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Time series of human performances present fluctuations around a mean value. These fluctuations are typically considered as
insignificant, and attributable to random noise. Over recent decades, it became clear that temporal fluctuations possess interesting
properties, however, one ofwhich the property of fractal 1/f scaling. 1/f scaling indicates that ameasured process extends over awide
range of timescales, suggesting an assembly overmultiple scales simultaneously.This paper reviews neurological, physiological, and
cognitive studies that corroborate the claim that 1/f scaling is most clearly present in healthy, well-coordinated activities. Prominent
hypotheses about the origins of 1/f scaling are confronted with these reviewed studies. It is concluded that 1/f scaling in living
systems appears to reflect their genuine complex nature, rather than constituting a coincidental side-effect. The consequences
of fractal dynamics extending from the small spatial and temporal scales (e.g., neurons) to the larger scales of human behavior
and cognition, are vast, and impact the way in which relevant research questions may be approached. Rather than focusing on
specialized isolable subsystems, using additive linear methodologies, nonlinear dynamics, more elegantly so, imply a complex
systems methodology, thereby exploiting, rather than rejecting, mathematical concepts that enable describing large sets of natural
phenomena.

1. Introduction

The presence of 1/𝑓 scaling in human performances is
arguably one of the most puzzling, yet lawful phenomena in
cognitive science (see [1–7]). 1/𝑓 scaling represents fractal,
self-similar processes nested across multiple scales of mea-
surement. Its occurrence implies that the rescaling of a time
series leaves the distributional properties of the time series
unaffected. Intriguingly fromboth a statistical and theoretical
point of view, fractal scaling is widespread across the central
nervous system, motor behavior, cognitive performances,
and well beyond. As will be discussed, many physical and
physiological signals exhibit scale-invariant features. Because
it is now well known that the presence of 1/𝑓 scaling has a
profound impact on cognitive and physiological activities, the
phenomenon warrants serious attention.

Despite the fact that 1/𝑓 scaling is a mathematical
concept that allows for descriptions of large sets of natu-
ral phenomena, the study of this relatively simple lawful
description is relatively new. 1/𝑓 scaling, nonetheless, has
the potential to reveal unexpected congruities among neu-
rological, physiological, and cognitive activities. A general
back draw is that the observation of 1/𝑓 scaling in itself
runs against standard statistical intuitions.That is, successive
observations of a repeated behaviors are typically assumed
to represent measurement values that are independently
drawn from a Gaussian distribution and thus to fluctuate
randomly from trial-to-trial. Over recent decades, however,
it has become clear that movement variability rarely equates
with random, Gaussian noise and that temporal variability is
usually structured and reveals specific details of the system
dynamics [2, 5, 6, 8, 9].
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Figure 1:Three different classes of temporal variability, white noise (a), 1/𝑓 scaling (c), Brownian noise (e), and their respective power spectra
are shown in the respective panels at the right.

In fact, structured variability appears to be the rule rather
than the exception and is often as revealing as aggregate
information in terms of unpacking the nature of the system
organization [3, 10, 11].
1/𝑓 scaling implies long-range dependence in the sig-

nal, often called long-range correlations or long memory.
The associated serial correlations from trial to trial decay
very slowly as the number of intervening trials increases,
indicating persistent serial correlations, in contrast with

the traditional view that they are transient (see e.g., [2]). This
sets 1/𝑓 scaling apart from random noise, which lacks this
serial dependence.

One way of revealing 1/𝑓 scaling is by translating depen-
dencies in the time domain (i.e., a pattern of change in
response time over trials) as simple features in the frequency
domain using an operation called a Fourier transform, which
decomposes the data series containing changes in response
over trials into its constituent frequencies. Next, the power
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(the square of the amplitude) of each contributing wave at
that frequency in the decomposed signal is plotted in a log-log
power spectrum. Also called power spectral density function,
such a log-log power spectrum for a random data series
(white noise, see Figure 1(a)), is shown in Figure 1(b).

White noise is not long-range correlated, as represented
by a flat slope in a log-log power spectrum. 1/𝑓 scaling, in
contrast, is expressed as an inversely proportional relation
between log power and log frequency (see Figure 1(d)). This
implies a nested sequence effect spanning over the entire time
course of a measurement and even beyond, encompassing
undulating “waves” of relatively longer and then shorter
response times travelling across the series. In particular,
faster (high-frequent) changes in response time are typically
small and embedded in overarching, slower (lower-frequent)
changes of higher amplitude (see Figure 1(c)). A third class
of variability is Brownian noise (see Figure 1(e)), which can
be generated by adding successive observations generated
by a white noise process. Brownian noise is nonstationary,
which means that variance increases over time. The log-
log power spectrum of Brownian noise has a slope of −2
(see Figure 1(f)).

Typically, repeated human behaviors show a scaling
exponent 𝛼 in the range of 0 and 1, in between random
noise and 1/𝑓 scaling. Examples of cognitive tasks include
mental rotation, lexical decision, and visual search [2], simple
reaction time and word-naming [3], forearm oscillation [12],
synchronization to a metronome [13], implicit associations
[14], bidaily reports of self-esteem [15], and movement times
in an aiming task [16, 17], among others. But sometimes 𝛼
varies between 1 and 2 or even beyond, often in continuous
processes like postural sway (e.g., [18]), force production [19],
or galvanic skin response [20].

The aim of this paper is to review the fascinating linkage
between 1/𝑓 scaling and healthy, well-coordinated activities.
Next, the most pertinent hypotheses about the origins of
1/𝑓 scaling in human activities are discussed, followed by a
critical assessment of their relative strengths and weaknesses.
Any of these hypotheses are able to successfully explain the
presence of 1/𝑓 scaling but postulate opposing underlying
mechanisms. The proposal put forwards is that questions
concerning potential mechanisms and models that produce
1/𝑓 scaling should be rephrased. What matters is which
explanation accounts best for the general linkage between
observed fractal dynamics and coordinated physiological and
cognitive processes. After all, each distinct account will have
to deal with this broad linkage.

2. Fractal Dynamics and System Coordination

Recent years have witnessed increasing empirical support for
widespread 1/𝑓 scaling in time series of physiological and
behavioral processes. A main theme of this review focuses
specifically on the association of 1/𝑓 scaling with healthy
and well-coordinated behaviors. That is, deviations from
1/𝑓 scaling are often related to pathologic disorders, aging,
external perturbations, high workload, or other situations
where the system was not fully functional or coordinated.

Rather than an incidental finding, this relation appears to be
global and extends from small spatial and temporal scales
(e.g., neurons) to the larger scale of human behavior itself.

That said, the growing body of research has further
complicated this picture, showing that changes in the scaling
relation occur simultaneously, and sometimes independently,
on shorter (i.e., sleep-wake cycles, rest versus exercise, or
circadian phases) and longer time scales, such as learning
or aging (e.g., [21–26]). Observing deviations from 1/𝑓
scaling in shorter scale processes (e.g., transitions from one
physiological state to another) under young and healthy
conditions invite for a critical review of the relation between
system performance and the presence of 1/𝑓 scaling on the
longer behavioral scales, to (a) evaluate whether the current
state of knowledge allows arriving at a coherent theoretical
framework, and (b) pinpoint the questions that remain to be
answered.

