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A five-dimensional (5D) controlled two-stage Colpitts oscillator is introduced and analyzed. This new electronic oscillator is
constructed by considering the well-known two-stage Colpitts oscillator with two further elements (coupled inductors and variable
resistor). In contrast to current approaches based on piecewise linear (PWL) model, we propose a smooth mathematical model
(with exponential nonlinearity) to investigate the dynamics of the oscillator. Several issues, such as the basic dynamical behaviour,
bifurcation diagrams, Lyapunov exponents, and frequency spectra of the oscillator, are investigated theoretically and numerically
by varying a single control resistor. It is found that the oscillator moves from the state of fixed point motion to chaos via the
usual paths of period-doubling and interior crisis routes as the single control resistor is monitored. Furthermore, an experimental
study of controlled Colpitts oscillator is carried out. An appropriate electronic circuit is proposed for the investigations of the
complex dynamics behaviour of the system. A very good qualitative agreement is obtained between the theoretical/numerical and
experimental results.

1. Introduction

During the last three decades, a tremendous attention has
been devoted to design chaotic electronic oscillators. The
focus on this interesting research field comes mainly from
two facts: first, one can observe chaos and can also control the
dynamics of the oscillator by simply changing the physically
accessible parameters of the oscillator, for example, linear
resistor, linear capacitor, voltage levels, coupled inductors,
and so forth; second, there are a multitude of applications
of chaotic electronic oscillators starting from chaotic elec-
tronic secure communication to cryptography [1]. In this
regard, the classical Colpitts oscillator with single transistor
was investigated at 1 KHz frequency [2], high (3–300MHz)

frequencies [3], and ultrahigh (300–1000MHz) frequencies
[4] using both numerical and experimental methods. The
interest devoted to this oscillator is motivated by its simple
physical realization and low power requirement. Neverthe-
less, the main limitation of the classical Colpitts oscillator is
its incapacity to exhibit higher fundamental frequencies in
chaotic regime [5]. In order to solve this problem, alternatives
to this standard version of the Colpitts oscillator, namely, the
two-stage and improved version, were reported in [6, 7]. In
comparison to a single stage Colpitts oscillator, the two-stage
Colpitts oscillator presents better spectral properties which
are suitable for communication application. Some interesting
works [8, 9] have been reported concerning the dynamics and
the control of chaos in two-stage Colpitts oscillator using the
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ideal current source (i.e., power supply) as a control parame-
ter which is not easily accessible in practical situations. Thus,
it is difficult to control the dynamics of the two-stage Colpitts
oscillator using one direct accessible electrical component.
To overcome this problem, the present work proposes a
controlled version of a two-stage Colpitts oscillator using
a pair of coupled inductors and a linear resistor which is
easy to use as a control parameter. The control scheme
reported in [10] exploits the coupling between the passive
network and the chaotic Colpitts oscillator through mutual
inductors. This technique requires a simpler control circuit,
which has the advantage of direct and easy implementation.
The single resistor is used to control chaos in the Colpitts
oscillator. This control technique is exploited in this paper to
investigate the rich dynamics of two-stage Colpitts oscillator.
However, it could also be used as a mean for parameter
modulation strategy for secure communication applications.
On the other hand, previous works [11–14] related to the
investigation of the dynamics of this type of oscillators are
based on piecewise linear models (PWL) though restricting
to the first-order description of the system’s dynamics [8,
15]. In fact, the PWL model represents only a first-order
approximation of the reality; therefore it may give rise to
different types of bifurcations compared to those exhibited
by the real oscillator. In contrast to previous mathematical
analysis, the present work proposes a smooth (exponential
model) mathematical model to investigate the nonlinear
dynamics and chaos in the controlled two-stage Colpitts
oscillator. Various bifurcation diagrams and corresponding
graphs of Lyapunov exponents are provided to characterize
the dynamics of the system in terms of the control parameter
(single variable resistor). Finally, the effects of transistor
gain on the dynamics of the controlled two-stage Colpitts
oscillator are analyzed.

The layout of this paper is as follows. Section 2 is devoted
to the circuit description and mathematical model of the
controlled two-stage Colpitts oscillator. The circuit diagram
of the oscillator is addressed and the corresponding mathe-
matical model is derived. Section 3 deals with the dynamical
properties of controlled two-stageColpitts oscillator. Dissipa-
tion and existence of attractors, bifurcation analysis, chaotic
behavior, and interior crisis are investigated. In Section 4,
experimental investigations of the dynamical behaviour of
the system are described. Finally, some concluding remarks
are given in Section 5.

