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In the last decade, artificial neural networks have become very popular techniques for computing different performance parameters
of microstrip antennas. The proposed work illustrates a knowledge-based neural networks model for predicting the appropriate
shape and accurate size of the slot introduced on the radiating patch for achieving desired level of resonance, gain, directivity,
antenna efficiency, and radiation efficiency for dual-frequency operation. By incorporating prior knowledge in neural model, the
number of required training patterns is drastically reduced. Further, the neural model incorporated with prior knowledge can
be used for predicting response in extrapolation region beyond the training patterns region. For validation, a prototype is also
fabricated and its performance parameters are measured. A very good agreement is attained between measured, simulated, and
predicted results.

1. Introduction

Modern wireless communication systems like satellite com-
munication, radar communication, global positioning satel-
lite (GPS) system, and so forth are demanding more accurate
and efficient modeling schemes for microstrip antennas
(MSAs). Because of their operation in dual-frequency mode,
the MSAs have eliminated two single-frequency operated
antennas in these applications. Although themicrostrip patch
antennas have many inherent attractive features like low
profile, conformable to planar and nonplanar surfaces, low
fabrication cost, and so forth, they still suffer from the draw-
backs of poor radiation characteristics (narrow bandwidth,
low gain, low efficiency, etc.) which requiremore attention [1].
To overcome these drawbacks, slot is inserted on the radiating
surface of the patch antennas. To achieve the desired level of
performance parameters (resonance frequency, gain, direc-
tivity, antenna efficiency, radiation efficiency, etc.), actual
shape and appropriate size of the introduced slot needs to
be determined. Creating a flexible analytical model for this
purpose is still a challenging task in electromagnetic commu-
nity [2]. Electromagnetic simulation like method of moment

(MoM) based IE3D software [3] can do it but only at the cost
of large computational time. The simulation approach is not
suitable in the situation where instant answer is required as
in the case of synthesizing the microstrip antennas by the
antenna designers. To reduce the computational time, neural
networks modeling is preferred which predicts the response
very fast after being trained properly.The artificial neural net-
work (ANN)models provide a common outline formodeling
complex geometries and are much faster than the simulation
approaches and more accurate than the polynomial fitted
methods and the empirical models [2]. These models allow
more input dimensions than look-up table methods and are
easier to develop when a new geometry is introduced. In
last decade, ANN models have received much attention in
microwave community due to their ability and adaptability
to learn from experience during training and generalize from
previous examples to new ones, fast real-time operation,
and ease of implementation features [2]. The trained neural
model predicts the response to be approximately equal to
its measured or simulated counterpart very fast for every
small change in the applied input pattern. Different neural
models have been proposed for modeling the microstrip
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Figure 1: Proposed microstrip antenna with different slots.

patch antennas [4–12], slotted microstrip antennas [13, 16–
21], and the reflectarray antennas [14, 15]. The neural models
[4–21] may not be very reliable without having adequate
number of training patterns. In addition, even with sufficient
training patterns, the reliability of neural model when used
for extrapolation purpose is not guaranteed and inmost cases
is very poor. The learning patterns for the neural models
are generally created using simulation and/or measurement
approach. For a complex geometry, generating large amount
of training patterns becomes time consuming and sometimes
very expensive because simulation/measurement approach
is to be performed for several combinations of each input
parameter associated to that geometry.

Towell and Shavlik [22] have firstly proposed a concept
of reducing the required training patterns by incorporat-
ing prior knowledge in the standard neural models. The
incorporated knowledge provides additional information
about the original problem which may not be adequately
represented in the limited training patterns.Wang and Zhang
[23, 24] have embedded prior knowledge into internal neural
networks structures in the form of empirical functions to
resolve three different microwave design problems. Wat-
son et al. [25, 26] have proposed knowledge-based neu-
ral networks (KBNN) model for microwave components
modeling. Dandurand and Lowther [27] have used KBNN
model for identifying the performance of electromagnetic
devices. Watson et al. [28] have designed wideband coplanar
waveguide patch/slot antennas using KBNN model. Wang
et al. [29] have modeled stripline discontinuities by neural
networks with knowledge-based neurons. Zingg and Gupta
[30] have designed microwave reflection and loaded types
phase shifters using knowledge-aided-design (KAD) neural
networks. Hong and Wang [31] have used neural networks
with knowledge-based neurons in hidden layer for model-
ing microstrip T-junction. Devabhaktuni et al. [32] have,