One biological example that hints at the generality of
the claimed relation between coordinated system behavior
and 1/𝑓 scaling is the vibratory motions of the membrane
of red blood cells. The human body continuously produces
new red blood cells (approx 2.4 million a second, cf. [27]),
which compose a third of the cells in the human body
[28]. Red blood cells are renewed after approximately 120
days, however. Interestingly, the membrane of red blood cells
spontaneously vibrates, or “flickers,” revealing 1/𝑓 scaling.
Costa et al. [29] revealed, in addition, that the dynamical
properties of this flickering behavior change with in vivo
aging. Older cells emit less clear 1/𝑓 scaling, compared with
newer cells that carry more oxygen.

This example is meaningful, since red blood cells consti-
tute an important, basic system component, which is strongly
related to an adequate functioning of one’s physiology (and,
hence, by extension human behavior). By reviewing func-
tional benefits of fractal dynamics for living systems, an
attempt is made to offer a vehicle for theoretical progress
on the topic of 1/𝑓 scaling in cognitive performances. The
steadily growing body of reliable positive evidence con-
tradicts and grossly surprises conventional thinking about
the architecture of cognitive systems. For one, a common
scale-free “language” among perceptual-motor or cognitive
tasks and (neuro-)physiology are not expected from classical
componential models, which typically posit domain-specific
control structures.

2.1. Pervasive Fractal Scaling in the Central Nervous System.
Brain activity is being investigated across a multitude of
embedded scales of analysis. The finest level is the molecular
scale which makes up cells, neurotransmitters, and so forth.
Courser levels of brain activity include cell membranes
with their synapses, microcircuits of dentritic trees, whole
neurons, local cortical circuits consisting out of nearby neu-
rons, entire cortical regions, and interactions among cortical
regions, and pathways connecting them. At the coarsest scale
one finds the central nervous system as a whole, embedded
in a body, history, and environment. Evidence of fractal
scaling at all of these levels would suggest commondynamical
constraints across these embedded scales of organization,
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begging the question whether the presence of fractal scaling
provides support to this multiscale organization.

Anatomically out first, a mammalian brain reveals fractal
properties in branching dendrite patterns, thereby maximiz-
ing functionality for a fixed dendrite cost [30–32], suggesting
that fractal scaling in morphological specializations at the
cellular level has a functional role (see also [33–35]). As a
different example, fractal characteristics of microglia differ-
entiate between healthy and pathological brains [36, 37]. And,
also at more global organizational levels of the brain, fractal
morphology yields functional advantages [38, 39].

Apart from the spatial fractal structure of brain anatomy,
temporal brain dynamics are also remiscent of complex
behavior across many scales: 1/𝑓 power-law scaling in tem-
poral activation patterns has been observed at all levels of
neural organization, from ion channels opening and closing
times to cortical networks [40]. The question of primary
interest is how the dynamics of ion channels [41–45] interact
with, rather than concatenate to fractal spike intervals [46–
49] and the functional characteristics of larger scale neural
ensembles [50–56].

Important clues may come from pathological brains. For
instance, deviations from 1/𝑓 scaling, as typically observed
in healthy controls, have been found with major-depressive
disorder [57], mania [58], autism [59], epilepsy [60], and
Alzheimer’s disease [61]. These results suggest that 1/𝑓
scaling is prevalent in healthy, coordinative behavior of a
healthy brain, and less so in the global activity of the brain
with disorders and disease. Following on this suggestion, it
was shown that the presence of 1/𝑓 scaling in brain acti-
vation correlates with the severity of depression symptoms
[57] and the success rate of recovery from traumatic brain
injury [62].

The scale complexity inherent to the study of brain
activity makes it an enormous challenge for neuroscience
to arrive at a universal theory of brain function. One first
complication comes from the requirement of different meth-
ods at each level or scale of neural investigation. Each of
the methods available yields a compromise between spatial
and temporal resolution and, consequently, yields a priori
choices in the organizational level of interest. No current
method in isolation is likely capable of revealing the full-
blown complexity of the brain, from the decimeter to the
micrometer scale and from milliseconds to minutes up to
developmental timescales. The discussed findings, however,
should be taken as a strong suggestion that the inherent scale
complexity of the human brain is a (if not the) key feature in
itself.

2.2. Pervasive Fractal Scaling in the Body. A substantial
amount of fractal applications in cognitive research have
been motivated by initial successes in physiology, which had
related 1/𝑓 scaling to the coordination, adaptivity, and flexi-
ble stability of the involved regulatory processes. Deviations
from 1/𝑓 scaling in physiology have been found to relate to
the degradation and decoupling of integrated systems, patho-
logical conditions, severe disease, and increased mortality
risk.

For instance, heartbeat interval series show 1/𝑓 scaling,
with the clearest examples in healthy subjects. Deviations
from 1/𝑓 scaling, either associated with excessive order
(pathologic periodicity) or uncorrelated white noise (lack of
temporal organization), indicate pathological conditions like
congestive heart failure and ventricular arrhythmia [63, 64],
and thus predict mortality [65]. Smaller deviations from 1/𝑓
scaling have been observed in heartbeat intervals in obese
children [66] and adults with Down syndrome [67].

However, although alterations in the fractal properties of
physiologic signals have been found to be reliable markers
of changes in physiologic control, with healthy aging scale-
invariant and nonlinear properties of heartbeat dynamics
remain unchanged, with heart rate variability is significantly
reduced healthy elderly, nonetheless [68, 69]. These findings
suggest that healthy aging may not result in a continuous
gradual change in scaling properties of heartbeat intervals,
and implies that alterations in the cardiac control mechanism
with advanced age differ conceptually from the mechanistic
changes in the autonomic regulation associated with patho-
logic conditions.

Also breathing rhythm reveals 1/𝑓 scaling behavior but
shows deviations thereof with aging [70, 71]. The contrary
goes for development. Fetal breathingmovements showmore
pronounced 1/𝑓 scaling with gestational age [72]. In contrast,
deviations from 1/𝑓 scaling are observed in asthma patients,
out of which those with more pronounced 1/𝑓 signatures
in breathing rhythm showed better recovery after treatment
[73]. These findings indicate together that fractal dynamics
increase the overall efficiency of the respiratory system
(cf. [74]).

Also fluctuations in blood pressure are found to scale
as 1/𝑓 [75, 76]. Diabetic patients, however, show reduced
1/𝑓 noise specifically in glucose fluctuations compared with
healthy controls [77, 78]. Another example are temporal
fluctuations in colonic pressure. Yan et al. [79] observed 1/𝑓
fluctuations in the colonic activity of the healthy subjects,
while patients hospitalized for slow transit constipation
showed colon pressure fluctuations deviating from 1/𝑓 noise
towards Brownian noise; a condition yielding hardly bearable
levels of pain sensation.

In physiology and medicine it is being increasingly
acknowledged that a disease not only changes an average
measure, such as heart rate or breathing rate, but is manifest
in departures from fractal variability. Deviations from 1/𝑓
scaling are taken to imply a loss of physiologic control,
which is often visible at very early stages of pathological
development. The change in fractal dynamics with disease
and, in some cases, aging suggested the new definition of
disease as a loss of complexity, rather than the loss of
regularity (e.g., [80]).

2.3. Pervasive Fractal Scaling in Motor Control. As in neuro-
science, medicine, and physiology, there has been an increas-
ing interest in fractal dynamics in humanmovement science.
For instance, time series of postural sway differ reliably from
random noise, revealing fractal properties (e.g., [18, 81, 82]).
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Moreover, the clearest examples of 1/𝑓 scaling are found in
young participants, while elderly participants show less clear
fractal scaling in their postural dynamics [83], indicating
degraded balance control [84–88]. This interpretation was
further supported by Manabe et al. [89], who demonstrated
less clear 1/𝑓 scaling in postural sway dynamics for patients
suffering from Parkinson’s disease and spinocerebellar ataxia,
when compared to a control group. Interestingly, fractal
measures of postural swaywere even foundmore reliable than
more traditional measures [90].

