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Abstract. 
Let n, d,  and r be three integers such that 
	
		
			1
			≤
			𝑟
			,
			𝑑
			≤
			𝑛
		

	
. Chiaselotti (2002) defined 
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
		

	
 as the minimum number of the nonnegative partial sums with d summands of a sum 
	
		

			∑
		

		

			𝑛
		

		
			1
			=
			1
		

		

			𝑎
		

		

			𝑖
		

		
			≥
			0
		

	
, where 
	
		

			𝑎
		

		

			1
		

		
			,
			…
			,
			𝑎
		

		

			𝑛
		

	
 are n real numbers arbitrarily chosen in such a way that r of them are nonnegative and the remaining 
	
		
			𝑛
			−
			𝑟
		

	
 are negative. Chiaselotti (2002) and Chiaselotti et al. (2008) determine the values of 
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
		

	
 for particular infinite ranges of the integer parameters n, d,  and r. In this paper we continue their approach on this problem and we prove the following results: (i) 
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
			≤
		

		

			(
		

		

			𝑟
		

		

			𝑑
		

		

			)
		

		

			+
		

		

			(
		

		

			𝑟
		

		
			𝑑
			−
			1
		

		

			)
		

	
 for all values of n, d,  and r such that 
	
		
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			(
			𝑛
			−
			1
			)
			≤
			𝑟
			≤
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
		

	
; (ii) 
	
		
			𝛾
			(
			𝑑
			+
			2
			,
			𝑑
			,
			𝑑
			)
			=
			𝑑
			+
			1
			.
		

	

 

1. Introduction
Let 
	
		

			𝑛
		

	
, 
	
		

			𝑑
		

	
, and 
	
		

			𝑟
		

	
 be three fixed integers such that 
	
		
			1
			≤
			𝑟
		

	
,
	
		
			𝑑
			≤
			𝑛
		

	
. We set 
	
		
			[
			𝑛
			]
			∶
			=
			{
			1
			,
			…
			,
			𝑛
			}
		

	
 and 
						
	
 		
			(
			1
			)
		
 	

	
		

			𝑊
		

		

			𝑛
		

		
			∶
			=
		

		

			
		

		
			𝑓
			∶
		

		

			[
		

		

			𝑛
		

		

			]
		

		
			⟶
			ℝ
			∶
		

		

			
		

		
			𝑥
			∈
			[
			𝑛
			]
		

		

			𝑓
		

		

			(
		

		

			𝑥
		

		

			)
		

		
			≥
			0
		

		

			
		

		

			.
		

	

					The elements of 
	
		

			𝑊
		

		

			𝑛
		

	
 are called n-weight functions and, if 
	
		
			𝑓
			∈
			𝑊
		

		

			𝑛
		

	
, we set 
	
		

			𝑓
		

		

			+
		

		
			=
			|
			{
			𝑎
			∈
			[
			𝑛
			]
			∶
			𝑓
			(
			𝑎
			)
			≥
			0
			}
			|
		

	
. For example, if 
	
		
			𝑓
			(
			1
			)
			=
			𝑓
			(
			2
			)
			=
			𝑓
			(
			3
			)
			=
			1
			,
			𝑓
			(
			4
			)
			=
			𝑓
			(
			5
			)
			=
			−
			1
			/
			2
		

	
, and 
	
		
			𝑓
			(
			6
			)
			=
			𝑓
			(
			7
			)
			=
			−
			1
		

	
, then 
	
		

			𝑓
		

		

			+
		

		
			=
			3
		

	
. If 
	
		
			𝑓
			∈
			𝑊
		

		

			𝑛
		

	
, we also set 
	
		
			Φ
			(
			𝑓
			,
			𝑑
			)
			∶
			=
			{
			𝐴
			⊆
			[
			𝑛
			]
			∶
			|
			𝐴
			|
			=
			𝑑
			,
		

		

			∑
		

		
			𝑎
			∈
			𝐴
		

		
			𝑓
			(
			𝑎
			)
			≥
			0
			}
		

	
 (we call 
	
		
			(
			𝑑
		

		

			+
		

		
			,
			𝑛
			)
		

	
-subset of 
	
		