recently, proposed an efficient knowledge-based automatic
model generation (KAMG) technique for microwave mod-
eling. Some innovative strategies including knowledge-based
microwave design and optimization have been proposed by
Rayas-Sánchez [33]. Rayas-Sanchez and Zhang [34] have
proposed KBNN based advanced electromagnetic data sam-
pling algorithms for modeling several microwave structures.
Devabhaktuni et al. [35] have introduced a novel ANN-
based reverse-modeling approach for efficient electromag-
netic compatibility (EMC) analysis of printed circuit boards
(PCBs) and shielding enclosures. In the literature [4–34],
neither a standard nor a knowledge-based neural model has
been proposed for predicting the shape and size of a slot
introduced on the radiating surface of the microstrip patch
antenna. It is very essential for the antenna designers to
instantly predict the actual shape and appropriate size of
the introduced slot for achieving the desired level of perfor-
mance parameters. In the proposed work, a standard neural
networks modeling is firstly discussed for predicting the
shape and size of the introduced slot on the radiating surface
of a rectangular patch microstrip antenna. A knowledge-
based neural network model is then created for reducing
the number of training patterns without deteriorating the
computed accuracy. A prototype ofmicrostrip antenna is also
fabricated and analyzed using network analyzer. A very good
agreement is achieved between the results of KBNN model,
measured results, and simulated results which support the
effectiveness of the proposed work.

2. Geometry for Patterns Generation

The cross-sectional view of the proposed microstrip patch
antenna with four different slots is shown in Figure 1. A
rectangular patch antenna of size 61 × 56mm2 is designed
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Figure 2: MLP neural networks with two hidden layers.

using RT-Duroid substrate RO3003 (𝜀
𝑟
= 3, h = 0.762mm,

and tan𝛿 = 0.0045). Two resonatingmodes (TM
10
and TM

01
)

are excited by a single probe for getting dual resonance.
The performance of the patch antenna is further improved
by inserting air gap between the substrate sheet and the
ground plane [40]. To make the analysis simpler, it has been
decided to consider four cases: asymmetrical cross slot (ACS),
square slot (SS), longitudinal slot (LS), and transverse slot
(TS), respectively. These four geometries are analyzed using
method of moment based IE3D software [3] on a personal
computer with system configuration, Dell Optiplex 780 Core
2 Duo CPU E8400, 3.0GHz with 4.0GB RAM. Different
patterns for dual resonance, dual-frequency gains, dual-
frequency directivities, dual-frequency antenna efficiencies,
and dual-frequency radiation efficiencies are generated by
varying the slot dimensions denoted by x

1
, y
1
, x
2
, and y

2
for

ACS-, SS-, LS-, and TS-slotted geometries, respectively.Thus,
ten different electrical parameters are achieved for each set
of four geometrical parameters. Total of 1960 patterns (490
for each case) are generated by varying slot dimensions as
follows: 1mm ≤ slot dimensions ≤ 50mm in IE3D software
[3]. For generating these patterns, a sampling step of 0.1mm
is used during the sampling of the slot dimensions. The
1960-simulated patterns used for training and testing of
the standard neural networks model are to be discussed in
Section 3.

3. Standard Neural Networks Modeling

Artificial neural networks (ANNs) are extremely distributed
analogous processors and becoming powerful techniques for
resolving the problems which are cross disciplinary in nature.
Multilayered perceptron (MLP) neural networks consist of
an input layer, a number of hidden layers, and an output
layer in which each layer is having entirely different role. The