Also in gait intervals ([91, 92] are reviews)—the time
intervals between successive steps in locomotion—the clear-
est examples of 1/𝑓 scaling are observed in young and healthy
participants, whereas with aging, gait interval series become
more random. It must be noted, however, that, while cardiac
and respiratory dynamics show a more pronounced 1/𝑓
scaling and also higher degree of nonlinearity with gestation
age and maturation, in locomotion deviations from 1/𝑓
scaling towards more random scaling are observed throught
the maturation from childhood to adulthood (cf. [93, 94]).

In an elderly population, however, the presence of 1/𝑓
scaling successfully discriminates between fallers from non-
fallers, and betweenHuntington’s patients and control partic-
ipants [91]. Moreover, the fractal dynamics of stride intervals
produced by Huntington’s patients correlates strongly with
the severity of the illness (𝑟 = −.78, cf. [91]), suggesting
that deviations from 1/𝑓 scaling suggest impaired control
of locomotion. Hausdorff [92] describes similar findings
in Parkinson’s disease patients and observed that among
patients Parkinson’s disease, the 1/𝑓 scaling relation in gait
intervals “breaks down” and the stride-to-stride fluctuation
in gait becomes very similar to white noise; each stride starts
a new process, unlinked and unrelated to the previous stride.
After successful treatment with proper medication, however,
1/𝑓 scaling becomes more prominent again in Parkinson
patients’ gait dynamics [95].

Using a differentmotor task,Wijnants et al. [17] presented
college students with a very challenging precision-aiming
(i.e., Fitts) task. The instruction was to move as fast and as
accurately as possible between two circular targets with an
inkless stylus. Participants were presented with five training
blocks of 1100 back-and-forth movements. Very small targets
were used, positioned wide apart, while participants were
instructed to use their nondominant, least-practiced hand.
A learning effect was observed after the extensive number
of practice trials. Participants reached the narrow targets
much faster after practice, while accuracy was maintained. A
reliable effect of practice was found in the presence of 1/𝑓
scaling in movement time fluctuations; the presence of 1/𝑓
scaling became more pronounced with motor learning.

In a later study, Wijnants et al. [20] examined 1/𝑓
scaling in both spatial (movement amplitude) and temporal
(movement time) time series in the challenging precision-
aiming task, so notorious for revealing speed-accuracy trade-
off (cf. [96]). Because of the difficulty of the task, participants
were required to either emphasize the speed or the accuracy
side of the trade-off (while equally being instructed to move
as fast and as accurately as possible between targets) simply

because the dual task constraints were so incompatible. The
emphasized task requirement (temporal or spatial) directly
affected the presence of 1/𝑓 scaling. Faster participants
produced clearer 1/𝑓 scaling in movement times, but more
random dynamics in movement amplitudes, as they per-
formed the task less accurately. Conversely, more accurate
participants produced more random dynamics in movement
time sequences, as they performed the task more slowly,
and clearer 1/𝑓 scaling in movement amplitude series. This
effectively led to a trade-off between spatial and temporal 1/𝑓
scaling (𝜌 = −0.64), contingent on the so well-established
speed-accuracy trade-off.

In the same study, Wijnants et al. [20] established a
strong relation between the fractal dynamics of movement
time versusmovement amplitude and the biomechanical con-
straint of minimizing the dissipation of mechanical energy.
Faster participants, who produced clearer 1/𝑓 scaling in
their movement time series also better capitalized on the
elastic properties of the muscular system to recycle the
kinetic energy of the approaching hand, arm, and shoulder
in potential form, which is energetical to the benefit of
the next movement. Together, this amounted to a strong
coupling amongmeasurement scales in human performance:
the biomechanical details emerged within the timeframe of a
single movement, while speed and accuracy are determined
by entiremovements.The third timescale included the fractal
dynamics that extend up to minutes of performance. The
strong coupling between these multiple levels of motor per-
formance provided further exquisite support for the nested
multiscale properties in the organization of the cognitive
system.

In contrast, externally driven performances have been
found tominimize intrinsic fractal fluctuations. For instance,
Chen et al. [13] observed no 1/𝑓 scaling when tapping to a
metronome (1/𝑓 scaling was observed in the asynchronies
to the metronome, nonetheless), while 1/𝑓 scaling is clearly
present in self-paced intertap intervals (cf. [97]). Similarly,
in consecutive gait-cycles the external drive of a metronome
breaks down the long-time correlations of the natural pace
and generates random variability [91].

In a bimanual force production task, Wing et al. [98]
observed random or close to random variability when feed-
back was presented to the participants (another form of
external drive), while much clearer 1/𝑓 scaling was observed
when no feedback was provided. Kello et al. [11] and van
Orden et al. [3] interpreted these findings, altogether, as a
confirmation that feedback provided constitutes a type of
external perturbation that decorrelates the intrinsic fluctua-
tions of 1/𝑓 scaling.

Perhaps the epitome of exercising external perturbation
to motor control is to add a cognitive task on top of an
initially simple motor task. Dual-tasking paradigm has been
found to induce reduced 1/𝑓 scaling in the primary motor
task [99]. This finding was replicated in a different task by
Hausdorff [92] who invited Parkinson’s patients to walk while
performing a challenging secondary task. The gait dynamics
revealed a reduced presence of 1/𝑓 scaling, compared with a
no dual-tasking condition.
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Figure 2: The fractal scaling exponents from four independent
experiments are shown. It is shown that 1/𝑓 scaling become more
clearly present as the number of different response options decreases
(see text). The shown tasks include word-naming, choice reaction,
simple reaction, and precision aiming.

2.4. Pervasive Fractal Scaling in Human Cognition. The pre-
sented results from neuroscience, physiology, and movement
science naturally extend to cognitive performances. Consider
Figure 2, which depicts the average 1/𝑓 scaling exponents
observed in four different experiments: word-naming [3],
choice reaction [11], simple reaction [3], and precision aiming
[17]. It is clear that the presence of 1/𝑓 scaling gradually
increases over these tasks. Note that in precision aiming and
simple reaction tasks, each experimental trial is identical.
Each trial yields the same stimuli and the same type of
response. This means that external sources of variation
are minimized in these task performances. Consequently,
the observed variation must largely reflect internal sources,
which can be seen as a clearer presence of 1/𝑓 scaling in
those tasks. One can readily notice the difference between
precision aiming and simple reaction times. Precision aiming
is a cyclic task, while simple reaction times become perturbed
by a discrete signal to respond at each trial, and requires a
discrete response at each trial. It can be seen that the extent
of this perturbation effectively leads to a reduced presence of
1/𝑓 scaling.

The other end of the scale shows the 1/𝑓 scaling expo-
nents from a word-naming task and a choice reaction task. In
these tasks, each experimental trial differs, but to a different
extent. In the choice reaction task, four different signals to
respondwere presented, with each signal requiring a different
response. This procedure introduces more external sources
of variation, which is revealed by a more whitened 1/𝑓
signal. Word-naming reveals the most reduced example, a
task in which every experimental trial introduces a unique
signal to respond. Hence, external sources of variation are
maximized in this procedure, and the measured values
likely reflect the intrinsic sources of variation to a lesser
extent, requiring a more flexible and adaptive, perhaps less
organized, control strategy. Similarly, the presence of 1/𝑓
scaling is typically reduced under high workload conditions

[14, 100, 101] and when a sequence of presented stimuli
becomes less predictable [11].

