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We propose a delayed SIRmodel with saturated incidence rate.The delay is incorporated into themodel in order tomodel the latent
period. The basic reproductive number 𝑅

0
is obtained. Furthermore, using time delay as a bifurcation parameter, it is proven that

there exists a critical value of delay for the stability of diseases prevalence.When the delay exceeds the critical value, the system loses
its stability and a Hopf bifurcation occurs. The model is extended to assess the impact of some control measures, by reformulating
themodel as an optimal control problemwith vaccination and treatment.The existence of the optimal control is also proved. Finally,
some numerical simulations are performed to verify the theoretical analysis.

1. Introduction

Mathematical modelling is of considerable importance in the
study of epidemiology because it may provide understanding
of the underlying mechanisms which influence the spread
of disease and may suggest control strategies. The first
known mathematical model of epidemiology is formulated
and solved by Daniel Bernoulli in 1760. The foundations
of the modern mathematical epidemiology based on the
compartment models were laid in the early 20th century
[1]. Since the middle of the 20th century, mathematical
epidemiology has grown exponentially. In particular, the SIR
epidemic model is known as one of the most basic epidemic
models, in which total host population is divided into three
classes called susceptible 𝑆, infective 𝐼, and removed 𝑅. The
basic and important research subjects for these systems are
the existence of the threshold value which distinguishes
whether the infectious disease will die out, the local stability
of the disease-free equilibrium and the endemic equilibrium,
the Hopf bifurcation, the existence of periodic solutions,
optimal control, and so forth. Many models in the literature
represent the dynamics of disease by systems of ordinary
differential equations without time delay. In order to reflect

the real dynamical behaviors of models that depend on the
past history of systems, it is reasonable to incorporate time
delays into the systems [2]. In fact, inclusion of delays in
epidemic models makes them more realistic by allowing the
description of the effects of disease latency or immunity [3, 4].

In this paper, we propose the delayed SIR epidemicmodel
governed by the following equations [5]:

𝑑𝑆

𝑑𝑡
= 𝑟 (1 −

𝑆 (𝑡)

𝐾
) 𝑆 (𝑡) −

𝛽𝑆 (𝑡) 𝐼 (𝑡)

1 + 𝛼
2
𝐼 (𝑡)

,

𝑑𝐼

𝑑𝑡
=

𝛽𝑆 (𝑡 − 𝜏) 𝐼 (𝑡 − 𝜏)

1 + 𝛼
2
𝐼 (𝑡 − 𝜏)

− (𝜇 + 𝛼 + 𝛾) 𝐼 (𝑡) ,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 (𝑡) − 𝜇𝑅 (𝑡) ,

(1)

where 𝑆 is the number of susceptible individuals, 𝐼 is
the number of infectious individuals, 𝑅 is the number of
recovered individuals, 𝑟 is the specific growth rate, 𝐾 is the
environment capacity, 𝛽 is the transmission rate, 𝜇 is the
natural death of the population, 𝛼 is the death rate due to
disease, 𝛼

2
is the parameters that measure the inhibitory
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effect, 𝛾 is the recovery rate of the infectious individuals, and
𝜏 is the incubation period.

This model takes into account a number of key biological
assumptions.

(i) It is more reasonable to assume that the population of
a given region obeys logistic growth due to crowding
and limited sources. Epidemic models with logistic or
generalized logistic demographic structure have been
extensively studied (see, e.g., [6, 7]).

(ii) Since nonlinearity in the incidence rates has been
observed in disease transmission dynamics, it has
been suggested that the standard bilinear incidence
rate will be modified into a nonlinear incidence rate
by many authors (see, e.g., [8, 9]). In this work we use
a nonlinear incidence rate of the form 𝛽𝑆𝐼/(1 + 𝛼

2
𝐼).

The aim is to gain some insights into the best intervention for
minimizing the transmission of diseasewithin the population
and to explore the impacts of various intervention scenarios,
namely, vaccination and treatment. We analyse the stability
and the Hopf bifurcation of the model; then, we incorporate
into the model appropriate cost functions in order to study
and determine the possible impacts of these strategies on
controlling the disease. We give the necessary conditions for
optimal control of the disease using Pontryagin’s maximum
principle, in order to determine optimal strategies for con-
trolling the spread of the disease.

The organization of the paper is as follows: we examine
the existence and stability behaviour of the equilibrium
solutions of this model and we are particularly interested in
whether the unique endemic equilibrium can be destabilized
by introducing a time delay to represent the effect of fading
of vaccination and whether stable endemic cycles can arise
by the Hopf bifurcation from the initially stable endemic
equilibrium in Section 2. In Section 3, we formulate an
optimal control problem and we use Pontryagin’s maximum
principle with delay given in [10] to characterize it. Our
conclusions are discussed in Section 4.

2. Stability Analysis and the Hopf
Bifurcation Occurrence

In this section, local stability of each feasible equilibrium
of the model (1) is established; conditions are found under
which the Hopf bifurcation occurs and periodic solutions
emerge as the delay crosses some critical value. Some numer-
ical simulations to illustrate the theoretical results are given.

Before going into any detail, we simplify the model since
the first two equations of (1) are independent of the third one;
it suffices to consider the first two equations.Thus, we restrict
our attention to the following reduced model:

𝑑𝑆

𝑑𝑡
= 𝑟 (1 −

𝑆 (𝑡)

𝐾
) 𝑆 (𝑡) −

𝛽𝑆 (𝑡) 𝐼 (𝑡)

1 + 𝛼
2
𝐼 (𝑡)

,

𝑑𝐼

𝑑𝑡
=

𝛽𝑆 (𝑡 − 𝜏) 𝐼 (𝑡 − 𝜏)

1 + 𝛼
2
𝐼 (𝑡 − 𝜏)

− (𝜇 + 𝛼 + 𝛾) 𝐼 (𝑡) .