neural networks have usual tendency for storing the empirical
knowledge during training and making it available for use
during testing. The aim of training process is to minimize
the error between actual output and calculated output from
the neural model. In general, three common steps are used to
train the MLP neural networks. Firstly, the training patterns
are generated, the structural configuration of hidden layer is
then optimized in the second step, and, finally, the weights
and biases are then optimized in the third step using training
algorithm.The trained neural model, thus obtained, is tested
on some arbitrary sets of patterns which are not used during
training of the model. Training and testing algorithms for
the neural networks model are implemented in MATLAB
software [41] on a personal computing machine. In fact, the
neural model produces results very fast after being trained
on the training patterns but the generation of patterns and
allocating them into training and testing patterns are chal-
lenging tasks for a complex geometry of microstrip antennas.
An MLP neural networks model with two hidden layers is
shown in Figure 2 inwhich the structural configuration of the
distributed neurons is mentioned as𝑚∗ 𝑛 ∗ 𝑝 ∗ 𝑞 wherem-,
n-, p-, and q- represent the number of neurons in the input
layer, first hidden layer, second hidden layer, and in output
layer, respectively. Further, [W

1
], [W
2
], and [W

3
] represent

the weight matrices between input layer to hidden layer-1,
hidden layer-1 to hidden layer-2, and hidden layer-2 to output
layer, respectively. The bias value at hidden node-1, hidden
node-2, and output node is denoted by [b

1
], [b
2
], and [b

3
],

respectively. Initially, some random numbers are assigned to
the weights and biases corresponding to an applied input
pattern. Adjustment in the weights and biases is carried out
during training of themodel using training algorithm to get a
desired value of response corresponding to the applied input
pattern. The training performance of the model is observed
for seven different algorithms: BFGS quasi-Newton (BFG),
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Bayesian regulation (BR), scaled conjugate gradient (SCG),
Powell-Beale conjugate gradient (CGB), conjugate gradient
with Fletcher-Peeves (CGF), one-step secant (OSS), and
Levenberg-Marquardt (LM), respectively [36–39]. During
pattern generation, it is observed that the uniform variation
in geometrical parameters produces nonuniform variation
in electrical parameters which causes convergence problem
during training of the neural model. The problem is resolved
by normalizing both the geometrical and the electrical
parameters between +0.1 and +0.9 in MATLAB software
before applying training.

The standard MLP neural model is proposed to predict
the actual shape and appropriate size of the introduced slot for
achieving the desired level of dual resonance (f

1
and f
2
), dual-

frequency gains (G
1
and G

2
), dual-frequency directivities

(D
1
and D

2
), dual-frequency antenna efficiencies (A

1
and

A
2
), and dual-frequency radiation efficiencies (R

1
and R

2
).

There are four shapes to be predicted in the proposed work:
asymmetrical cross slot (ACS), square slot (SS), longitudinal
slot (LS), and transverse slot (TS). The predicted shape is
being represented here by a dummy variable “S” where S =
1, 2, 3, and 4 corresponds to ACS, SS, LS, and TS, respectively.
The predicted size of the introduced slot is represented by
dimensions x

1
, y
1
, x
2
, and y

2
. Thus the response matrix is

designated as [𝑅] → [𝑥
1
𝑦
1
𝑥
2
𝑦
2
𝑆] for the excitation

matrix [𝐸] → [𝑓
1
𝑓
2
𝐺
1
𝐺
2
𝐷
1
𝐷
2
𝐴
1
𝐴
2
𝑅
1
𝑅
2
]. Using

trial and error method, the structural configuration shown in
Figure 2 is optimized asm = 10, 𝑛 = 73, p = 76, and q = 5 for
the best performance. Here 10 neurons in the input layer are
used for applying the excitation and 5 neurons in the output
layer are used for getting the response.TheMLPneuralmodel
is trained by considering some initial parameters: mean
square error (MSE) = 4.79 × 10−5, learning rate (𝜂) = 0.15,
and momentum coefficient (𝜇) = 0.004. The trained model
then predicts the appropriate shape and size of the introduced
slot very fast for any arbitrary set of resonance frequencies
(1.5 GHz≤ resonance frequencies≤ 3.0GHz), gains (6.2 dBi≤
gains≤ 9.6 dBi), directivities (6.6 dBi≤directivities≤ 9.9 dBi),
antenna efficiencies (83% ≤ antenna efficiencies ≤ 100%), and
radiation efficiencies (85%≤ radiation efficiencies≤ 100%) for
dual-frequency operation.