A closer look at one of the tasks, choice reaction, reveals
a similarly interesting finding. Ward [102] discusses an
experiment that was set up to manipulate the number of
stimulus and response alternatives. In that study, Ward and
Richard [103] presented participants with a choice reaction
task that consisted out of either one (simple reaction), two,
or four stimulus-response alternatives.The authors effectively
showed that the presence of 1/𝑓 scaling is reduced as the
number of stimulus-response alternatives increased. The
scaling exponents were .60 for the simple reaction task,
.37 for the two-choice reaction task, and .24 for the four-
choice reaction task. (Note that the scaling exponents in this
four-response choice reaction task are somewhat reduced,
compared with the findings of Kello et al., 2007 [11]. Note
however, that these differences might be due to the fact that
Ward and Richard fitted the spectral slope over all estimated
frequencies, while Kello et al. [11] only incorporated the
lowest 25% of frequencies in their linear fit, as suggested by
Eke et al. [104] and Holden [105]. All results in Figure 2 were
obtained by fitting the spectral slope over the lowest 25% of
frequencies only).

Another example of systematic perturbations attenuating
the presence of fractal dynamics comes from [106], who pre-
sented participants with a temporal estimation task, in either
of five conditions of accuracy feedback. In one condition,
feedbackwas provided at every estimate, in another condition
no feedback was given at all. In the remaining conditions,
feedback was displayed only if the temporal estimate deviated
from the target interval by more than 50, 100, or 200ms,
respectively. The results revealed an increase of 1/𝑓 scaling
in conditions where less feedback (i.e., intermittent sources
of perturbation) was provided, and hence, where the intrinsic
cognitive fluctuations were revealed most clearly.

Gilden and Hancock [107] compared the performance of
adults who reportedAttentionDeficit HyperactivityDisorder
(ADHD) symptoms with a control group of adults who did
not, in a mental rotation task. The instruction was to press
a key if the stimulus (a letter rotated by 0, 60, 120, 180, 240,
or 300 degrees) was mirror-inverted and another key if the
stimulus was not. Distinctive dynamical patterns of response
in the reaction times were observed in both groups. More
consistent participants revealed fractal scaling exponents
close to 1/𝑓 scaling, while the more variably performers
revealed random walk dynamics with a spectral slope close
to −2. Hence, the more efficient system responses yielded
a relatively clear 1/𝑓 signal, while the less coordinated,
attention-deficit responses deviated from that pattern.

Wijnants et al. [108] inquired fractal scaling properties in
the context of another learning disability. Response latencies
of young children diagnosed with developmental dyslexia
were compared with response latencies of nondyslexic chil-
dren.The authors revealed that 1/𝑓 scaling measures reliably
differentiated between both groups of readers when reading
aloud single words sequentially.The dyslexic readers revealed
more random response times, while average readers revealed
clearer 1/𝑓 scaling. Furthermore, in the dyslexic group the
1/𝑓 scaling exponents of the response time series strongly
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correlated with the severity of the reading impairment, as
determined by average response time (𝑟 = −0.56, the negative
correlation indicates that slower responses were associated
with less clear 1/𝑓 scaling) and standardized reading scores
(𝑟 = 0.77, the positive correlation indicates that lower reading
scores are associated with less clear 1/𝑓 scaling).

The summarized findings from research incorporating
behavioral responses to repeated stimuli are very similar
to the findings in neuroscience, physiology, and movement
science. These findings raise the suggestion that many mea-
surements related to howhumans respond to repeated stimuli
reveal signatures of complexity akin to the scaling behavior
observed in simultaneously occurring processes (e.g., in the
brain and the body). Importantly, these “cognitive” processes
are traditionally treated as independent and self-supporting
“directive systems” (i.e., the brain modules “in charge”) or
“executive systems” (i.e., the autonomous nervous system
“doing what it is directed to do”). The very observation
that they may not be independent and self-supporting, but
rather massively interactive, and complex in a true complex
systems sense, could however cast doubt on the validity of
the common sense distinction between the directive and
executive front seemingly involved in the coordination of
human action [55, 109].

3. Theoretical Perspectives on 1/𝑓 Scaling in
Human Performance

1/𝑓 scaling relations are systematically manipulable and
indicate adaptive and flexible performances where no single
timescale dominates coordination. Cognitive systems thus
appear to ongoingly maintain a balance between competitive
and cooperative processes in a flexible coupling across brain,
body, and cognition. By confronting the most prominent, yet
competing, hypotheses with the empirical observations pre-
sented above, an attempt is made towards a single conclusive
theoretical account.

3.1. Multiscaled Randomness. One account for widespread
1/𝑓 scaling in human cognition conceives the phenomenon
as reflecting many independent processes, each acting indi-
vidually on their own timescale (e.g., [98, 102, 110–113]).
For example, consider a time series where each measured
response𝑋 constitutes the sumof three different processes𝑌

1
,

𝑌
2
, and 𝑌

3
, each evolving at their own independent timescale,

in the additive form;𝑋(𝑡) = 𝑌
1
(𝑡) + 𝑌

2
(𝑡) + 𝑌

3
(𝑡). If one then

assumes that 𝑌
1
is a quickly random changing process, 𝑌

2
is

a random intermediate process, and 𝑌
3
is a slowly randomly

changing process, the additive series of all 𝑌’s may yield
1/𝑓 scaling under specific circumstances (see for instance,
[111, 113]).

Figure 3 shows schematically a power spectrum from
repeated responses that combine the activity of a multitude
of independent processes, each at their own timescale. In this
schematic representation, indeed, the schematic distributions
of time scales lead to 1/𝑓 behavior (see, e.g., [114], for a
more detailed description). This suggests that the complex
fluctuations and 1/𝑓 scaling observed in many biological
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Figure 3: A schematic representation of the multiscaled random-
ness construct. The left panel shows five hypothesized processes,
each evolving at their own timescale. A time series composed of
the sum of these processes may reveal 1/𝑓-like noise in a power
spectrum, which is shown in the right panel. Note that the processes
are depicted schematically andmay compose randomprocesseswith
differing relaxation times, rather than deterministic sine waves.

systems do not convey anything “special” about the mecha-
nism generating these dynamics. From this perspective, 1/𝑓
scaling is a rather coincidental event that reflects nothing
more than an artifact of information processing.

Themain benefit of explaining 1/𝑓 scaling by aggregation
of component processes is that such an explanation is concep-
tually simple and seemingly transparent and may therefore
“demystify” the widespread occurrence of 1/𝑓 scaling (cf.
[113]). That is, a componential model, consisting of many
independent components, is effectively able to produce tran-
sient short-range correlations that, together, by chance may
closely mimic the 1/𝑓 scaling behavior that is so ubiquitously
observed across neurology, physiology, motor behavior, and
cognition (e.g., [7, 111–113]).

Consider for instance the often cited dice-throwing algo-
rithm in Gardner [115]. Given three dice, when the first is
thrown only rarely, the second intermittently, and the third
at every observation.The sum of the values, when taken over
a range of observations, will fluctuate in a 1/𝑓-like fashion,
under specifically constrained conditions.