2. Circuit Description and
Mathematical Model

2.1. Circuit Description. The simplest circuit diagram of the
controlled two-stage Colpitts oscillator is depicted in Fig-
ure 1(a). The circuit contains two bipolar junction transistors
(BJT) 𝑄

1
and 𝑄

2
used in the common base configuration as

the nonlinear gain element. The resonant network consists
of coupled inductors 𝐿

1
and 𝐿

2
, mounted in series with

the biasing and damping resistor 𝑅, and three capacitors
(𝐶
1
, 𝐶
2
, and 𝐶

3
). 𝑅
𝐿
is a variable resistor which is used

as a control parameter of the oscillator. The ideal current

generator 𝐼
0
is used to maintain constant biasing emitter

current. It is important to note that, in the circuit diagram,
the only nonlinear devices are the bipolar junction transistors
(𝑄
1
and 𝑄

2
), which are responsible for the striking complex

behavior exhibited by the oscillator. The BJT model consists
of a nonlinear voltage-controlled resistance 𝑅

𝐸
and a linear

current-controlled current source 𝐼
𝐸
as shown in Figure 1(b).

The main difference between the classical circuit diagram of
the two-stage Colpitts oscillator and the controlled version is
the presence of coupled inductors and variable resistor in the
collector node of the transistor 𝑄

1
.

2.2. Mathematical Model. To model the circuit, some
assumptions are considered. Firstly, we assume that the
capacitors, the inductor, and the resistor of the resonant
network are linear. Secondly, we neglect parasitic capacitors
𝐶
𝑏𝑒
and 𝐶

𝑏𝑐
. Thirdly, the transistors (𝑄

1
and𝑄

2
) are modeled

as in [15]. The V-I characteristic of the nonlinear resistor 𝑅
𝐸

is defined as usual by

𝐼
𝐸
= 𝑓 (𝑉BE) = 𝐼𝑆 (exp(

𝑉BE
𝑉
𝑇

) − 1) , (1)

where 𝐼
𝐸
is the emitter current, 𝑉BE is the voltage across

the B-E junction, 𝐼
𝑆
is the saturation current of the B-E

junction, 𝑉
𝑇
= 𝐾
𝑏
𝑇/𝑒 is a thermal voltage with 𝐾

𝑏
the

Boltzmann constant, 𝑇 is the absolute temperature, and
𝑒 is the elementary charge. At room temperature, 𝑉

𝑇
is

approximately equal to 26mV. Taking into account the BJT
model of Figure 1(b) and denoting 𝐼

1
and 𝐼
2
as the current

flowing through the inductors 𝐿
1
and 𝐿

2
, respectively, and

𝑉
𝐶𝑖
(𝑖 = 1, 2, 3) as the voltage across capacitor 𝑐

𝑖
(𝑖 = 1, 2, 3),

the state equations of the circuit of Figure 1(a) exploiting the
Kirchhoff electric circuit law are the following:

𝑐
1

𝑑𝑉𝑐
1

𝑑𝑡
= 𝐼
1
− 𝛼
𝐹1
𝑓 (𝑉BE1) , (2a)

𝑐
2

𝑑𝑉𝑐
2

𝑑𝑡
= 𝐼
1
− 𝐼
0
+ (1 − 𝛼

𝐹1
) 𝑓 (𝑉BE1)

+ (1 − 𝛼
𝐹2
) 𝑓 (𝑉BE2) ,

(2b)

𝑐
3

𝑑𝑉𝑐
3

𝑑𝑡
= 𝐼
𝐿
+ (1 − 𝛼

𝐹1
) 𝑓 (𝑉BE1) − 𝛼𝐹2𝑓 (𝑉BE2) ,

(2c)

𝐿
1
𝐿
2
−𝑀
2

𝐿
2

𝑑𝐼
1

𝑑𝑡
= 𝑉
0
− 𝑉
𝐶1
− 𝑉
𝐶2
− 𝑉
𝐶3
− 𝑅𝐼
1
−
𝑀

𝐿
2

𝑅
𝐿
𝐼
2
,

(2d)