(2)

Now, we will find the equilibria of system (2) and investigate
their dynamical features. System (2) always has two disease-
free equilibria 𝑃

0
= (0, 0) and 𝑃

1
= (𝐾, 0). Further, if

𝑅
0
=

𝛽𝐾

𝜇 + 𝛼 + 𝛾
> 1, (3)

system (2) admits a unique endemic equilibrium 𝑃
∗

=

(𝑆
∗
, 𝐼
∗
), given by

𝑆
∗
=

(𝜇
1
+ 𝛾) (1 + 𝛼

2
𝐼
∗
)

𝛽
,

𝐼
∗
=

[𝛼
2
𝑟𝛽𝐾 − 2𝛼

2
𝑟 (𝜇
1
+ 𝛾) − 𝛽

2
𝐾] + √Δ

2𝑟𝛼
2

2
(𝜇
1
+ 𝛾)

,

(4)

with

Δ = [𝛼
2
𝑟𝛽𝐾 − 2𝛼

2
𝑟 (𝜇
1
+ 𝛾) − 𝛽

2
𝐾]
2

+ 4𝛼
2

2
𝑟 (𝜇
1
+ 𝛾) (𝑟𝛽𝐾 − 𝑟 (𝜇

1
+ 𝛾)) .

(5)

Now, let us start to discuss the local behavior of the disease-
free equilibrium 𝑃

0
. We linearize system (2) around 𝑃

0
; we

have

𝑑𝑆

𝑑𝑡
= 𝑟𝑆 (𝑡) ,

𝑑𝐼

𝑑𝑡
= − (𝜇

1
+ 𝛾) 𝐼 (𝑡) .

(6)

The characteristic equation associated with system (6) is

Δ (𝜆, 𝜏) = (𝜆 − 𝑟) (𝜆 + 𝜇
1
+ 𝛾) = 0. (7)

Proposition 1. The disease-free equilibrium point 𝑃
0
is unsta-

ble.

Proof. It is clear that (7) has two roots 𝜆
1
= 𝑟 > 0 and 𝜆

2
=

−(𝜇
1
+ 𝛾) < 0. Whence 𝑃

0
is unstable.

We turn to study the local behavior of the disease-free
equilibrium 𝑃

1
.

Let 𝑥 = 𝑆 − 𝐾 and 𝑦 = 𝐼. The linearized system of (2)
around 𝑃

1
takes the form

𝑑𝑥

𝑑𝑡
= − 𝑟𝑥 (𝑡) − 𝛽𝐾𝑦 (𝑡) ,

𝑑𝑦

𝑑𝑡
= 𝛽𝐾𝑦 (𝑡 − 𝜏) − (𝜇

1
+ 𝛾) 𝑦 (𝑡) .

(8)

The characteristic equation associated with system (8) is

Δ (𝜆, 𝜏) = (𝜆 + 𝑟) [𝜆 + (𝜇
1
+ 𝛾) − 𝛽𝐾𝑒

−𝜆𝜏
] = 0. (9)

Proposition 2. If 𝑅
0
< 1, then the disease-free equilibrium

𝑃
1
is locally asymptotically stable. And if 𝑅

0
> 1, then the

equilibrium point 𝑃
1
is unstable.
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Proof. Indeed, if 𝜏 = 0, then (9) becomes

Δ (𝜆, 0) = (𝜆 + 𝑟) [𝜆 + (𝜇
1
+ 𝛾) (1 − 𝑅

0
)] = 0. (10)

It is easy to see that (10) has two roots 𝜆
1
= −𝑟 < 0 and

𝜆
2
= (𝜇
1
+ 𝛾)(𝑅

0
− 1). So, if 𝑅

0
< 1, the equilibrium 𝑃

1

is asymptotically stable and if 𝑅
0
> 1, the equilibrium 𝑃

1
is

unstable.
By Rouché’s Theorem [8, p. 248], it follows that if

instability occurs for a particular value of the delay 𝜏, a
characteristic root of (9) must intersect the imaginary axis.
Suppose that (9) has a purely imaginary root 𝑖𝜔, with 𝜔 > 0.
Then, by separating real and imaginary parts in (9), we have

𝛽𝐾 cos (𝜔𝜏) = 𝜇 + 𝛾,

𝛽𝐾 sin (𝜔𝜏) = − 𝜔.

(11)

Hence,

𝜔
2
= [𝛽𝐾 + 𝜇

1
+ 𝛾] (𝜇

1
+ 𝛾) (𝑅

0
− 1) . (12)

So, if 𝑅
0
< 1, (9) has no purely imaginary root, and as 𝑃

1

is asymptotically stable for 𝜏 = 0 it remains asymptotically
stable for all 𝜏 ≥ 0.

If 𝑅
0
< 1, then the disease-free equilibrium 𝑃

1
is unstable

for 𝜏 = 0. By Kuang’s Theorem [4, p. 77], it follows that 𝑃
1
is

unstable for all 𝜏 ≥ 0. This concludes the proof.

Next, we establish the local stability of the endemic
equilibrium 𝑃

∗ and we determine the conditions under
which the Hopf bifurcation occurs.