Nonetheless, there are a number of drawbacks. For one,
independent multiscaled processes must exactly match the
power and frequency associated with each involved com-
ponent in order to coincide with a 1/𝑓 scaling pattern.
However, if all parameters of the model are free, it is very
unlikely that a system would, by chance, choose the “proper”
parameters necessary to consistently generate 1/𝑓-like noise,
let alone accumulate consistent relative changes across so
many manipulations in neuroscience, physiology, and cogni-
tive science. That is, “simulations demonstrate that if model
parameters are unconstrained, the likelihood of generating
1/𝑓 noise is quite small. Thus, while the model can be used
to generate 1/𝑓 noise with various scaling exponents, it is
unlikely that the 1/𝑓 behavior observed in many biological
systems is due only to the fact that these systems are regulated
by many different inputs acting on different time scales.” [111,
page 2154].

A second important drawback from multiscaled ran-
domness is the lack of parsimony in the model. For every
independent 1/𝑓 signal observed new components need to be
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asserted [3, 4, 11, 116]. If not, that wouldmean the components
are shared between processes, meaning each component
is not strictly interdependent. Components of perception
and action would hinge on synergies of physiological and
cognitive component activities.

If one, in addition, considers a nongeneric 1/𝑓 process
measured over a time range of ten minutes, or twenty
minutes, regardless of its nature, multiscaled randomness
would imply scaling relations to bend off at the lowest
frequencies in the log-log power spectrum when sampling
extends over longer periods of time (e.g., [117]). In the
counter case, infinitely more short-range processes are to
be invoked to keep the spectrum from flattening at the low
frequencies (e.g., [118], see [4]), which would not be very
parsimonious. Surely, the scaling relation may break down
at extreme sides of the spectrum, but the criterion held in
physics, which is observing 1/𝑓 scaling over at least two
decades of frequencies, is generally well met in cognitive
performances.

Thirdly, notwithstanding that the idea of identifying
processes at different time scales is interesting and seems
viable, the theoretical interpretation of the different time
scales and the identification of their source still remain quite
speculative. That is, the theoretical underpinnings for how
and why exactly the hypothesized processes fluctuate in
that specific manner are often underspecified in multiscaled
randomness approaches. The critical question is not whether
multiple independent processes could cause 1/𝑓 scaling in a
measured signal (cf. [7, 113]), but rather the specific manner
in which those processes must fluctuate. In particular, for
any observed 1/𝑓 time series, which are many, one needs
to examine the number of reasonable time scales involved
in the specific process, the approximate values for those
time scales, and the relative magnitudes of each influence.
The involved processes that evolve at distinct time scales
may themselves be as general as corresponding to conscious,
preconscious processes, and unconscious processes [102],
neural, behavioral and cognitive events [112], planning and
control [16], or automatic, conscious, and sustained attention
[113].

Despite the simplicity of themodel itself, the examination
of the data is limited to post hoc accounts for how neural,
behavioral and cognitive events, attentional processes, or
consciousness components are supposed to overlap (see [4,
118]).

When confronted with the experimental results reviewed
above, revealing consistent changes in scaling exponent in
different performances, from the fastest neural scales down
to the slower behavioral processes, the “demystifying” mul-
tiscaled randomness approach of 1/𝑓 in human cognition,
in fact, becomes an extraordinary hypothesis in itself. That
is, the assumption that the observed behavior is jointly
determined by many independent groups of neurons, each
with their own different relaxation rate (determined by an
autoregressive decay parameter), carries amassive theoretical
load. The challenge would be to seek for deficient system
components in depression symptoms, retiring red blood cells,
as well as in severe constipation, asthma, dyslexia, or heart
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Figure 4: (a) Represents the plateaus induced by the discrete regime
switches. (b) represents the autoregressive response variability that is
inserted to the model. The response series shown in (c) was created
by dividing the threshold criterion (a) by the information accrual
time (b), compare or confer Wagenmakers et al. [113].

failure, among themany other examples, all happening to line
up as a reduced 1/𝑓 signature.

3.2. Regime Switching. A second perspective on 1/𝑓 scaling
in human cognition assumes that response processes show
discrete transitions from one mode of operation (i.e., a
specific mean or variance) to the next. These so-called
regime-switching models propose that shifts in the mean
or the variance of the observed process express shifts in
strategy, fatigue or attention. First, it is assumed that, over
the course of an experiment, participants repeatedly change
strategies. These shifts are employed for only a limited
period of time each. During these periods, particular thresh-
old levels determine the criterion amount of accumulation
of information required for a response. These changing
threshold criteria present themselves as different plateau-like
variations (see Figure 4(a)). Secondly, the speed with which
the accumulation process approaches the current threshold
is assumed to vary between successive measurements as a
first- (or sometimes higher) order autoregressive process
(see Figure 4(b)).

Under well-specified parameterizations regime-switch-
ing models are able to effectively generate 1/𝑓-like fluc-
tuations (e.g., [7, 113]), as shown in Figure 4(c). Regime-
switching models may also account for nonstationarity (i.e.,
large criterium switches) and sudden switches in perfor-
mancemode. Cognitive experiments designed tomeasure the
degree of 1/𝑓 scaling are generally lengthy, as they usually
require 29, 210, or more trials. In those experimental set-
ups measured values are sometimes indeed susceptible to
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undesired effects of learning, fatigue, shifts in strategy and
attention, and the like. This means that it is well possible that
many short-range dependencies happen to line up as 1/𝑓
scaling, showing “that 1/𝑓 noise is by no means ubiquitous
in psychology” [119, page 740]. In particular, “something
that looks like” 1/𝑓 scaling may simply cause a coincidental
by-product of cognition through fluctuations in fatigue,
attention, or strategy.

It is admittedly mysterious then, that 1/𝑓 scaling is
so genuinely observed across the broadness of time scales
of neurology, physiology, motor behavior, and cognition,
simultaneously. Adding the coincidences (as it applies to
independent events in probability theory) associated with
the discussed studies underscores that the critical question
is not whether strategy, attention, or fatigue fluctuations
cause 1/𝑓 scaling, but rather the specific manner in which
the component activities must fluctuate to cause exactly
1/𝑓 scaling, and its variations in the face of experimental
manipulation. The associated coincidence renders regime-
switching models as poor theoretically viable candidates to
account for 1/𝑓 scaling in human cognition, lacking any
physical motivation.

In addition, one could consider the fact that the broad
family of autoregressive moving-average models can repro-
duce exactly any spectral function after the fact, as long as the
spectrum has an asymptotic white region at low frequencies,
because themodel family has somany free parameters. A first
inconvenience, as mentioned before, is that in psychological
data the low frequency region does not bend off, suggesting
genuine long-range dependence.

Secondly, the reduced 1/𝑓 scaling in repeated cognitive
performances revealed in some of Wagenmakers et al.’s
experiments, which would indeed be expected given the
postulated multifarious origins, could be explained by the
random intertrial intervals used in these experiments, which
was later shown to disrupt scaling (see [120]).

Third, the apparent success of the model is determined
by goodness-of-fit per se, and again, realistic data can only
be described by a rather narrow set of possible parameter
variation (see [121]).The question is thus whether amodel is a
true representation of psychological processes or whether the
model itself is so flexible that it is simply able to bend with the
measurement error in producing good scores on goodness-
of-fit. As Gilden [121] notes “Regardless of how small the
minimum chi-square is for a particular set of parameter
values, one will eventually have to reckon with the fact that
the model did not predict that specific outcome; it predicted
a range of outcomes, one of whichmay have happened to look
like the data.”