𝐿
1
𝐿
2
−𝑀
2

𝑀

𝑑𝐼
2

𝑑𝑡
= 𝑉
0
− 𝑉
𝐶1
− 𝑉
𝐶2
− 𝑉
𝐶3
− 𝑅𝐼
1
−
𝐿

𝑀
𝑅
𝐿
𝐼
2
,

(2e)

where 𝛼
𝐹𝑖
(𝑖 = 1, 2) is common base forward short-circuit

current gain of the transistors,𝑀 = 𝑘√𝐿
1
𝐿
2
represents the

mutual inductance between 𝐿
1
and 𝐿

2
, given the coupling

factor 𝑘, and 𝑉BE1 = 𝑉1 − 𝑉𝐶2 − 𝑉𝐶3 and 𝑉BE2 = −𝑉𝐶2 are,
respectively, the base-emitter voltage of transistors 𝑄

1
and
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Figure 1: (a) Physical realization of the controlled two-stage Colpitts oscillator: the circuit parameters are 𝐶
1
= 8 nF; 𝐶

2
= 𝐶
3
= 10 nF;

𝐿
1
= 16 uH; 𝐿

2
= 23 uH; 𝑅 = 35Ω; 𝑉

0
= 12V; 𝑉

1
= 6V; 𝐼

0
= 1.750mA; and 𝑅 = 60Ω potentiometer. The BJT model (b) consisting of a

current-controlled current source and a single diode.

𝑄
2
. For simplicity, we first assume that the common base

forward short-circuit gain of the transistor 𝛼
𝐹𝑖
= 1 (𝑖 = 1, 2);

that is, we neglect the base current. Equation (2a)–(2e) has
a single equilibrium point (𝑉0

𝐶1
, 𝑉
0

𝐶2
, 𝑉
0

𝐶3
, 𝐼
0

1
, 𝐼
0

2
)
𝑇 which can

be obtained by setting the right-hand side of (2a), (2b), (2c),
(2d), and (2e) to zero.The following expressions are obtained:

𝑉
0

𝐶1
= 𝑉
0
− 𝑉
1
− 𝑅𝐼
0
+ 𝑉
𝑇
ln(1 +

𝐼
0

𝐼
𝑠

) , (3a)

𝑉
0

𝐶2
= − 𝑉

𝑇
ln(1 +

𝐼
0

𝐼
𝑠

) , (3b)

𝑉
0

𝐶3
= 𝑉
1
, (3c)

𝐼
0

1
= 𝐼
0
, (3d)

𝐼
0

2
= 0. (3e)

For convenient numerical analyses, let us introduce the
following set of dimensionless state variables and parameters:

𝑥
𝑖
𝑉
𝑇
= 𝑉
𝐶𝑖
− 𝑉
0

𝐶𝑖
(𝑖 = 1, 2, 3) ,

𝑥
𝑗
𝑉
𝑇
= 𝜌 (𝐼

𝑗
− 𝐼
0

𝑗
) (𝑗 = 4, 5) ,

𝑡 = 𝜏√𝐿𝐶
2
, 𝜌 = √

𝐿
1

𝐶
2

,

𝜎
1
=
𝐶
2

𝐶
1

, 𝜎
2
=
𝐶
2

𝐶
3

,

𝜎
3
=

𝐿
1
𝐿
2

(𝐿
1
𝐿
2
−𝑀2)

, 𝜎
4
=

𝐿
1
𝑀

(𝐿
1
𝐿
2
−𝑀2)

,

𝛾 =
𝜌𝐼
0

𝑉
𝑇

, 𝜀 =
𝑅

𝜌
,

𝜇 =
𝐿
1
𝐿
2

𝑀2
, 𝛼 =

𝑅
𝐿
𝑀

𝐿
2
𝜌
.

(4)

The physical parameters of controlled two-stage Colpitts
oscillator are 𝐶

1
= 8 nF; 𝐶

2
= 𝐶
3
= 10 nF; 𝐿

1
= 16 uH;

𝐿
2
= 23 uH; 𝑅 = 35Ω; 𝑉

0
= 12V; 𝑉

1
= 6V; 𝐼

0
= 1.750mA;

and 𝑅
𝐿
= 60Ω potentiometer.