Let 𝑥 = 𝑆 − 𝑆
∗ and 𝑦 = 𝐼 − 𝐼

∗. The linearized system of
(2) around 𝑃

∗
= (𝑆
∗
, 𝐼
∗
) takes the form

𝑑𝑥

𝑑𝑡
= −

𝑟𝑆
∗

𝐾
𝑥 (𝑡) −

𝛽𝑆
∗

(1 + 𝛼
2
𝐼∗)
2
𝑦 (𝑡) ,

𝑑𝑦

𝑑𝑡
=

𝛽𝐼
∗

1 + 𝛼
2
𝐼∗

𝑥 (𝑡 − 𝜏) +
𝛽𝑆
∗

(1 + 𝛼
2
𝐼∗)
2
𝑦 (𝑡 − 𝜏)

− (𝜇
1
+ 𝛾) 𝑦 (𝑡) ,

(13)

and the characteristic equation is given by

Δ (𝜆, 𝜏) = 𝜆
2
+ 𝑎𝜆 + 𝑏𝜆 exp (−𝜆𝜏) + 𝑑 exp (−𝜆𝜏) + 𝑐 = 0,

(14)

with

𝑎 = (𝜇
1
+ 𝛾) +

𝑟𝑆
∗

𝐾
, 𝑏 = −

𝛽𝑆
∗

(1 + 𝛼
2
𝐼∗)
2
,

𝑐 =
𝑟 (𝜇
1
+ 𝛾) 𝑆

∗

𝐾
, 𝑑 =

𝛽
2
𝐼
∗
𝑆
∗

(1 + 𝛼
2
𝐼∗)
3
−

𝑟𝛽𝑆
∗
2

𝐾(1 + 𝛼
2
𝐼∗)
2
.

(15)

We begin by considering the case without delay 𝜏 = 0. We
have the following proposition.

Proposition 3. If 𝑅
0
> 1, then the equilibrium point 𝑃∗ is

asymptotically stable for 𝜏 = 0.

Proof. Indeed, if 𝜏 = 0, then (14) becomes

Δ (𝜆, 0) = 𝜆
2
+ (𝑎 + 𝑏) 𝜆 + (𝑐 + 𝑑) = 0, (16)

with

𝑎 + 𝑏 =
𝑟𝑆
∗

𝐾
+ (𝜇
1
+ 𝛾) −

𝛽𝑆
∗

(1 + 𝛼
2
𝐼∗)
2
,

𝑐 + 𝑑 =
𝛽
2
𝐼
∗
𝑆
∗

(1 + 𝛼
2
𝐼∗)
3
+
𝑟𝑆
∗

𝐾
[(𝜇
1
+ 𝛾) −

𝛽𝑆
∗

(1 + 𝛼
2
𝐼∗)
2
] .

(17)

Since (𝜇
1
+𝛾)−𝛽𝑆

∗
/(1 + 𝛼

2
𝐼
∗
)
2
= (𝜇
1
+𝛾)[𝛼

2
𝐼
∗
/(1+𝛼

2
𝐼
∗
)] >

0, it follows that 𝑎 + 𝑏 > 0 and 𝑐 + 𝑑 > 0. So, according to the
Hurwitz criterion, all roots of (16) have negative real parts.
Hence, 𝑃∗ is asymptotically stable.

In the following, we treat the case of positive delay 𝜏 > 0.
Let

(𝐻
1
): 𝑆
∗
2

+
2 (𝜇
1
+ 𝛾)

𝛽
𝑆
∗
−
𝐾 (𝜇
1
+ 𝛾)

𝛽
> 0,

(𝐻
2
): 𝑆
∗
2

+
2 (𝜇
1
+ 𝛾)

𝛽
𝑆
∗
−
𝐾 (𝜇
1
+ 𝛾)

𝛽
< 0.

(18)

We have the following two results.

Theorem 4. If 𝑅
0
> 1 and the assumption (𝐻

1
) is satisfied,

then the equilibrium point 𝑃∗ is asymptotically stable for all
𝜏 ≥ 0.

Proof. Indeed, it follows that if instability occurs for a par-
ticular value of the delay 𝜏, a characteristic root of (14) must
intersect the imaginary axis. If (14) has a purely imaginary
root 𝑖𝜔, with 𝜔 > 0, then, by separating real and imaginary
parts in (14), we have

𝑑 cos (𝜔𝜏) + 𝑏𝜔 sin (𝜔𝜏) = 𝜔
2
− 𝑐,

𝑏𝜔 cos (𝜔𝜏) − 𝑑 sin (𝜔𝜏) = −𝑎𝜔.

(19)

Hence,

𝜔
4
+ (𝑎
2
− 𝑏
2
− 2𝑐) 𝜔

2
+ 𝑐
2
− 𝑑
2
= 0. (20)

From the expressions of a, b, c, and d, we have

𝑐 + 𝑑 =
𝑟𝑆
∗

𝐾
[(𝜇
1
+ 𝛾) −

𝛽𝑆
∗

(1 + 𝛼
2
𝐼∗)
2
] +

𝛽
2
𝐼
∗
𝑆
∗

(1 + 𝛼
2
𝐼∗)
3
,

𝑐 − 𝑑 =
𝑟𝛽

𝐾 (1 + 𝛼
2
𝐼∗)

[𝑆
∗
2

+
2 (𝜇
1
+ 𝛾)

𝛽
𝑆
∗
−
𝐾 (𝜇
1
+ 𝛾)

𝛽
] ,

𝑎
2
− 𝑏
2
− 2𝑐 = [(𝜇

1
+ 𝛾) −

𝛽𝑆
∗

(1 + 𝛼
2
𝐼∗)
2
]

× [(𝜇
1
+ 𝛾) +

𝛽𝑆
∗

(1 + 𝛼
2
𝐼∗)
2
] + (

𝑟𝑆
∗

𝐾
)

2

.

(21)
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Therefore, if 𝑅
0
> 1 and if the assumption (𝐻

1
) is satisfied,

then 𝑐
2
− 𝑑
2
> 0 and 𝑎

2
− 𝑏
2
− 2𝑐 > 0. Hence, according

to the criterion of Hurwitz, (20) has no positive root. Thus,
the characteristic equation (14) admits no purely imaginary
root and, as 𝑃∗ is asymptotically stable for 𝜏 = 0, it is
asymptotically stable for all 𝜏 ≥ 0.