Wagenmakers and colleagues claim that their componen-
tial models are “specified in enough detail to allow a wide
range of data to be successfully described and, more impor-
tant for scientific rigor, predicted” [7, page 114]. The first part
of the sentence (i.e., the descriptive part) is obviously true,
but disappointedly has little to do with the second part (i.e.,
prediction). As aptly summarized by Gilden, Wagenmakers
et al.’s approach describes so much, it in turn explains very
little, and only offers a vehicle for mathematical formalism
aimed at post hoc data fitting, lacking supporting theoretical

literature. Therefore, the theoretical predictions mentioned
in the second part of the sentence remain unclear. How
do the ARMA model parameters corroborate and predict
such consistent changes in the presence of 1/𝑓 scaling
across such a variety of experimental manipulations? What
is the theoretical ground for exactly the fitted parameters?
Why is 1/𝑓 scaling so allied with coordination in complex
systems, being only an artifact? The requisite list of post
hoc explanations required to dismiss 1/𝑓 scaling as being
functional, across all scales of observation, from the neuron
up on to behavior itself, is simply too long, rendering the
regime-switching model a rather speculative hypothesis.

3.3. A Blend of Short and Long-Range Correlations. A second
prominent theory about 1/𝑓 scaling in human performance
is the two-source model [2, 97, 121–123]. This model is
motivated by the fact that a log-log power spectrum often
does not exactly follow a straight line and may reveal a
flattened (hence, whitened) slope at the highest frequencies.

The high- and low-frequency range can thus be modeled
in terms of a constrained mixture of two distinct families
of variability: white noise and 1/𝑓 scaling. These blended
sources of variability are referred to as fBmW, where fBm
stand for fractional Brownian motion and 𝑊 for whitened,
to emphasize the hybrid structure of whitened 1/𝑓 noises.

A fBmW response series has following form: 𝑅𝑇
𝑛
=

(1/𝑓
𝛼
)
𝑛
+ 𝛽𝑁(0, 1), where 𝑅𝑇

𝑛
is . . ., (1/𝑓𝛼)

𝑛
is the 𝑛th data

point in a 1/𝑓 signal with zero mean and unit variance,
and 𝑁(0, 1) denotes a random sample from the normal
distribution with zero mean and unit variance. 𝛽 denotes a
free parameter that determines the relative contributions of
thewhite noise component. Accordingly, the power spectrum
is built from the correlated and uncorrelated parts in a fBmW
signal: 𝑆(𝑓) = 𝑁(𝛼)𝑓𝛼 + 𝛽2, where 𝛽2 is the fraction of
variance in the random process attributable solely to white
noise (see Figure 5).

A difference between Gilden et al.’s account and the two
models previously described is that 1/𝑓 scaling is conceived
of as residing from a functional part of the cognitive system,
rather than as a statistical artifact. In the approach of Gilden
and colleagues, the presence of 1/𝑓 scaling represents a gen-
uine fractal process, indicating that cognitive processes are
complex acrossmultiple temporal scales. Anatural prediction
is that 1/𝑓 scaling is generic to the behavior of cognitive
systems and an intrinsic property of the system.

At the other hand one could note that 1/𝑓 scaling is
not exactly seen as a dynamical signature of an entirely
integrated system either. 1/𝑓 scaling is rather hypothesized
to reflect the self-organization of a component within the
system, a component that is associated with elementary
aspects of cognition, including the goals, intentions, and
representations of a participant. In particular, Gilden [2]
postulated that intrinsic fluctuations of a memory module,
which serves the purpose of continuity of “mental set,” are
potentially causal in the formation of 1/𝑓 scaling. Other
processes, for example, motor processes, constitute a source
of contaminating white noise, and human performances
constitute an additive blend of a complex 1/𝑓 process and
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Figure 5: (a) Shows a white noise signal, which was added to the 1/𝑓 scaling in (b) to construct the power spectrum in (c), which reveals
fBmW noise, as indicated by the flattened slope at the highest frequencies, shown as a solid line. The dashed line represents the ideal 1/𝑓
scaling slope.

the pure white noise signal, in varying degrees in different
performances.

The two-source approach fits in with more traditional
models, where cognitivist dual system models are common.
The mental set hypothesis may explain why the presence of
1/𝑓 scaling is reduced in cognitive performances when the
task is not constant across trials. For instance, when task
parameters change unpredictably, mental set is interrupted,
which will induce trial independence in responses, resulting
in scaling properties closer to white noise. An example given
by Gilden [2] is task switching. This interpretation appears
viable if one considers the varying degree of 1/𝑓 scaling in
the four tasks presented in Figure 2. In particular, Thornton
and Gilden [123] presented a detailed account for Figure 2
based on their model, by showing that temporal estimation
tasks (comparable with the precision aiming task in Figure 2
for the present purpose) not only reveals clear 1/𝑓 scaling,
but also a contribution of the white noise component, while
a choice reaction task shows less clear 1/𝑓 scaling, with a
much stronger white noise contribution, and word-naming
data reveal the least clear presence of 1/𝑓 scaling and the
strongest contribution of white noise. It thus appears that the
model adequately describes a subset of the discussed data.

Nonetheless, the model does not specify specifically
which of the dual components in the model would change
specifically, and specifically why or how the error term
gives complementary information.The presented results also
suggest that an independent system component attributed
to mental set [2] or vigilance [107] might be too limited in
scope to account for all shared instances between 1/𝑓 scaling
and coordination in brain, body, and behavior, across the
measurement scales involved.

A related approach to 1/𝑓 scaling originates from
Delignières and colleagues and has been applied primarily to

rhythmicalmovements.These authors have presented a series
of concrete models, each specific to a well-defined domain
of motor performance, which effectively mimic empirically
observed scaling properties. Like Gilden, their approach
is to insert a local source of 1/𝑓 scaling in statistically
well-defined, local parts of traditional cognitive models, to
account for the relative presence of 1/𝑓 scaling and specific
spectral deviations thereof. As an example, Delignières et al.
[12] adapted the Wing-Kristofferson model [124] for finger
tapping, by inserting fractal properties, into the cognitive
timekeeper module assumed by the traditional model, using
the regime-switching model previously discussed. Their
model accounted for the scaling properties of self-paced
tapping. Other examples include synchronized tapping [125]
and forearm oscillations [12].

Delignières et al. point out that their purpose is to
account for the workings of a particular, domain-specific
component encapsulated in the system and use 1/𝑓 noise
as a constraint for modeling. Sources of 1/𝑓 scaling are
taken to represent complex timekeeping processes that can be
statistically localized in components within the system. Thus
from this perspective, 1/𝑓 scaling represents a functional
aspect of human performance related to cognitive timekeep-
ing, but the different source of 1/𝑓 scaling in each domain-
specific application has the form of a fractal generator that
and together with nonfractal components, makes up the
dynamics of repeated responses.

Mechanistic (i.e., two-source) modeling has the advan-
tage to be experimentally testable and thus falsifiable and
allows establishing links to current models of sensorimotor
behavior. There is no a priori reason why long-range and
short-range dependence should be mutually exclusive (cf.
[4, 7]), and thus the observed serial correlations are possibly
the result of both, and mechanistic models provide a route
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to separate the long-range from the short-range components.
Separation of variance components led to good fits to empir-
ical data in specific tasks, under the assumption that different
system components are responsible for the differences in
performance (e.g., [126]).

Interestingly, the timekeeping hypothesis proposed by
Delignières and colleagues appears to be consistent with
the lack in 1/𝑓 scaling when participants synchronize to
a metronome (i.e., an external timekeeper) evidenced in
tapping and walking experiments as discussed previously.