Therefore, the above equations (2a)–(2e), according to
(4), are rewritten in the dimensionless form as

𝑥̇
1
= 𝜎
1
(𝑥
4
− 𝛾𝜙 (𝑥

2
+ 𝑥
3
)) , (5a)
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𝑥̇
2
= 𝑥
4
, (5b)

𝑥̇
3
= 𝜎
2
(𝑥
4
− 𝛾𝜙 (𝑥

2
)) , (5c)

𝑥̇
4
= 𝜎
3
(−𝑥
1
− 𝑥
2
− 𝑥
3
− 𝜀𝑥
4
− 𝛼𝑥
5
) , (5d)

𝑥̇
5
= 𝜎
4
(−𝑥
1
− 𝑥
2
− 𝑥
3
− 𝜀𝑥
4
− 𝜇𝛼𝑥

5
) , (5e)

where the dots denote differentiation with respect to 𝜏 and
𝜙(𝑦) = exp(−𝑦) − 1.

Note that ourmodel is nonsymmetric due to the presence
of the exponential nonlinearity in (5a)–(5e). Therefore, the
system cannot support symmetric orbits. In this mathemati-
cal modeling, we consider an exponential model instead of a
piecewise linear model (PWL) of the oscillator as previously
adopted by some authors [11–14]. In fact, the PWL model
may experience different types of bifurcations compared to
the exponential model which it approximates (first-order
approximation) [8]. Furthermore, the exponential model is
more tractable both numerically and analytically compared
to PWL model. Then exponential model may be exploited
to derive the exact bifurcation structure occurring in the
controlled Colpitts oscillators. Extended discussions can be
found in [15].

3. Dynamical Properties

3.1. Dissipative and Existence of Attractors. The state space of
system (5a), (5b), (5c), (5d), and (5e) is five-dimensional.The
vector field on the right-hand sides of system (6) is defined as

V (𝑥) =
[
[
[
[
[

[

V
1
(𝑥)

V
2
(𝑥)

V
3
(𝑥)

V
4
(𝑥)

V
5
(𝑥)

]
]
]
]
]

]

=

[
[
[
[
[

[

𝜎
1
(𝑥
4
− 𝛾𝜙 (𝑥

2
+ 𝑥
3
))

𝑥
4

𝜎
2
(𝑥
4
− 𝛾𝜙 (𝑥

2
))

𝜎
3
(−𝑥
1
− 𝑥
2
− 𝑥
3
− 𝜀𝑥
4
− 𝛼𝑥
5
)

𝜎
4
(−𝑥
1
− 𝑥
2
− 𝑥
3
− 𝜀𝑥
4
− 𝜇𝛼𝑥

5
)

]
]
]
]
]

]

.

(6)

The divergence of the vector field V is evaluated as

∇V (𝑥) =
𝜕V
1

𝜕𝑥
1

+
𝜕V
2

𝜕𝑥
2

+
𝜕V
3

𝜕𝑥
3

+
𝜕V
4

𝜕𝑥
4

+
𝜕V
5

𝜕𝑥
5

= − (𝜎
3
𝜀 + 𝜎
4
𝜇𝛼) .

(7)

In view of (7), it can easily be shown that system (5a),
(5b), (5c), (5d), and (5e) is dissipative with an exponential
rate 𝑑V/𝑑𝑡 = exp(−𝜎

3
𝜀 − 𝜎

4
𝜇𝛼). Then, in the dynamical

system (5a), (5b), (5c), (5d), and (5e), a volume element 𝑉
0

is apparently contracted by the flow into a volume element
𝑉
0
exp(−𝜎

3
𝜀 − 𝜎
4
𝜇𝛼)𝑡 in time 𝑡. It means that each volume

containing the trajectories of this dynamical system shrinks
to zero as 𝑡 → ∞ as an exponential rate. Therefore, all these
dynamical system orbits are eventually confined to a specific
subset that has zero volume; namely, the asymptotic motion
settles onto an attractor of this system [16].

3.2. Chaotic Behavior. Generally, two indicators are used to
identify the type of transition leading to chaos. The first
indicator is the bifurcation diagram which summarizes the
different dynamical behaviours exhibited by the oscillator

and the second is the largest one-dimensional (1D) numerical
Lyapunov exponent defined by

𝜆max = lim
𝑡→∞

[(
1

𝑡
) ln (𝑑 (𝑡))] , (8)

where

𝑑 (𝑡) = √𝛿2
1
+ 𝛿2
2
+ 𝛿2
3
+ 𝛿2
4
+ 𝛿2
5
, (9)

and computed from the following variational equations
obtained by perturbing the solutions of (5a), (5b), (5c), (5d),
and (5e) as follows: 𝑥

1
→ 𝑥

1
+ 𝛿
1
, 𝑥
2
→ 𝑥

2
+ 𝛿
2
,

𝑥
3
→ 𝑥

3
+ 𝛿
3
, 𝑥
4
→ 𝑥

4
+ 𝛿
4
, and 𝑥

5
→ 𝑥

5
+ 𝛿
5
.