4. Knowledge-Based Neural Modeling

The standard MLP neural networks model discussed in
Section 3 is trained with 1372 patterns (∼70% of total
generated patterns) and tested for the rest 588 patterns. To
generate such a large number of training patterns is a time
consuming process and sometimes it becomes very expen-
sive. It is so because the simulation/measurement approach
is to be performed for several combinations of each input
parameter associated to that geometry. Without degrading
the performance of the neural model discussed in Section 3,
two methods, difference method and prior knowledge input
(PKI) method, are used for reducing the required number of
training patterns as shown in Figure 3.

In the difference method, the fine ANN model is trained
on the difference between the simulated outputs and the
outputs of coarse ANN model. In PKI method, on the other

Table 1: Optimized structural configuration.

Knowledge-based
neural method

Structural configuration
𝑚 𝑛 𝑃

Difference method
(Coarse model) 10 8 5

Difference method
(Fine model) 15 14 5

PKI method
(Coarse model) 10 10 5

PKI method
(Fine model) 20 14 5

hand, the outputs of coarse model are used as inputs for
fine ANN model in addition to simulated inputs. Thus, the
input/output mapping of the ANN model is in between the
output response of the existing model and that of the target
model. In the proposed work, the prior knowledge is attained
by an already trained neural model, known as coarse model.
It can also be attained by a set of analytical equations or
empirical models. This coarse model contains some infor-
mation about the behavior of the proposed problem and
does not produce the desired level of accuracy. But when
it is incorporated in the two methods shown in Figure 3,
the overall accuracy increases drastically and the required
training patterns significantly reduces. The optimization
strategy for structural configuration and the training of the
coarse and fine ANN models is similar to the standard MLP
neural model discussed in Section 3. In the difference and
PKI methods, the structural configuration of coarse model
and fine models are optimized as discussed in MLP neural
modeling discussed in Section 3 and the optimized values are
mentioned in Table 1.

5. Computed Results and Validation

A standard MLP neural modeling scheme is proposed for
instantly predicting the actual shape and appropriate size
of the inserted slot on rectangular radiating surface of
microstrip antenna for achieving desired level of perfor-
mance parameters.The training performance of the proposed
standard neural model is observed for seven training algo-
rithms: BFG, BR, SCG,CGB,CGF,OSS, and LM [36–39]. But,
for the proposed problem, only Levenberg-Marquardt (LM)
back propagation algorithm is proved to be themost accurate
training algorithm as mentioned in Table 2. Further, it is also
proved to be the fastest converging training algorithm as
it requires the least training time (1589 sec.) with the least
number of iterations (i.e., 14562).

Table 3 shows a comparison of model size, number of
weights, and bias values used in three neural models. The
numbers of weights and biases for MLP model are computed
as 6658 (10 × 73 + 73 × 76 + 76 × 5) and 154 (73 + 76 + 5),
respectively. Similarly for the difference method, these are
computed as 400 (10 × 8 + 8 × 5 + 15 × 14 + 14 × 5) and
32 (8 + 5 + 14 + 5), respectively. In the same way for PKI
method, the weights and biases are computed as 500 and 34,
respectively. Thus the difference and PKI methods require
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Table 2: Comparison of error versus training algorithm.

Training algorithm
[36–39] Iteration required Training time (sec.) Average absolute error in predicting slot size (cm)

𝑥
1

𝑦
1

𝑥
2

𝑦
2

BFG 61534 51144 8.445 9.342 7.996 6.998
BR 51975 71539 7.665 9.459 4.995 6.128
SCG 63245 71493 8.110 7.129 8.234 9.665
CGP 54318 41968 9.665 5.776 7.432 6.563
CGF 48953 41132 7.993 7.885 6.997 9.134
OSS 37903 51345 6.772 3.664 4.776 5.771
LM 14562 1589 0.189 0.132 0.147 0.162

Table 3: Structures comparison of neural models.

