br s, $1 \mathrm{H}, \mathrm{NH}$), $8.12(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 7.72(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 7.24\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right.$), $6.94\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 6.83\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.75\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7$ $\mathrm{Hz},=\mathrm{CHCO}), 4.50\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz}\right.$, CH-triazole), $3.61\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{NHCH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d $_{6}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=166.27,147.88,146.00,140.02,133.67,126.65$, 125.51, 120.95, 118.37, 116.22, 114.32, 49.17, 39.36. HRMS m/z calc. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}+\left(\mathrm{H}^{+}\right)$: 275.1139; detected : 274.1146

(E)-3-(3,4-Dihydroxyphenyl)-N-(2-(4-propyl-1H-1,2,3-triazol-1-yl)ethyl)acrylamide (16b)

Following general procedure III with acetylated caffeoyl derivative 14b, compound $\mathbf{1 6 b}$ was obtained as a grey solide, yield $=55 \% . \mathrm{Mp}=163-165^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.33 \%\left(7.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{MeOD}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=7.73(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 7.39(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz}$, $\left.=\mathrm{CHC}_{\mathrm{ar}}\right), 7.00\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.90\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.77(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4$ $\left.\mathrm{Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.31(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz}, \mathrm{CHCO}), 4.56\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$-triazole $), 3.77(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $5.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}$), $2.68\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.97(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{MeOD}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=168.19,149.67,147.52,145.34$, $141.36,126.70,122.23,120.79,116.37,115.03,113.62,49.02,39.25,26.87,22.35,12.55$. HRMS m/z calc. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}+\left(\mathrm{H}^{+}\right): 317.1608$; detected : 317.1612.

(E)-N-(2-(4-Cyclohexyl-1H-1,2,3-triazol-1-yl)ethyl)-3-(3,4-dihydroxyphenyl)acrylamide (16c)

Following general procedure III with acetylated caffeoyl derivative $\mathbf{1 4} \mathbf{c}$, compound $\mathbf{1 6 c}$ was obtained as a beige solide, yield $=81 \% . \mathrm{Mp}=183-184, \mathrm{R}_{\mathrm{f}}=0.42 \%\left(7.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $\left.{ }_{6}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=9.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 9.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 8.16$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{NH}), 7.81(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 7.24\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 6.93(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.9 \mathrm{~Hz}$, $\left.H_{a r}\right), 6.83\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.74\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7$ $\mathrm{Hz},=\mathrm{CHCO}), 4.41\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$-triazole), $3.59(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{NHCH} 2), 2.63(\mathrm{~m}$, 1H, CH-triazole), 1.98-1.91 (m, 2H, cyclohexyl), 1.73-1.67 (m, 2H, cyclohexyl), 1.41-1.19 $\left(\mathrm{m}, 6 \mathrm{H}\right.$, cyclohexyl). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}_{6}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=166.28,152.45,147.86$, 145.99 , 140.00 , $126.68,121.31,120.96,118.41,116.19,114.28,49.15,39.47,35.05,33.00$, 26.11, 26.01. HRMS m/z calc. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}+\left(\mathrm{H}^{+}\right)$: 357.1912; detected : 357.1930.
(E)-N-(2-(4-(Cyclohex-1-en-1-yl)-1H-1,2,3-triazol-1-yl)ethyl)-3-(3,4dihydroxyphenyl)acrylamide (16d)

Following general procedure III with acetylated caffeoyl derivative $\mathbf{1 4 d}$, compound $\mathbf{1 6 d}$ was obtained as a beige solide, yield $=80 \% . \mathrm{Mp}=168-169{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.40 \%\left(7.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{MeOD}, 25{ }^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=7.90(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 7.39(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz}$,
$=\mathrm{CHC}_{\mathrm{ar}}$), $7.00\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 6.91\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.77\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.44(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{CH}=\mathrm{C}$-triazole $), 6.31(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHCO}), 4.56\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$-triazole $)$, $3.77\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{NHCH}_{2}\right), 2.38(\mathrm{~m}, 2 \mathrm{H}$, cyclohexenyl), 2.31 ($\mathrm{m}, 2 \mathrm{H}$, cyclohexenyl), 1.78 (m, 2H, cyclohexenyl), 1.69 (m, 2H, cyclohexenyl). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}, 25{ }^{\circ} \mathrm{C}$), δ $(\mathrm{ppm})=168.24,149.10,147.52,145.33,141.38,127.01,126.71,124.63,120.82,119.92$, $116.38,115.03,113.63,49.14,39.26,25.91,24.82,22.16,21.87$. HRMS m / z calc. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}+\left(\mathrm{H}^{+}\right): 355.1765$; detected : 355.1772
(E)-3-(3,4-Dihydroxyphenyl)-N-(2-(4-phenyl-1H-1,2,3-triazol-1-yl)ethyl)acrylamide (16e)