𝑑(𝑡) is the distance between neighbouring trajectories in the
phase space. Asymptotically 𝑑(𝑡) = exp(𝜆max𝑡). Thus, if
𝜆max > 0, neighbouring trajectories diverge and the state
of the oscillator is chaotic. For 𝜆max < 0, these trajectories
converge and the state of the oscillator is nonchaotic.The case
𝜆max = 0 corresponds to the torus state of the oscillator.

In order to analyse the influence of the control parameter
on the dynamics of the controlled two-stage Colpitts oscilla-
tor, we set 𝜎

1
= 1.250, 𝜎

2
= 1.000, 𝜎

3
= 2.770, 𝜎

4
= 1.853,

𝜀 = 0.875, 𝜇 = 1.562, and 𝛾 = 2.692 and only vary 𝛼 in
the domain 1 ≤ 𝛼 ≤ 2. The system (5a), (5b), (5c), (5d),
and (5e) is solved numerically to define routes to chaos in
our model using the fourth-order Runge-Kutta algorithm.
The initial values of the system (5a), (5b), (5c), (5d), and (5e)
are arbitrarily taken as [0.001 0.001 0.001 0.001 0.001].
Bifurcation diagram and corresponding graph of 1D largest
Lyapunov exponent are obtained. Sample results are provided
in Figure 2 where a bifurcation diagram associated with
the corresponding graph of largest 1D largest numerical
Lyapunov exponent summarizes various scenarios leading
to chaos in the controlled two-stage Colpitts oscillator. This
bifurcation diagram is obtained by plotting the coordinate
𝑥
5
in terms of the control parameter 𝛼. The positive value of

𝜆max is the signature of chaotic oscillations of the oscillator.
Note that the various transitions/routes to chaos observed
in the controlled two-stage Colpitts oscillator are commonly
observed in various nonlinear systems [15, 17, 18] including
the universal Chua circuit, phase-locked loops, and the
transformer-coupled oscillators, just to name a few. This
serves to justify the richness of the bifurcations in the
controlled two-stage Colpitts oscillator and also the striking
phenomena exhibited by such oscillators.

In order to study the effects of the transistor gain 𝛽 on
the dynamics of the oscillator, we reconsidered system (2a),
(2b), (2c), (2d), and (2e) with 𝛼

𝐹𝑖
̸= 1 (𝑖 = 1, 2). Then the

normalized circuit equations can be rewritten as follows:

𝑥̇
1
= 𝜎
1
(𝑥
4
− 𝛼
𝐹1
𝛾𝜙 (𝑥
2
+ 𝑥
3
)) , (10a)

𝑥̇
2
= 𝑥
4
+ (1 − 𝛼

𝐹1
) 𝛾𝜙 (𝑥

2
+ 𝑥
3
) + (1 − 𝛼

𝐹2
) 𝛾𝜙 (𝑥

2
) , (10b)

𝑥̇
3
= 𝜎
2
(𝑥
4
+ (1 − 𝛼

𝐹1
) 𝛾𝜙 (𝑥

2
+ 𝑥
3
) − 𝛼
𝐹2
𝛾𝜙 (𝑥
2
)) , (10c)

𝑥̇
4
= 𝜎
3
(−𝑥
1
− 𝑥
2
− 𝑥
3
− 𝜀𝑥
4
− 𝛼𝑥
5
) , (10d)

𝑥̇
5
= 𝜎
4
(−𝑥
1
− 𝑥
2
− 𝑥
3
− 𝜀𝑥
4
− 𝜇𝛼𝑥

5
) , (10e)



Journal of Chaos 5

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

1

2

3

4

5

𝛼

x
5

(a)

−0.05

0

0.05

0.1

0.15

0.2

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
𝛼

𝜆
m

ax

(b)

Figure 2: Bifurcation diagram of the controlled two-stage Colpitts oscillator (a) showing the state variable 𝑥
5
versus control parameter 𝛼 and

corresponding graph of 1D largest Lyapunov exponent (b). The parameters are 𝜎
1
= 1.250, 𝜎