Theorem 5. If 𝑅
0
> 1 and if the assumption (𝐻

2
) is satisfied,

then there exists 𝜏
0

> 0 such that, for all 𝜏 ∈ [0, 𝜏
0
), the

equilibrium point𝑃∗ is asymptotically stable and, for all 𝜏 > 𝜏
0
,

the equilibrium point 𝑃∗ is unstable, and when 𝜏 = 𝜏
0
, a Hopf

bifurcation of periodic solutions of system (2) occurs at 𝑃∗.
With

𝜔
2

0
=
1

2
(𝑏
2
+ 2𝑐 − 𝑎

2
) +

1

2
[(𝑏
2
+ 2𝑐 − 𝑎

2
)
2

− 4 (𝑐
2
− 𝑑
2
)]

1/2

,

𝜏
0
=

1

𝜔
0

arccos
(𝑑 − 𝑎𝑏) 𝜔

2

0
− 𝑐𝑑

𝑏2𝜔
2

0
+ 𝑑2

,

(22)

where 𝑎, 𝑏, 𝑐, and 𝑑 are defined in (14).

Proof. The demonstration of stability of 𝑃
∗ under the

assumption (𝐻
2
) is similar to the previous demonstration. It

suffices to remark that if 𝑅
0
> 1 and if the assumption (𝐻

2
) is

satisfied, then we deduce that

𝑐 + 𝑑 =
𝑟𝑆
∗

𝐾
[(𝜇
1
+ 𝛾) −

𝛽𝑆
∗

(1 + 𝛼
2
𝐼∗)
2
] +

𝛽
2
𝐼
∗
𝑆
∗

(1 + 𝛼
2
𝐼∗)
3
> 0,

𝑐 − 𝑑 =
𝑟𝛽

𝐾 (1 + 𝛼
2
𝐼∗)

[𝑆
∗
2

+
2 (𝜇
1
+ 𝛾)

𝛽
𝑆
∗
−
𝐾 (𝜇
1
+ 𝛾)

𝛽
]

< 0.

(23)

Thus, the characteristic equation (14) has only one purely
imaginary root with positive imaginary part for the values of
𝜏 given by

𝜏
𝑛
=

1

𝜔
0

arccos
(𝑑 − 𝑎𝑏) 𝜔

2

0
− 𝑐𝑑

𝑏2𝜔
2

0
+ 𝑑2

+
2𝑛𝜋

𝜔
0

. (24)

Since 𝑃
∗ is asymptotically stable for 𝜏 = 0, by Kuang’s

Theorem [4, p. 77], the equilibrium𝑃
∗ is asymptotically stable

for 𝜏 ∈ [0, 𝜏
0
) and is unstable for all 𝜏 > 𝜏

0
.

Lastly, to complete the proof, it remains to verify the
transversality condition

[
𝑑Re(𝜆)
𝑑𝜏

]

𝜏=𝜏
0

̸= 0. (25)

We have

Sign[𝑑Re(𝜆)
𝑑𝜏

]

𝜏=𝜏
0

= Sign [𝑤4 − 𝑐
2
+ 𝑑
2
] . (26)

Consequently,

[
𝑑Re(𝜆)
𝑑𝜏

]

𝜏=𝜏
0

> 0. (27)

So the conditions of the Hopf bifurcation theorem are
satisfied, which completes the proof.

We conclude this section by giving some numerical
simulations to illustrate the theoretical results. We show
numerically that the system (2) has a family of periodic
solutions.

Proposition 6. Let 𝑟 = 0.1, 𝛽 = 0.1, 𝜎 = 0.96, 𝛾 = 0.5,
𝜇
1
= 0.5, and𝐾 = 70. Then, the system (2) has an equilibrium

point 𝑃∗ = (10.45, 0.875) which is asymptotically stable if 0 ≤

𝜏 < 1.509 and unstable if 𝜏 > 1.509 and when 𝜏 = 1.509, the
system has a family of periodic solutions (see Figure 1).

3. The Optimal Control Problem

Generally, the eradication of the disease may be too costly
when constant controls are considered as it requires treat-
ment/vaccination at higher levels all the time. For eradication
to be achievable in a finite time, we need to consider time-
dependent controls. We use the optimal control strategies
in the form of vaccination and treatment to decrease the
number of both susceptible and infectious individuals and
increase the total number of recovered individuals with
minimum investment in disease control. This problem is
formulated as an optimal control problem by introducing
two controls 𝑢

1
and 𝑢

2
, which represents the percentage of

susceptible and infected individuals being vaccinated and
treated, respectively, per unit of time. Hence, (1) becomes

𝑑𝑆

𝑑𝑡
= 𝑟 (1 −

𝑆 (𝑡)

𝐾
) 𝑆 (𝑡) −

𝛽𝑆 (𝑡) 𝐼 (𝑡)

1 + 𝛼
2
𝐼 (𝑡)

− 𝑢
1 (𝑡) 𝑆 (𝑡) ,

𝑑𝐼

𝑑𝑡
=

𝛽𝑆 (𝑡 − 𝜏) 𝐼 (𝑡 − 𝜏)

1 + 𝛼
2
𝐼 (𝑡 − 𝜏)

− (𝛼 + 𝜇 + 𝛾) 𝐼 (𝑡) − 𝑢
2
(𝑡) 𝐼 (𝑡) ,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 (𝑡) − 𝜇𝑅 (𝑡) + 𝑢

1 (𝑡) 𝑆 (𝑡) + 𝑢
2 (𝑡) 𝐼 (𝑡) ,

(28)

𝑆 (0) = 𝑆
0
, 𝐼 (0) = 𝐼

0
, 𝑅 (0) = 𝑅

0
. (29)

It is easy to show that there exists a unique solution
(𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) of system (28) with initial data (𝑆

0
, 𝐼
0
, 𝑅
0
) ∈

(𝐶
+
)
3.
In addition, for biological reasons, we assume that the

initial data for system (28) satisfy

𝑆
0
(𝑡) ≥ 0, 𝐼

0
(𝑡) ≥ 0, 𝑅

0
(𝑡) ≥ 0, 𝑡 ∈ [−𝜏, 0] . (30)

The problem is to minimize the objective (cost) functional
given by

𝐽 (𝑢
1
, 𝑢
2
)

= ∫

𝑡
𝑓

0

[𝐴
1
𝑆 (𝑡) + 𝐴

2
𝐼 (𝑡) +

1

2
𝐵
1
𝑢
2

1
(𝑡) +

1

2
𝐵
1
𝑢
2

2
(𝑡)] 𝑑𝑡.