Following general procedure III with acetylated caffeoyl derivative 14e, compound 16e was obtained as a beige solide, yield $=73 \% . \mathrm{Mp}=208{ }^{\circ} \mathrm{C}($ dec. $), \mathrm{R}_{\mathrm{f}}=0.40 \%\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=9.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 9.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 8.59$ (s, 1H, =CHN), $8.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.25$ $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 6.93\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 6.83\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.73(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.3$ $\left.\mathrm{Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHCO}), 4.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$-triazole $), 3.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d $_{6}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=166.34,147.88,146.73,145.99,140.07$, 131.31, 129.36, 128.26, 126.65, 125.57, 122.18, 120.97, 118.37, 116.19, 114.31, 49.69, 39.29. HRMS m / z calc. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}+\left(\mathrm{H}^{+}\right): 351.1452$; detected : 351.1447.

(E)-3-(3,4-Dihydroxyphenyl)-N-(2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)ethyl)acrylamide (16f)

Following general procedure III with acetylated caffeoyl derivative 14f, compound $\mathbf{1 6 f}$ was obtained as a beige solide, yield $=66 \% . \mathrm{Mp}=220{ }^{\circ} \mathrm{C}($ dec. $), \mathrm{R}_{\mathrm{f}}=0.34 \%\left(7.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=9.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 9.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.52(\mathrm{~s}$, $1 \mathrm{H},=\mathrm{CHN}), 8.21(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{NH}), 7.73\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.27-7.23\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}+\right.$ $=\mathrm{CHC}_{\text {ar }}$), $6.93\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.83\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.73(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2$ $\left.\mathrm{Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHCO}), 4.51\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$-triazole), $3.66(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}$ $=5.7 \mathrm{~Hz}, \mathrm{NHCH}_{2}$), $2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d ${ }_{6}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=$ 166.33, 147.87, 146.79, 145.98, 140.06, 137.52, 129.90, 128.55, 126.66, 125.52, 121.74, 120.96,
$118.39,116.20,114.32,49.64,39.32,21.30$. HRMS m / z calc. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}+\left(\mathrm{H}^{+}\right): 365.1608$; detected : 365.1614.
(E)-3-(3,4-Dihydroxyphenyl)-N-(2-(4-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl)ethyl)acrylamide (16g)

Following general procedure III with acetylated caffeoyl derivative $\mathbf{1 4 g}$, compound $\mathbf{1 6 g}$ was obtained as a light yellow solid, yield $=68 \%$. $\mathrm{Mp}=226{ }^{\circ} \mathrm{C}$ (dec.), $\mathrm{R}_{\mathrm{f}}=0.36 \%$ (7.5\% $\left.\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=9.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 9.13(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}), 8.58(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 8.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 7.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.31-7.23\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}+\right.$ $=$ CHC $_{\text {ar }}$), $6.93\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.83\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2$ $\mathrm{Hz}, \mathrm{H}_{\mathrm{ar}}$), $6.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHCO}), 4.52\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$-triazole), $3.66(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}$ $\left.=5.7 \mathrm{~Hz}, \mathrm{NHCH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $_{6}, 25^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=166.34,163.39,160.96$, $147.88,145.99,145.88,140.07,127.90,127.61,127.53,126.65,122.10,120.98,118.36,116.41$, 116.19, 114.30, 49.72, 39.36. HRMS m/z calc. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{FN}_{4} \mathrm{O}_{3}+\left(\mathrm{H}^{+}\right): 369.1357$; detected : 369.1362 .
(E)-3-(3,4-Dihydroxyphenyl)-N-(2-(4-(4-formylphenyl)-1H-1,2,3-triazol-1-yl)ethyl)acrylamide (16h)

Following general procedure III with acetylated caffeoyl derivative $\mathbf{1 4 h}$, compound $\mathbf{1 6 h}$ was obtained as a white solid, yield $=58 \%$. $\mathrm{Mp}=228-230{ }^{\circ} \mathrm{C}$ (dec.), $\mathrm{R}_{\mathrm{f}}=0.20 \%$ (5% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}, 2{ }^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm})=10.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 9.40(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), $9.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 8.80(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHN}), 8.21(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{NH}), 8.09(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}$ $\left.=8.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.99\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 7.25\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHC}_{\mathrm{ar}}\right), 6.93\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right)$, $6.83\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.73\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ar}}\right), 6.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz},=\mathrm{CHCO})$, $4.55\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$-triazole), $3.69\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{NHCH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- $\left.\mathrm{d}_{6}, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm})=193.00,163.35,147.89,145.99,145.65,140.09,136.94,135.78$, $130.80,126.64,125.96,123.82,120.98,118.35,116.20,114.31,49.89,39.47$. HRMS m/z calc. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}+\left(\mathrm{H}^{+}\right): 379.1401$; detected : 379.1405.