2
= 1.000, 𝜎

3
= 2.770, 𝜎

4
= 1.853, 𝜀 = 0.875,
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Figure 3: Bifurcation diagrams of the controlled chaotic Colpitts oscillator showing the effects of the transistor gain (𝛽 = 𝛼
𝐹
/1 − 𝛼

𝐹
) on the

dynamics of the oscillator plotted for (a) 𝛼
𝐹
= 1, (b) 𝛼

𝐹
= 0.9803, and (c) 𝛼

𝐹
= 0.9876. The rest of the system parameters are those in Figure 2.

where the state variables and corresponding normalization
are as defined previously. The relationship between the
transistor gain (𝛽) and common base forward short-circuit
gain of the transistor (𝛼

𝐹
) is defined as

𝛽 =
𝛼
𝐹

1 − 𝛼
𝐹

. (11)

We assume that the two transistors are equivalent; that is,
(𝛼
𝐹1
= 𝛼
𝐹2
). According to (11), the numerical value of 𝛼

𝐹
is

0.9803 for 𝛽 = 50 and 0.987 for 𝛽 = 80 are used in the
simulations.The effect of the transistor gain on the dynamics
of the oscillator is illustrated by the bifurcation diagram of
Figure 3. We observe that this diagram is similar to the one
previously obtained with the ideal transistor model for 𝛼

𝐹𝑖
=

1 (𝑖 = 1, 2) (see Figure 3(a)). Nevertheless, it is obvious that
the value of (𝛼

𝐹𝑖
̸= 1 (𝑖 = 1, 2)) induces a horizontal stretching

of the control parameter 𝛼 (see Figures 3(b) and 3(c)).

Using the same parameters settings of Figure 2 and circuit
parameters given in Figure 1, various numerical phase por-
traits and their corresponding power spectra were obtained
confirming transitions/routes to chaos depicted previously
(see Figure 4). The broadband noise-like power spectrum is
the signature of a chaotic behaviour of the oscillator.

A blow-up of the bifurcation diagram of Figure 2 in the
region of period 3 showing saddle-node bifurcation (SN),
period-doubling (PD), and interior crisis (IC) is depicted in
Figure 5.

4. Experimental Study

In this section, theoretical results obtained in the previous
part are verified by carrying out an experimental study.
The complex behaviour of the oscillator is investigated by
monitoring a single variable resistor 𝑅

𝐿
, while keeping the

rest of electronic components values constant. This section is



6 Journal of Chaos

−10 −5 0 5
−2

−1

0

1

2

3

4

5

6

0 0.5 1 1.5 2
Frequency

PS
D

x
j
(𝜏
)

xk(𝜏)

10−4

10−3

10−2

10−1

101

100

(a)

−10 −5 0 5
−4

−2

0

2

4

8

6

0 0.5 1
Frequency

PS
D

x
j
(𝜏
)

xk(𝜏)

10−4

10−3

10−2

10−1

101

100

(b)

−10−15 −5 0 5
−4

−2

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8
Frequency

PS
D

x
j
(𝜏
)

xk(𝜏)

10−4

10−3

10−2

10−1

101

100

(c)

−15 −10 −5 0 5

−4

−2

0

2

4

6

8

12

10

0 0.2 0.4 0.6 0.8
Frequency

PS
D

x
j
(𝜏
)

xk(𝜏)

10−5

10−4

10−3

10−2

10−1

101

100

(d)

−15 −10 −5 0 5

−4

−2

0

2

4

6

8

12

10

0 0.2 0.4 0.6 0.8
Frequency

PS
D

x
j
(𝜏
)

xk(𝜏)

10−3

10−2

10−1

101

100

(e)

−20 −10 0 10
−4

−2

0

2

4

6

8

12

14

10

0 1 2 3 4
Frequency

PS
D

x
j
(𝜏
)

xk(𝜏)

10−5

10−4

10−3

10−2

10−1

101

100

(f)

Figure 4: Computer generated phase portraits (left) of the system projected onto the plane (𝑥
𝐾
− 𝑥
𝑗
) showing routes to chaos in terms of

control parameter 𝛼 and corresponding power spectra (right): (a) period 1 for 𝛼 = 0.6, (b) period 2 for 𝛼 = 1.3, (c) period 4 for 𝛼 = 1.4, (d)
chaos for 𝛼 = 1.5, (e) period 3 for 𝛼 = 1.68, and (f) chaos for 𝛼 = 1.8. The parameters are defined in text. Note that 𝑥