			𝑓
		

	
 a generic element of 
	
		
			Φ
			(
			𝑓
			,
			𝑑
			)
		

	
), 
	
		
			𝜙
			(
			𝑓
			,
			𝑑
			)
			∶
			=
			|
			Φ
			(
			𝑓
			,
			𝑑
			)
			|
		

	
, and
						
	
 		
			(
			2
			)
		
 	

	
		

			𝛾
		

		

			(
		

		
			𝑛
			,
			𝑑
			,
			𝑟
		

		

			)
		

		
			∶
			=
			m
			i
			n
		

		

			
		

		

			𝜙
		

		

			(
		

		
			𝑓
			,
			𝑑
		

		

			)
		

		
			∶
			𝑓
			∈
			𝑊
		

		

			𝑛
		

		
			,
			𝑓
		

		

			+
		

		
			=
			𝑟
		

		

			
		

		

			.
		

	

					These numbers 
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
		

	
 were introduced in [1] in order to refine the study of a conjecture of Manickam-Miklós-Singhi (for further information on this conjecture and on its links with the numbers 
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
		

	
 see [1–4]). The complete determination of the numbers 
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
		

	
 is a very difficult task and actually they are known only for a relatively small range of the integer parameters 
	
		

			𝑛
		

	
,
	
		

			𝑑
		

	
, and 
	
		

			𝑟
		

	
. In [1–3] some of the numbers 
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
		

	
 have been determined, and we report these values: 
	
		

			
		

		
			𝑛
			−
			1
		

		
			𝑑
			−
			1
		

		

			
		

	
 if 
	
		
			𝑟
			≤
			𝑑
			≤
			𝑛
			/
			2
		

	
, 
	
		

			(
		

		
			𝑛
			−
			𝑟
		

		
			𝑑
			−
			𝑟
		

		

			)
		

	
 if 
	
		
			𝑟
			≤
			𝑑
			<
			𝑛
		

	
 and 
	
		
			𝑟
			<
			(
			𝑛
			/
			(
			𝑛
			−
			𝑑
			)
			)
		

	
, 
	
		

			(
		

		

			𝑟
		

		

			𝑑
		

		

			)
		

	
 if 
	
		
			𝑑
			<
			𝑟
			<
			𝑛
		

	
 and 
	
		
			𝑟
			>
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
		

	
, 
	
		

			
		

		
			𝑛
			−
			1
		

		
			𝑑
			−
			1
		

		

			
		

	
 if 
	
		
			𝑟
			=
			1
		

	
, 
	
		

			(
		

		

			𝑟
		

		

			𝑑
		

		

			)
		

		

			+
		

		

			
		

		
			𝑟
			−
			1
		

		
			𝑑
			−
			1
		

		

			
		

	
 if 
	
		
			𝑟
			≥
			𝑑
		

	
 and 
	
		
			𝑟
			=
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
		

	
, 
	
		

			(
		

		

			𝑟
		

		

			𝑑
		

		

			)
		

		

			+
		

		

			
		

		
			𝑟
			−
			1
		

		
			𝑑
			−
			1
		

		

			
		

	
 if 
	
		
			𝑛
			=
			2
			𝑑
			+
			2
			,
			𝑟
			=
			2
			𝑑
			−
			1
		

	
 and 
	
		
			𝑑
			≥
			2
		

	
.In particular, in [3] the authors prove the last of these results using Hall’s matching theorem.
Also, in [2, 5] the numbers 
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
		

	
 were linked within the context of the combinatorial order theory. More in detail, in [2] the authors introduce two new classes of lattices of signed integer partitions, 
	
		
			𝑆
			(
			𝑛
			,
			𝑟
			)
		

	
 and 
	
		
			𝑆
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
		

	
, and they show that the numbers 
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
		

	
 can be interpreted as the cardinality of particular types of up-sets in the previous lattices.