(31)

Subject to the differential equations (28), where the first two
terms in the functional objective represent benefit of 𝑆(𝑡) and
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Figure 1: The equilibrium point 𝑃∗ = (10.45, 0.875) is asymptotically stable if 𝜏 = 0.2 and unstable if 𝜏 = 3 and when 𝜏 = 1.509, the system
has a family of periodic solutions.
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𝐼(𝑡) populations that we wish to reduce, the parameters 𝐴
1

and 𝐴
2
are positive constants to keep a balance in the size of

𝑆(𝑡) and 𝐼(𝑡), respectively. We use in the second term in the
functional objective the quadratic term (1/2)𝐵

𝑖
𝑢
2

𝑖
, 𝑖 = 1, 2,

where 𝐵
𝑖
is a positive weight parameter which is associated

with the control 𝑢
𝑖
(𝑡) and the square of the control variable

reflects the severity of the side effects of the vaccination and
treatment.

Our target is tominimize the objective functional defined
in (31) by decreasing the number of infected and susceptible
individuals and increasing the number of recovered individu-
als, by using possible minimal control variables (𝑢

1
(𝑡), 𝑢
2
(𝑡)).

In other words, the control variables (𝑢
1
(𝑡), 𝑢
2
(𝑡)) ∈ 𝑈ad rep-

resent the percentage of susceptible and infected individuals
being vaccinated and treated, respectively, per unit of time
and 𝑈ad is the control set defined by

𝑈ad = {𝑢 = (𝑢
1
, 𝑢
2
) | 𝑢
𝑖 (𝑡) measurable,

0 ≤ 𝑢
𝑖
(𝑡) ≤ 𝑢

max
𝑖

< ∞, 𝑡 ∈ [0, 𝑡
𝑓
] , 𝑖 = 1, 2} .

(32)

3.1. Existence of an Optimal Control. The existence of the
optimal control pair can be obtained using a result by Fleming
and Rishel in [11] and by Lukes in [12].

Theorem7. There exists a control function 𝑢∗
1
(𝑡), 𝑢∗
2
(𝑡) so that

𝐽 (𝑢
∗

1
(𝑡) , 𝑢
∗

2
(𝑡)) = min

(𝑢
1
,𝑢
2
)∈𝑈
𝑎𝑑

𝐽 (𝑢
1
(𝑡) , 𝑢
2
(𝑡)) . (33)

Proof. To prove the existence of an optimal control pair, it is
easy to verify the following.

(1) The set of controls and corresponding state variables
is nonempty.

(2) The admissible set 𝑈ad is convex and closed.
(3) The right-hand side of the state system (28) is

bounded by a linear function in the state and control
variables.

(4) The integrand of the objective functional is convex on
𝑈ad.

(5) There exists constants 𝜔
1
, 𝜔
2
> 0, and 𝜌 > 1 such

that the integrand 𝐿(𝑆, 𝐼, 𝑢
1
, 𝑢
2
) of the objective func-

tional satisfies 𝐿(𝑆, 𝐼, 𝑢
1
, 𝑢
2
) ≥ 𝜔

2
+ 𝜔
1
(|𝑢
1
|
2
+

|𝑢
2
|
2
)
𝜌/2 .

The result follows directly from [11].

3.2. Characterization of the Optimal Control. Before char-
acterizing the optimal control pair, we first define the
Lagrangian for the optimal control problem (28)–(31) by

𝐿 (𝑆, 𝐼, 𝑢
1
, 𝑢
2
) = 𝐴

1
𝑆 (𝑡) + 𝐴

2
𝐼 (𝑡) +

1

2
𝐵
1
𝑢
2

1
(𝑡) +

1

2
𝐵
2
𝑢
2

2
(𝑡)

(34)

and the Hamiltonian H for the control problem by

𝐻(𝑆, 𝐼, 𝑅, 𝑢
1
, 𝑢
2
, 𝜆
𝑖
, 𝑡) = 𝐿 (𝑆, 𝐼, 𝑢

1
, 𝑢
2
) +

𝑖=3

∑

𝑖=1

𝜆
𝑖
𝑓
𝑖
, (35)

where 𝜆
𝑖
, 𝑖 = 1, 2, 3, are the adjoint functions to be deter-

mined suitably. Next, by applying Pontryagin’s maximum
principle with delay given in [10] to the Hamiltonian 𝐻, we
obtain the following theorem.