Neural model Model size Weights Biases
Standard MLP model 𝑚 = 10, 𝑛 = 73, 𝑝 = 76, and 𝑞 = 5 6658 154
Difference method 𝑚 = 10, 𝑛 = 8, and 𝑝 = 5 and𝑚 = 15, 𝑛 = 14, and 𝑝 = 5 400 32
PKI method 𝑚 = 10, 𝑛 = 10, and 𝑝 = 5 and𝑚 = 20, 𝑛 = 14, and 𝑝 = 5 500 34

only 6.01% and 7.51% of theweights required in standardMLP
neural model, respectively. Similarly, the numbers of bias
values in these two methods are only 20.78% and 22.08% of
the bias values required inMLP neural model, respectively. It
is concluded here that, by using KBNNmethods, the number
of weights are reduced by 93.99% and 92.49% and biases by
79.22% and 77.92% in the differencemethod and PKImethod,
respectively, at the cost of slight deterioration in the computed
accuracy.

The accuracy comparison in three models is given in
Table 4. The average testing error in standard MLP neural
model is drastically increasing by reducing the training
patterns from 70% to 40%. It means that the MLP neural
model produces more accurate results if it is trained with
adequate number of training patterns. On the other hand,
two knowledge-based neural methods are producing more
accurate results even for lesser training patterns. The testing
accuracy of the differencemethod is deteriorating from0.57%
to 1.53% by reducing the number of training patterns from
70% to 40%, whereas, in PKI method, it is only from 1.15% to
2.23% for the same level of reduction in the training patterns.

Thus, the difference method is observed to be more accurate
than the PKI method for the proposed problem. Table 5
depicts a comparison between simulated and predicted slot
sizes along with their simulated dual resonances which shows
a very good agreement between the two.

As the weights and biases in the proposed neural mod-
eling schemes are selected randomly for initialization, the
computed errors in these three neural models have also
been analyzed by considering the stochastic behavior of
mean and standard deviation of the computed errors [42]. A
relationship betweenmean and standard deviation of an error
set is developed by considering the coefficient of variation
(CoV) which is defined as the ratio of standard deviation
to the mean value. CoV closer to 0, represents greater
uniformity of error, whereas CoV closer to 1, represents
the larger variability of the error. For difference method,
the mean in four-dimensional errors is computed as 1.4543,
1.3487, 1.4673, and 1.5143, respectively, whereas the standard
deviation is computed as 0.1499, 0.1314, 0.1566, and 0.1549,
respectively. Hence, the coefficient of variations for these four
values is coming out to be 0.1031, 0.0974, 0.1067, and 0.1023,
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Table 4: Accuracy comparison.

Number of patterns Neural model Error in testing

Training = 70% and testing = 30%
MLP method 3.14%

Difference method 0.57%
PKI method 1.15%

Training = 50% and testing = 50%
MLP method 14.86%

Difference method 1.17%
PKI method 1.49%

Training = 40% and testing = 60%
MLP method 23.81%

Difference method 1.53%
PKI method 2.23%

Table 5: Performance comparison.

Simulated slot size (mm) and dual resonance (GHz) Predicted slot size (mm) and dual resonance (GHz)
Simulated slot size (mm) Dual resonance (GHz) Predicted slot size (mm) Dual resonance (GHz)
𝑥
1
= 38.0000

1.7708 and 1.9221

𝑥
1
= 38.1042

1.7807 and 1.9221𝑦
1
= 1.5000 𝑦

1
= 1.5013

𝑥
2
= 1.0000 𝑥

2
= 0.9801

𝑦
2
= 41.0000 𝑦

2
= 41.1033

respectively, which shows that all the error points over a
full validation set of 1960-simulated patterns are uniformly
distributed [15].

During simulating a structure in IE3D software, from
1.5GHz to 3.0GHz frequency range with total 100 sampling
points is used. For the proposed geometry, the simulation
time is computed as ∼1 h 53min. per structure and 36MB
system memory (RAM) is required for each simulation. By
using neural networks modeling, the computational time
and the required memory storage are fairly reduced. The
time elapsed during training of the MLP neural model is
computed as 1589 sec. whereas ∼49msec. time is elapsed in
producing the results after training [42].Thus, it is concluded
here that the neural model after training is much faster than
that of the conventional electromagnetic simulators. Further,
the training of the model requires only 29KB RAM of a
system and, for testing the performance, only 1.33 KB RAM
is required. Hence, the required memory space in training as
well as in testing of the neural networks model is also lesser
as comparison to 36MB required for simulation.