𝑘
= 𝑥
1
+ 𝑥
2
+ 𝑥
3
and

𝑥
𝑗
= 𝑥
2
+ 𝑥
3
.
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Figure 7: Photograph of the experimental controlled two-stage Colpitts oscillator circuit.
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Figure 8: Experimental phase portraits (right) obtained from the circuit of Figure 8 using a dual trace oscilloscope in the 𝑋𝑌 mode. The
collector voltage of BJT 𝑄

1
(V
𝑐1
+ V
𝑐2
+ V
𝑐3
) is connected to the 𝑋 input and the 𝑌 channel displays the collector voltage of BJT 𝑄

2
(V
𝑐2
+ V
𝑐3
):

(a) period 1 for 𝑅
𝐿
= 60Ω; (b) period 2 for 𝑅

𝐿
= 90Ω; (c) period 4 for 𝑅

𝐿
= 102Ω; (d) chaos for 𝑅

𝐿
= 120Ω; (e) period 3 for 𝑅

𝐿
= 148Ω;

and (f) chaos for 𝑅
𝐿
= 160Ω. Corresponding numerical phase portraits (right).
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also provided in order to evaluate the effects of the simplifying
assumptions adopted during the modelling process on the
real dynamics of the controlled two-stage Colpitts oscillator.

4.1. Design of the Experimental Setup. Theexperimental setup
for measurements on the controlled two-stage Colpitts oscil-
lator is depicted in Figure 6. This figure is carried out using
operational amplifier (TL082), bipolar junction transistors
(2N2222), variable transformer, high precision resistors, and
capacitors with corresponding values fixed as above.The bias
is provided by a 12VDC symmetric source. In order to insure
good functioning of the circuit during experimental process,
the ideal current source is replaced by the network consisting
of the operational amplifier UA1 associated with five resistors
𝑅
𝑖
(𝑖 = 1, 2, . . . , 5). This configuration satisfies the following

condition:

𝑅
1

𝑅
2

=
𝑅
3

𝑅
4
+ 𝑅
5

. (12)

The expression of the ideal current source 𝐼
0
is as follows

[10]:

𝐼
0
=
𝑅
2

𝑅
1
𝑅
5

𝑉
𝑖
, (13)

where 𝑉
𝑖
is the output voltage of the network (i.e., an invert-

ing amplifier) using the operational amplifierUA2.According
to (12) and (13), we derive the following relationship between
the control voltage 𝑉

𝑖
and the ideal current source 𝐼

0
as

𝐼
0
= 10
−3
𝑉
𝑖
. (14)

The photograph of the experimental controlled two-stage
Colpitts oscillator is presented in Figure 7.

4.2. Experimental Results. In this section, we analyse the
effects of the variable resistor (𝑅

𝐿
) on the dynamics of the

controlled two-stage Colpitts oscillator. When monitoring
the single variable resistor (𝑅

𝐿
), it is found that the electronic

circuit experiences a rich and striking dynamical behaviour
and various types of bifurcation. Some sample phase portraits
obtained experimentally are shown in Figure 8. This figure
(right side) presents the real dynamics of controlled two-
stage Colpitts oscillator. It is observed in Figure 8 that
the real circuit presents the same bifurcation scenarios as
shown using analytical methods (period 1 → period 2 →
period 4 → chaos → period 3 → chaos). A very
good qualitative agreement is obtained between numerical
(left side of Figure 8) and experimental results (right side of
Figure 8).

5. Conclusion

This paper has introduced and investigated the dynamics
of the new controlled two-stage Colpitts oscillator. The
proposed oscillator in its regular/periodic state can be used
for instrumentation in laboratory. In its irregular state, it can
also be exploited as high frequency chaotic signals generators

suitable for chaos based communication. The dynamics of
the oscillator is easily controlled via a single variable resistor.
The circuit diagram of the oscillator was presented and
the modeling process using exponential nonlinearities was
performed to derive the set of coupled first-order nonlinear
ordinary differential equations describing the behavior of
the oscillator. Various bifurcation diagrams associated with
their graph of 1D largest numerical Lyapunov exponent were
obtained showing transitions/routes to chaos in terms of the
control parameter (variable resistor). Theoretical/numerical
and experimental results were compared and a very good
agreement was observed. It was found that the oscillator
moves from the state of fixed point motion to chaos via
the usual paths of period-doubling and interior crisis routes
whenmonitoring the control parameter (variable resistor𝑅

𝐿
)

in tiny steps.
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