The concern, again, is the approach of post hoc data
fitting. While good data fits may be compelling, agreement
betweenmodel and data is not proof that themodel is correct
(cf. [121]). The pitfall of mechanistic modeling is that one
may mistakenly believe that a good quantitative model fit
equals qualitative or theoretical insight. A good fit to the
data is a necessary, but not a sufficient criterion for a model’s
usefulness [127]. A consideration of a model’s usefulness
involves, for instance, also a consideration of the theoretical
foundations, the extent to which the model points to new
research directions, and the generalizability of the model.

Advanced data fitting may lead to an indefinite number
of fractal generators throughout brain, body, and cognition,
possibly leading to multiple competing models capable of
equally compelling fits to the data [121], which would ques-
tion in itself the tenability of domain-specific theoretical
explanations of 1/𝑓 scaling [11]. In particular, a full account
for the reviewed studies would require domain-specificmod-
els for each of the observations across scientific domains
and scales of observation. Although this could arguably lead
to a well-fitting model for each separate phenomenon, that
approach would lack the coherence of a solid theoretical
framework over brain, body, and cognition necessitated.

3.4. Interaction-Dominant Dynamics. 1/𝑓 scaling is a typical
behavior of self-organizing systems, which reflects a funda-
mental aspect of all physiological and cognitive functions:
their emergence in the balance of independent versus interde-
pendent component activities. Interaction-dominance pos-
tulates that the cognitive system actually uses this “flexible
stability” to its own advantage by exploiting the interde-
pendencies among ongoing processes over a multiplicity of
interdependent scales, allowing for a coordinative basis of
cognitive function (e.g., [11, 17, 128, 129]), and suggesting
a common control mechanism among brain, body, and
cognition, across the full range of scales involved.

This perspective conceives 1/𝑓 scaling as the natural
outcome of complex, living systems. In the true physical
sense, complex systems consist of a set of interrelated and
interdependent parts with an almost infinite amount of
degrees-of-freedom that cohere into a coordinated functional
system. The system components dynamically interact in
nonlinear ways at multiple embedding time scales, so that
the intrinsic dynamics of the components matter less than
the mutual interactions among components. This position
is a departure from the more traditional view on human
cognition that conceives human performance as caused by
a number of discrete components (i.e., independent regions

of the brain, internal clocks, or other information-processing
devices), whose internal dynamics, when integrated, account
for the observed performance. This convention can be
referred to as component-dominant dynamics because the
intrinsic activities of the components are held to be much
more influential, much more dominant in determining the
observed performance, than the interactions among the
components.

The starting point of the interaction-dominance approach
is that the conventional way of thinking about cognitive
processes underestimates the number of temporal scales
on which cognitive activity is actually assembled. The
interaction-dominant perspective claims that cognition is
more than a collection of independent processes operating
in a modular cognitive system and entails that the same
processes govern cognitive performance in very short (i.e.,
neural) and very long time frames (e.g., behavior). Any
measured behavior nests processes at faster time scales, and
in turn, is nested within processes at even slower time
scales, and the behavior of any one process at any one time
scale is susceptible to, and reflective of, the behaviors of all
processes evolving over shorter scales. This means that the
many processes involved interact so completely, up to the
periphery of the nervous system and that one can no longer
parse the individual activity of any component apart, which
reveals itself through widespread scaling relations, as the
essential outcome the interdependence among components
across multiple scales.

In interaction-dominant systems control is distributed
rather than localized as in specialized devices that form effi-
cient causes for behavior. Coordinated system performance
is therefore taken to emerge through the interdependence
and cooperation of processes that operate at many timescales
simultaneously. The tight coupling of mutually constraining
timescales of performance, as in 1/𝑓 scaling, through self-
organization (the spontaneous organization that coordinates
system behavior in the absence of a central controller) and
emergence (the appearance of features that are not implicit in
the parts of the system), in an a priori prediction.

Interaction-dominance is a viable explanation for the
presence, and the relative changes in the presence, of 1/𝑓
scaling in the activity of brain, body, motor system, and
cognition. Self-organization parsimoniously explains that
1/𝑓 scaling is so generic to the behavior of such a wide
variety of embodied processes. To give rise to 1/𝑓 scaling,
a system does not depend on the behavior of a specific
subsystem, but rather coordinates its behavior system-wide.
As a consequence, one cannot dissect functionally entangled
phenomena into component processes. Coordinated system
consists of entangled processes evolving over a multitude of
temporal scales, observed as a clear fractal signal. A further
natural prediction from interaction-dominance, confirmed
empirically, is that external perturbations to the system
reduce or decorrelate the 1/𝑓 signal.

Nonetheless, some authors remain reticent and cautious
to embrace an interaction-dominant position to the study of
cognitive phenomena. For one, Wagenmakers et al. [7] have
argued that 1/𝑓 noise is not a unique property of interaction-
dominant systems, nor do all interaction-dominant systems
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display 1/𝑓 scaling under all circumstances. wagenmakers
et al. [130] have taken a pile of salt as an example. It
remains unclear, however, whether this abstract example
truly invalidates the broad linkages between 1/𝑓 scaling and
human coordination presented here. In contrast, what this
argument underscores is that all model systems, like rice
piles, need to be tuned to elicit the emergent behavior. This
illustrates just howhard the scaling by coincidence hypothesis
is to maintain for complex living systems.

Another issue is whether concepts and mathematical
tools fromnonlinear dynamical science to cognitive phenom-
ena can lead to a notable advance in the understanding of
those phenomena, if such applications are not accompanied
by concrete mechanistic models.That is, some scientists have
argued that, in order for interaction-dominance to be testable
and falsifiable, the equations that govern the system should be
written out [1, 7]. As it stands, however, reproducing 1/𝑓 by
a model is not sufficient, since many mechanisms can lead to
the same scaling behavior, but with different nonlinear and
multifractal properties that do not match the behavior of the
studied system.

van Orden et al. [4] have spelled out some of the diffi-
culties that arise at this point. For one, “there is presently no
workable entry level below the level of the emergent phenom-
ena themselves” (page 121).While it seems doable to postulate
adequate models that describe separately the functioning of,
for instance, red blood cells, motor behavior, or brain activity,
it remains unclear as to at which of these levels one should
start in a reduction of an interaction-dominant system in the
true physical sense. In other words, “emergent macrolevel
behavior is antithetical to the conventional reductive pursuit
of cognitive mechanisms.” [4, page 121]. Therefore, support
for interaction-dominance must come from either empirical
results (i.e., observing consistent changes in the presence of
1/𝑓 scaling following careful experimental manipulations)
or other phenomena that reveal analogous self-organizing
properties (i.e., convection rolls or ecosystems, [3, 131, 132]),
and neural network models [133, 134].

In the context of models that generate 1/𝑓 scaling, there
have been important developments after the proposition
of the multiscaled randomness and the two-source model
mechanism that complement earlier analogieswith simplified
physical models (i.e., an Ising model, see [135], or a sandpile
model, see [136]). Some of these efforts have been successfully
applied in cognitive science (e.g., [137, 138]) to generate
scaling that holds for a range of model parameters. However,
no single model family currently seems able to coherently
capture thewidespread scaling relations empirically observed
across the fast neural scales down to the slower scale of
human behavior and cognition.