On the other hand, the lattices 
	
		
			𝑆
			(
			𝑛
			,
			𝑟
			)
		

	
 and 
	
		
			𝑆
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
		

	
 can also be considered as particular types of discrete dynamical systems. In this context many properties of the numbers 
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
		

	
 can be related to the evolution rules that characterize 
	
		
			𝑆
			(
			𝑛
			,
			𝑟
			)
		

	
 and 
	
		
			𝑆
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
		

	
 as discrete dynamical systems (see [6, 7]). For very recent studies concerning the discrete dynamical systems see [8–12].
In this paper we determine some new identities and new bounds for the numbers 
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
		

	
. In particular, we show that(i)
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
			≤
		

		

			(
		

		

			𝑟
		

		

			𝑑
		

		

			)
		

		

			+
		

		

			(
		

		

			𝑟
		

		
			𝑑
			−
			1
		

		

			)
		

	
 for all values of 
	
		
			𝑛
			,
			𝑑
		

	
, and 
	
		

			𝑟
		

	
 satisfying 
	
		
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			(
			𝑛
			−
			1
			)
			≤
			𝑟
			≤
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
		

	
 (Corollary 5),(ii)
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
			=
		

		

			(
		

		

			𝑟
		

		

			𝑑
		

		

			)
		

		

			+
		

		

			(
		

		

			𝑟
		

		
			𝑑
			−
			1
		

		

			)
		

		
			=
			𝑑
			+
			1
		

	
 in the case 
	
		
			𝑛
			=
			𝑑
			+
			2
		

	
 and 
	
		
			𝑟
			=
			𝑑
		

	
 (Proposition 8).
Finally we provide a combinatorial interpretation of the inequality 
	
		
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			(
			𝑛
			−
			1
			)
			<
			𝑟
			≤
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
		

	
.
The remaining part of this paper is structured as follows. In Section 2 we provide the necessary notations for the sequel. In Section 3 we establish our results and, finally, in Section 4 we briefly describe conclusions and possible future research approaches.
2. Notations
In the sequel, we will assume that a generic weight function 
	
		
			𝑓
			∈
			𝑊
		

		

			𝑛
		

	
, with 
	
		

			𝑓
		

		

			+
		

		
			=
			𝑟
		

	
, has the form
						
	
 		
			(
			3
			)
		
 	

	
		
			1
			⋯
			𝑟
			𝑟
			+
			1
			⋯
			𝑛
		

		
			↓
			⋯
			↓
			↓
			⋯
			↓
		

		

			𝑥
		

		

			1
		

		
			⋯
			𝑥
		

		

			𝑟
		

		

			𝑦
		

		

			1
		

		
			⋯
			𝑦
		

		
			𝑛
			−
			𝑟
		

		

			,
		

	

					with 
						
	
 		
			(
			4
			)
		
 	

	
		

			𝑥
		

		

			1
		

		
			≥
			𝑥
		

		

			2
		

		
			≥
			⋯
			≥
			𝑥
		

		

			𝑟
		

		
			≥
			0
			>
			𝑦
		

		

			1
		

		
			≥
			𝑦
		

		

			2
		

		
			≥
			⋯
			≥
			𝑦
		

		
			𝑛
			−
			𝑟
		

		

			.
		

	

					Let us call the indexes 
	
		
			1
			,
			…
			,
			𝑟
		

	
 the nonnegative elements of 
	
		

			𝑓
		

	
 and the indexes 
	
		
			𝑟
			+
			1
			,
			…
			,
			𝑛
		

	
 the negative elements of 
	
		

			𝑓
		

	
. The real numbers 
	
		

			𝑥
		

		

			1
		

		
			,
			…
			,
			𝑥
		

		

			𝑟
		

	
 are said to be the nonnegative values of 
	
		

			𝑓
		

	
 and the numbers 
	
		

			𝑦
		

		

			1
		

		
			,
			…
			,
			𝑦
		

		
			𝑛
			−
			𝑟
		

	
 are said to be the negative values of 
	
		

			𝑓
		

	
.
If 
	
		

			𝑖
		

		

			1
		

		
			,
			…
			,
			𝑖
		

		

			𝛼
		

	
 are nonnegative elements of 
	
		

			𝑓
		

	
 and 
	
		

			𝑗
		

		

			1
		

		
			,
			…
			,
			𝑗
		

		

			𝛽
		

	
 are negative elements of 
	
		

			𝑓
		

	
, with 
	
		

			𝑖
		

		