Theorem 8. Given optimal controls 𝑢
∗

1
(𝑡) and 𝑢

∗

2
(𝑡) and

solutions 𝑆
∗
(𝑡), 𝐼∗(𝑡), and 𝑅

∗
(𝑡) of the corresponding state

systems (31) and (28), there exist adjoint variables 𝜆
1
, 𝜆
2
, and

𝜆
3
that satisfy

𝑑𝜆
1
(𝑡)

𝑑𝑡
= − 𝐴

1
+ 𝜆
1
(𝑡) (𝑟 (1 −

2𝑆
∗

𝐾
) − Λ

1
− 𝑢
∗

1
)

− 𝜆
3
(𝑡) 𝑢
∗

1
(𝑡) − 𝜒

[0,𝑡
𝑓
−𝜏]

𝜆
2
(𝑡 + 𝜏) Λ

1
,

𝑑𝜆
2
(𝑡)

𝑑𝑡
= − 𝐴

2
+ 𝜆
1 (𝑡) Λ 2 + 𝜆

2 (𝑡) (𝜇 + 𝛼 + 𝛾 + 𝑢
∗

2
)

− 𝜆
3 (𝑡) (𝛾 + 𝑢

∗

2
) − 𝜒
[0,𝑡
𝑓
−𝜏]

𝜆
2 (𝑡 + 𝜏) Λ 2,

𝑑𝜆
3
(𝑡)

𝑑𝑡
= 𝜆
3
(𝑡) 𝜇,

(36)

where Λ
1
= (𝛽𝐼
∗
(1+𝛼
2
𝐼
∗
)/(1 + 𝛼

2
𝐼
∗
)
2
) and Λ

2
= (𝛽𝑆

∗
/(1+

𝛼
2
𝐼
∗
)
2
)

with transversality conditions 𝜆
𝑖
(𝑡
𝑓
) = 0, 𝑖 = 1, 2, 3.

(37)

Furthermore, the optimal control pair 𝑢∗(𝑡) is given by

𝑢
∗

1
(𝑡) = max(min(

(𝜆
1
(𝑡) − 𝜆

3
(𝑡)) 𝑆
∗
(𝑡)

𝐵
1

, 𝑢
max
1

) , 0) ,

𝑢
∗

2
(𝑡) = max(min(

(𝜆
2
(𝑡) − 𝜆

3
(𝑡)) 𝐼
∗
(𝑡)

𝐵
2

, 𝑢
max
2

) , 0) .

(38)

Proof. Using Pontryagin’s maximum principle with delay in
state, we obtain the adjoint equations and transversality
conditions such that

𝑑𝜆
1
(𝑡)

𝑑𝑡
= −

𝜕𝐻

𝜕𝑆
− 𝜒
[0,𝑡
𝑓
−𝜏]

𝜕𝐻

𝜕𝑆
𝜏

(𝑡 + 𝜏) , 𝜆
1
(𝑡
𝑓
) = 0,

𝑑𝜆
2
(𝑡)

𝑑𝑡
= −

𝜕𝐻

𝜕𝐼
− 𝜒
[0,𝑡
𝑓
−𝜏]

𝜕𝐻

𝜕𝐼
𝜏

(𝑡 + 𝜏) , 𝜆
2
(𝑡
𝑓
) = 0,

𝑑𝜆
3
(𝑡)

𝑑𝑡
= −

𝜕𝐻

𝜕𝑅
− 𝜒
[0,𝑡
𝑓
−𝜏]

𝜕𝐻

𝜕𝑅
𝜏

(𝑡 + 𝜏) , 𝜆
3
(𝑡
𝑓
) = 0,

(39)

and by using the optimality conditions we find

𝜕𝐻

𝜕𝑢
1

= 𝐵
1
𝑢
∗
(𝑡) − 𝜆

1
(𝑡) 𝑆
∗
+ 𝜆
3
(𝑡) 𝑆
∗
= 0, at 𝑢

1
= 𝑢
∗

1
(𝑡) ,

𝜕𝐻

𝜕𝑢
2

= 𝐵
2
𝑢
∗
(𝑡) − 𝜆

2
(𝑡) 𝐼
∗
+ 𝜆
3
(𝑡) 𝑆
∗
= 0, at 𝑢

2
= 𝑢
∗

2
(𝑡) ,

(40)
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Step 1
for 𝑖 = −𝑚, . . . , 0, do

𝑆
𝑖
= 𝑆
0
, 𝐼
𝑖
= 𝐼
0
, 𝑅
𝑖
= 𝑅
0
, 𝑢𝑖
1
= 0 and 𝑢𝑖

2
= 0,

end for
for 𝑖 = 𝑛, . . . , 𝑛 + 𝑚, do

𝜆
𝑖

1
= 0, 𝜆𝑖

2
= 0, 𝜆𝑖

3
= 0,

Step 2

𝑆
𝑖+1

= 𝑆
𝑖
+ ℎ [𝑟 (1 −

𝑆
𝑖

𝐾
)𝑆
𝑖
−

𝛽𝑆
𝑖
𝐼
𝑖

1 + 𝛼
2
𝐼
𝑖

− 𝑢
𝑖

1
𝑆
𝑖
],

𝐼
𝑖+1

= 𝐼
𝑖
+ ℎ [

𝛽𝑆
𝑖−𝑚

𝐼
𝑖−𝑚

1 + 𝛼
2
𝐼
𝑖−𝑚

] − (𝛼 + 𝜇 + 𝛾 − 𝑢
𝑖

2
) 𝐼
𝑖
,

𝑅
𝑖+1

= 𝑅
𝑖
+ ℎ [𝛾𝐼

𝑖
− 𝜇𝑅
𝑖
+ 𝑢
𝑖

1
𝑆
𝑖
+ 𝑢
𝑖

2
𝐼
𝑖
],

Λ
𝑖

1
= [

𝛽𝐼
𝑖
(1 + 𝛼

2
𝐼
𝑖
)

(1 + 𝛼
2
𝐼
𝑖
)
2

],

Λ
𝑖

2
= [

𝛽𝑆
𝑖

(1 + 𝛼
2
𝐼
𝑖
)
2
],

𝜆
𝑛−𝑖−1

1
= 𝜆
𝑛−𝑖

1
+ ℎ [−𝐴

1
+ 𝜆
𝑛−𝑖

1
(𝑟 (1 −

2𝑆
𝑖

𝐾
) − Λ

𝑖

1
− 𝑢
𝑖

1
) − 𝜆

𝑛−𝑖

3
𝑢
𝑖

1
− 𝜒
[0,𝑡𝑓−𝜏]