The proposed neural modeling schemes are also tested
in extrapolation region (outside the region of generated
training patterns) of the input space which is created by
extending the original region of the input space by 25% and
50 arbitrary sets of patterns are created in the extrapolation
region. The performance of the proposed neural models is
summarized for these 50 patterns in Figure 4 which shows
that the accuracy of the KBNN models is depreciating much
slower than that of MLP neural model in the extrapolation
region. It may be due to the built-in prior knowledge in the
KBNNmodels that givemore information to the patterns not
seen during the training.

For validating the work, a prototype is fabricated using
RT-Duroid substrate. The patch of dimensions 61 × 56mm2

0 10 20 30 40 50
0

5

10

Ab
so

lu
te

 er
ro

r (
%

)

Testing performance of neural models in extrapolation region
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MLP neural method
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Figure 4: Performance of ANN models in extrapolation region.

is etched on the upper side of the substrate whereas an air-
gap of 5.1mm between the substrate and the ground plane
is inserted using Teflon rods (Figure 5). The prototype is
excited by probe feed, which guides the electromagnetic
waves to the feed point. An SMA connector with a 6.8
mm long pin (1mm for ground plane, 5.1mm for air-gap,
and 0.762mm for substrate) is used for RF connection. The
input reflection coefficients denoted by 𝑆

11
of the fabricated

prototype are measured using Agilent N5230A network
analyzer. A comparison between measured and simulated
reflection coefficients is depicted in Figure 4, which shows a
good convergence between the two. It is also confirmed here
that the Teflon rods do not affect the antenna performance.
The computed results are comparedwith themeasured results
as mentioned in Table 6 and shown in Figure 5. Thus, a good
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Figure 6: Screenshot of experimental setup.

Table 6: Comparison of dual resonance.

Dual resonance (GHz)
Predicted values Simulated values Measured values
1.7807 and 1.9176 1.7708 and 1.9221 1.7800 and 1.9250

agreement is achieved between predicted, simulated, and
measured dual resonance. The screenshot of experimental
setup used during measurement is also shown in Figure 6.

6. Conclusion

In this paper, MLP neural networks modeling scheme has
been suggested for instantly predicting the slot shape (cross
slot, square slot, longitudinal slot, and transverse slot) and
slot size (dimensions of predicted slot), simultaneously. This
prediction has been carried out for achieving the desired
values of dual resonance (in between 1.5 GHz and 3.0GHz),
dual-frequency gains (in between 6.2 dBi and 9.6 dBi), dual-
frequency directivities (in between 6.6 dBi and 9.9 dBi), dual-
frequency antenna efficiencies (in between 83% and 100%),
and dual-frequency radiation efficiencies (in between 85%
and 100%). Such a neural approach has been rarely attempted
earlier in the open literature. For training of MLP model,
70% of total generated patterns have been used and the
performance of the trained model has been tested with the
remaining 30% of patterns.

The reliability ofMLPneuralmodel is directly linkedwith
adequate number of used training patterns and these patterns
have been created using IE3D simulation. The simulation
approach has been observed to be a time consuming process
because it has been performed for several combinations
of each input slot dimension. To reduce the number of
training patterns, two knowledge-based schemes based on
incorporating prior knowledge inMLPmodel have also been
used. The prior knowledge has been obtained by another
trained neural model, known as coarse neural model. The
knowledge-based neural approach is very much advanta-
geous when the generation of training patterns is expensive
and time consuming as in the case of electromagnetic prob-
lems. Both the knowledge-based methods have shown better
accuracy even with the least training patterns over MLP
neural model with adequate number of training patterns.
Further, the difference method has produced more accurate
results than that of the PKImethod for the proposed problem.
For validating the work, predicted results have also been
comparedwith theirmeasured counterparts and found a very
good agreement.
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