4. Conclusion

In this paper a discussion is provided about the linkage
between the presence of 1/𝑓 scaling and coordinated brain,
motor, and cognitive activities. In particular, it has been
argued that 1/𝑓 fluctuations govern healthy, flexibly-stable
systems, regardless of the scale of observation, from the level

of the cell up to the level of brain, body, and cognition.
1/𝑓 scaling has triggered a lot of controversy over recent
years as an empirical phenomenon. Therefore, the goal of
the present paper was to advance this debate, by focusing
on a broad range of empirical observations that transcend
the boundaries between scientific domains. The discussion
focused on different perspectives that seek theoretically
motivated accounts for these findings.

The question posed was how to understand the close
linkage between 1/𝑓 scaling and system coordination. The
goal was to promote answering the harder type of questions
based on this linkage. What do the systematic fluctuations
observed in the performance of so many different studied
systems signify? Do these fluctuations constitute errors or
do they play a functional role? How and why is long-
term stability associated with short-term flexibility when
system behavior is governed by 1/𝑓 scaling? While all of
the discussed approaches may potentially account for the
presence of 1/𝑓 scaling per se, the specific suggestion here
was to rephrase the question as to which of the approaches
accounts best for the so general linkage between observed
fractal dynamics and coordination in the analyzed system.

Wagenmakers et al. have laid out an argument showing
that the presence of 1/𝑓 scaling (per se) should not be
taken as evidence for self-organization and complexity. The
argument refutes the enterprise of observing (some extent of)
1/𝑓 scaling in some measure in some task and concluding,
based upon that observation, that the system under scrutiny
is complex. The goal of the present paper was actually to step
beyond a discussion about the presence versus nonpresence
of genuine 1/𝑓 scaling, however, and to question instead
how and why it is that 1/𝑓 scaling changes so consistently
across different manipulations of task, condition, and level of
analysis. For example, why would cognition be short-range?
Why this exception in the context of fractal scaling at all other
scales of the system?

In their respective approaches, Gilden and colleagues as
well as Delignières and colleagues, have focused specifically
on observed changes in the extent of 1/𝑓 scaling, including
changes that may emerge from nonlinearity in the power
spectra, but if cognitive components are independent and
domain-specific, why is fractal scaling evident throughout
the entire system?

Furthermore it remains unclear whether two-source
models can include other complexity measures as well (e.g.,
[21, 23, 139, 140]).

While the perspectives presented by Wagenmakers and
colleagues and Delignières and collegues are yet to account
for the generality of the association between 1/𝑓 scaling and
coordinated human activities, Gilden’s model is in fact much
more widely applicable and generalizable (see [121]). It is
unclear, however, whether the distinction between cognitive
1/𝑓 noise and randommotor noise remains tenable given the
thin line separating motor behaviors from cognitive behav-
iors (i.e., the radical embodiment thesis). Also the accom-
panying phenomenological account (hence, breakdown of
mental set or vigilance) might be to narrow to account for
the totality of presented changes in the extent of 1/𝑓 scaling.
The perspective of interaction-dominance, however, does
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provide one general explanation for the reviewed studies,
using principles of self-organized control.

Embracing interaction-dominance requires stepping
beyond the traditional modular view of human cognition.
If one considers the unexpectedness of the observations
presented, however, based on a modular approach it is
clear that the post hoc explanations required are massive.
In addition, the modular defense has not gone any much
further than simply expressing the opinion that studies that
include 1/𝑓 scaling are too “limited, superficial, and overly
general” [130, page 4] to be of any use, which simply ignores
the empirical outcomes and the broadness of scales to which
they apply. Under the current state of affairs, therefore,
it seems unwarranted to categorize studies addressing
the functional role of 1/𝑓 scaling in behavior as “mostly
speculation, wrapped in jargon, inside wishful thinking”
[130, page 5]. Quite to the contrary, although many questions
remain to be answered and important challenges lie ahead,
studying 1/𝑓 scaling and allied concepts of interdependence
in human performances arguably has the potential to answer
the tougher type of question about the scales and modes
involved in coordinated human activities.
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“Fractal analysis of dendritic arborisation patterns of stalked
and islet neurons in substantia gelatinosa of different species,”
Fractals, vol. 15, no. 1, pp. 1–6, 2007.

[35] B. Zietsch and G. N. Elston, “Fractal analysis of pyramidal cells
in the visual cortex of the galago (Otolemur garnetti): regional
variation in dendritic branching patterns between visual areas,”
Fractals, vol. 13, no. 2, pp. 83–90, 2005.

[36] A. L. Karperien, H. F. Jelinek, andA.M. Buchan, “Box-counting
analysis ofmicroglia form in schizophrenia, Alzheimer’s disease
and affective disorder,” Fractals, vol. 16, no. 2, pp. 103–107, 2008.

[37] Z. Soltys, M. Ziaja, R. Pawlinski, Z. Setkowicz, and K. Janeczko,
“Morphology of reactive microglia in the injured cerebral cor-
tex. Fractal analysis and complementary quantitative methods,”
The Journal of Neuroscience Research, vol. 63, pp. 90–97, 2001.

[38] H. H. Tae, U. Yoon, J. L. Kyung et al., “Fractal dimension
of cerebral cortical surface in schizophrenia and obsessive-
compulsive disorder,” Neuroscience Letters, vol. 384, no. 1-2, pp.
172–176, 2005.

[39] L. Zhang, Quantifying brain white matter structural changes
in normal aging using fractal dimension [Doctoral thesis],
CaseWesternReserveUniversity, 2006, http://etd.ohiolink.edu/
send-pdf.cgi/Zhang%20Luduan.pdf?acc num=case1126213038.

[40] G. Werner, “Fractals in the nervous system: conceptual impli-
cations for theoretical neuroscience,” Frontiers in Fractal Physi-
ology, vol. 1, pp. 1–28, 2010.

[41] L. S. Liebovitch and P. Krekora, “The physical basis of ion
channel kinetics: the importance of dynamics,” in Institute for
Mathematics and Its Applications Volumes in Mathematics and
Its Applications, Membrane Transport and Renal Physiology,
H. E. Layton and A. M. Weinstein, Eds., vol. 129, pp. 27–52,
Springer, Berlin, 2002.

[42] L. S. Liebovitch and L. A. Shehadeh, “Introduction to fractals,”
in Contemporary Nonlinear Methods for Behavioral Scientists: A
Webbook Tutorial, M. A. Riley and G. van Orden, Eds., pp. 178–
266, 2005, http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp.

[43] S. B. Lowen, S. S. Cash, M. Poo, and M. C. Teich, “Quantal
neurotransmitter secretion rate exhibits fractal behavior,” The
Journal of Neuroscience, vol. 17, no. 15, pp. 5666–5677, 1997.

[44] T. Takeda, A. Sakata, and T. Matsuoka, “Fractal dimen-
sions in the occurrence of miniature endplate potential in

a vertebrate neuromuscular junction,” Progress in Neuro-
Psychopharmacology and Biological Psychiatry, vol. 23, no. 6, pp.
1157–1169, 1999.

[45] W. A. Varanda, L. S. Liebovitch, J. N. Figueiroa, and R. A.
Nogueira, “Hurst analysis applied to the study of single calcium-
activated potassium channel kinetics,” Journal of Theoretical
Biology, vol. 206, no. 3, pp. 343–353, 2000.

[46] J. Bhattacharya, J. Edwards, A.N.Mamelak, andE.M. Schuman,
“Long-range temporal correlations in the spontaneous spiking
of neurons in the hippocampal-amygdala complex of humans,”
Neuroscience, vol. 131, no. 2, pp. 547–555, 2005.

[47] M. Giugliano, P. Darbon, M. Arsiero, H.-R. Lüscher, and J.
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