(𝑡
𝑛−𝑖
) 𝜆
𝑛−𝑖+𝑚

2
Λ
𝑖+1

1
],

𝜆
𝑛−𝑖−1

2
= 𝜆
𝑛−𝑖

2
+ ℎ [−𝐴

2
+ 𝜆
𝑛−𝑖

1
Λ
𝑖+1

2
+ 𝜆
𝑛−𝑖

2
(𝛼 + 𝜇 + 𝛾 + 𝑢

𝑖

2
) − 𝜆
𝑛−𝑖

3
(𝛾 + 𝑢

𝑖

1
) − 𝜒
[0,𝑡𝑓−𝜏]

(𝑡
𝑛−𝑖
) 𝜆
𝑛−𝑖+𝑚

2
Λ
𝑖+1

2
],

𝜆
𝑛−𝑖−1

3
= 𝜆
𝑛−𝑖

3
+ ℎ [𝜇𝜆

𝑛−𝑖

3
],

Θ
𝑖+1

1
=
(𝜆
𝑛−𝑖

1
− 𝜆
𝑛−𝑖

3
)𝑆
𝑖+1

𝐵
1

Θ
𝑖+1

2
=
(𝜆
𝑛−𝑖

2
− 𝜆
𝑛−𝑖

3
)𝐼
𝑖+1

𝐵
2

𝑢
𝑖

1
= max (min (Θ𝑖+1

1
, 𝑢

max
1

) , 0)

𝑢
𝑖

2
= max (min (Θ𝑖+1

2
, 𝑢

max
2

) , 0)

Step 3
for 𝑖 = 1, . . . , 𝑛, do

write
𝑆
∗
(𝑡
𝑖
) = 𝑆
𝑖
, 𝐼
∗
(𝑡
𝑖
) = 𝐼
𝑖
, 𝑅
∗
(𝑡
𝑖
) = 𝑅
𝑖
, 𝑢
∗

1
(𝑡
𝑖
) = 𝑢
𝑖

1
and 𝑢∗

2
(𝑡
𝑖
) = 𝑢
𝑖

2
,

end for

Algorithm 1

which gives

𝑢
∗

1
(𝑡) =

(𝜆
1 (𝑡) − 𝜆

3 (𝑡)) 𝑆
∗
(𝑡)

𝐵
1

,

𝑢
∗

2
(𝑡) =

(𝜆
2 (𝑡) − 𝜆

3 (𝑡)) 𝐼
∗
(𝑡)

𝐵
2

.

(41)

Using the property of the control space, we obtain

𝑢
∗

1
(𝑡) = 0, if

(𝜆
1
(𝑡) − 𝜆

3
(𝑡)) 𝑆
∗
(𝑡)

𝐵
1

≤ 0,

𝑢
∗

1
(𝑡) =

(𝜆
1 (𝑡) − 𝜆

3 (𝑡)) 𝑆
∗
(𝑡)

𝐵
1

,

if 0 <
(𝜆
1 (𝑡) − 𝜆

3 (𝑡)) 𝑆
∗
(𝑡)

𝐵
1

< 𝑢
max
1

,

𝑢
∗

1
(𝑡) = 𝑢

max
1

, if
(𝜆
1
(𝑡) − 𝜆

3
(𝑡)) 𝑆
∗
(𝑡)

𝐵
1

≥ 𝑢
max
1

,

𝑢
∗

2
(𝑡) = 0, if

(𝜆
2
(𝑡) − 𝜆

3
(𝑡)) 𝐼
∗
(𝑡)

𝐵
2

≤ 0,

𝑢
∗

2
(𝑡) =

(𝜆
1
(𝑡) − 𝜆

3
(𝑡)) 𝐼
∗
(𝑡)

𝐵
2

,

if 0 <
(𝜆
1
(𝑡) − 𝜆

3
(𝑡)) 𝐼
∗
(𝑡)

𝐵
2

< 𝑢
max
2

,

𝑢
∗

2
(𝑡) = 𝑢

max
2

, if
(𝜆
1 (𝑡) − 𝜆

3 (𝑡)) 𝐼
∗
(𝑡)

𝐵
2

≥ 𝑢
max
2

.

(42)

So, the optimal control pair is characterized as (38).

Theoptimal control pair and the state are foundby solving
the following optimality system, which consists of the state
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system (28), the adjoint system (36), boundary conditions
(29) and (37), and the characterization of the optimal control
pair (𝑢∗

1
, 𝑢
∗

2
) (38):

𝑑𝑆
∗
(𝑡)

𝑑𝑡
= 𝑟 (1 −

𝑆
∗

𝐾
)𝑆
∗
−

𝛽𝑆
∗
𝐼
∗

1 + 𝛼
2
𝐼∗

−max(min(
(𝜆
1 (𝑡) − 𝜆

3 (𝑡)) 𝑆
∗

𝐵
1

, 𝑢
max
1

) , 0) 𝑆
∗
,

𝑑𝐼
∗
(𝑡)

𝑑𝑡
=

𝛽𝑆
∗
(𝑡 − 𝜏) 𝐼

∗
(𝑡 − 𝜏)

1 + 𝛼
2
𝐼∗ (𝑡 − 𝜏)

− (𝛼 + 𝜇 + 𝛾) 𝐼
∗

−max(min(
(𝜆
2 (𝑡) − 𝜆

3 (𝑡)) 𝐼
∗

𝐵
2

, 𝑢
max
2

) , 0) 𝐼
∗
,

𝑑𝑅
∗
(𝑡)

𝑑𝑡
= 𝛾𝐼
∗
− 𝜇𝑅
∗

+max(min(
(𝜆
1
(𝑡) − 𝜆

3
(𝑡)) 𝑆
∗

𝐵
1

, 𝑢
max
1

) , 0) 𝑆
∗

+max(min(
(𝜆
2
(𝑡) − 𝜆

3
(𝑡)) 𝐼
∗
(𝑡)

𝐵
2

, 𝑢
max
2

) ,

0) 𝐼
∗

𝑑𝜆
1 (𝑡)

𝑑𝑡
= − 𝐴

1
+ 𝜆
1
(𝑡) (𝑟 (1 −

2𝑆
∗

𝐾
) − 𝜆

1
(𝑡) − 𝑢

∗

1
)

− 𝜆
3
𝑢
∗

1
− 𝜒
[0,𝑡
𝑓
−𝜏]

𝜆
2 (𝑡 + 𝜏) Λ 1,

𝑑𝜆
2
(𝑡)

𝑑𝑡
= − 𝐴

2
+ 𝜆
1
(𝑡) Λ
2
+ 𝜆
2
(𝜇 + 𝛼 + 𝛾 + 𝑢

∗

2
)

− 𝜆
3
(𝛾 + 𝑢

∗

2
) − 𝜒
[0,𝑡
𝑓
−𝜏]

𝜆
2
(𝑡 + 𝜏) Λ

2
,

𝑑𝜆
3
(𝑡)

𝑑𝑡
= 𝜆
3
𝜇

(43)

with 𝜆
1
(𝑡
𝑓
) = 0, 𝜆

2
(𝑡
𝑓
) = 0, 𝜆

3
(𝑡
𝑓
) = 0, 𝑆(0) = 𝑆

0
, 𝐼(0) = 𝐼

0
,

and 𝑅(0) = 𝑅
0
, where Λ

1
= (𝛽𝐼
∗
(1 + 𝛼

2
𝐼
∗
)/(1 + 𝛼

2
𝐼
∗
)
2
) and

Λ
2
= (𝛽𝑆

∗
/(1 + 𝛼

2
𝐼
∗
)
2
).

3.3. Numerical Results and Discussions. In this paragraph, we
solve numerically the optimality system (43) and we present
the results found. In this formulation, there exist initial
conditions for the state variables and terminal conditions
for the adjoint variables. That is, the optimality system is a
two-point boundary value problem, with separated boundary
conditions at times 𝑡 = 0 and 𝑡 = 𝑡

𝑓
.

Solving the optimality system (43) requires an iterative
scheme developed byHattaf and Yousfi [13].This involves use
of an appropriate algorithm.

There exist a step size ℎ > 0 and integers (𝑛,𝑚) ∈ N2 with
𝜏 = 𝑚ℎ and 𝑡

𝑓
= 𝑛ℎ.

Table 1: Values of the parameters.

Parameters Descriptions Values
𝑆
0 Initial susceptible population 120
𝐼
0 Initial infected population 50
𝑅
0 Initial recovered population 100

𝜇 Natural death of the population 0.01
𝛼 Death rate due to disease 0.01

𝛼
2

Parameter that measures the
inhibitory effect 0.001

𝛽 Transmission rate 0.0001
𝛾 Recovery rate 0.0004
𝑟 Intrinsic birth rate 0.5
𝐾 Carrying capacity 300
𝐴
1 Weight parameter 1000

𝐴
2 Weight parameter 1000

𝐵
1 Weight parameter 5000

𝐵
2 Weight parameter 10

𝜏 Time incubation 1

For reasons of programming, we considerm knots to left
of 0 and right of 𝑡

𝑓
, and we obtain the following partition:

Δ = (𝑡
−𝑚

= −𝜏 < ⋅ ⋅ ⋅ < 𝑡
−1

< 0 < 𝑡
1

< ⋅ ⋅ ⋅ < 𝑡
𝑛
= 𝑡
𝑓
< ⋅ ⋅ ⋅ < 𝑡

𝑛+𝑚
) .

(44)

Then, we have 𝑡
𝑖
= 𝑖ℎ(−𝑚 ≤ 𝑖 ≤ 𝑛 + 𝑚). Next, we define the

state and adjoint variables 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝜆
1
(𝑡), 𝜆
2
(𝑡), 𝜆
3
(𝑡),

and 𝑢
1
(𝑡), 𝑢
2
(𝑡) in terms of nodal points 𝑆

𝑖
, 𝐼
𝑖
, 𝑅
𝑖
, 𝜆𝑖
1
, 𝜆𝑖
2
, 𝜆𝑖
3
,

𝑢
𝑖

1
, and𝑢𝑖

2
. Now,with a combination of forward and backward

difference approximation, we obtain Algorithm 1.
For the simulations, we use the parameter values given in

Table 1.
In Figure 2, we observe that there is a significant decrease

in the number of infected individuals and susceptible indi-
viduals controlled compared with those not controlled and
also an increase in the number of individuals recovered
controlled.

4. Conclusion

In this paper, we investigated the dynamics of a delayed
SIR model with saturated incidence rate and logistic growth
recruitment. At first, we obtain the existence and the stability
of the equilibria by analyzing the distribution of the roots of
associated characteristic equation. Using the time delay as a
bifurcation parameter, we get the existence of the Hopf bifur-
cation when 𝜏 crosses the critical value 𝜏

0
. Then, the model

is extended to assess the impact of some control measures,
by reformulating the model as an optimal control problem.
Existence of the optimal control pair is established, Pontrya-
gin’s maximum principle with delay is used to characterize
these optimal controls, and the optimality system is derived.
Finally, in the numerical simulation, we propose an algorithm
based on the forward and backward difference approximation
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Figure 2: Evolution of different classes of individuals with and without control for time delay 𝜏 = 1.

andwe show that the optimal strategy becomesmore effective
when we combined the vaccination and treatment strategies
together.
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