			1
		

		
			<
			⋯
			<
			𝑖
		

		

			𝛼
		

	
 and 
	
		

			𝑗
		

		

			1
		

		
			<
			⋯
			<
			𝑗
		

		

			𝛽
		

	
, a subset 
	
		

			𝐴
		

	
 of 
	
		
			{
			1
			,
			…
			,
			𝑛
			}
		

	
 is said to be of type
						
	
 		
			(
			5
			)
		
 	

	
		

			
		

		

			𝑖
		

		

			1
		

		
			,
			…
			,
			𝑖
		

		

			𝛼
		

		

			
		

		

			+
		

		

			𝑎
		

		

			
		

		

			𝑗
		

		

			1
		

		
			,
			…
			,
			𝑗
		

		

			𝛽
		

		

			
		

		

			−
		

		

			𝑏
		

	

					if 
	
		

			𝐴
		

	
 is made of 
	
		

			𝑎
		

	
 elements chosen in 
	
		
			{
			𝑖
		

		

			1
		

		
			,
			…
			,
			𝑖
		

		

			𝛼
		

		

			}
		

	
 and 
	
		

			𝑏
		

	
 elements chosen in 
	
		
			{
			𝑗
		

		

			1
		

		
			,
			…
			,
			𝑗
		

		

			𝛽
		

		

			}
		

	
.
Let 
	
		

			𝑋
		

	
 be a finite set of integers. If 
	
		

			𝑞
		

	
 is an integer less than or equal to 
	
		
			|
			𝑋
			|
		

	
, we call 
	
		

			𝑞
		

	
-string on 
	
		

			𝑋
		

	
 a sequence 
	
		

			𝑎
		

		

			1
		

		
			,
			…
			,
			𝑎
		

		

			𝑞
		

	
, where 
	
		

			𝑎
		

		

			1
		

		
			,
			…
			,
			𝑎
		

		

			𝑞
		

	
 are distinct elements of 
	
		

			𝑋
		

	
 such that 
	
		

			𝑎
		

		

			1
		

		
			<
			⋯
			<
			𝑎
		

		

			𝑞
		

	
. In this paper, each subset 
	
		

			𝑌
		

	
 of 
	
		

			𝑋
		

	
 with 
	
		

			𝑞
		

	
 elements will be identified with the 
	
		

			𝑞
		

	
-string of its elements ordered in increasing way. When 
	
		

			𝑖
		

		

			1
		

		
			,
			…
			,
			𝑖
		

		

			𝑘
		

	
 are nonnegative elements of 
	
		

			𝑓
		

	
 and 
	
		

			𝑗
		

		

			1
		

		
			,
			…
			,
			𝑗
		

		

			𝑙
		

	
 are negative elements of 
	
		

			𝑓
		

	
, with 
	
		

			𝑖
		

		

			1
		

		
			<
			⋯
			<
			𝑖
		

		

			𝑘
		

		
			<
			𝑗
		

		

			1
		

		
			<
			⋯
			<
			𝑗
		

		

			𝑙
		

	
, the 
	
		
			(
			𝑘
			+
			𝑙
			)
		

	
-string
	
		

			𝑖
		

		

			1
		

		
			⋯
			𝑖
		

		

			𝑘
		

		

			𝑗
		

		

			1
		

		
			⋯
			𝑗
		

		

			𝑙
		

	
will be written in the form 
						
	
 		
			(
			6
			)
		
 	

	
		

			𝑖
		

		

			1
		

		
			⋯
			𝑖
		

		

			𝑘
		

		

			∣
		

		

			
		

		

			𝑗
		

		

			1
		

		
			−
			𝑟
		

		

			
		

		

			⋯
		

		

			
		

		

			𝑗
		

		

			𝑙
		

		
			−
			𝑟
		

		

			
		

	

					(thus 
	
		

			𝑗
		

		

			1
		

		
			−
			𝑟
			,
			…
			,
			𝑗
		

		

			𝑙
		

		
			−
			𝑟
			∈
			{
			1
			,
			…
			,
			𝑛
			−
			𝑟
			}
		

	
).
For example, if 
	
		
			𝑛
			=
			1
			0
		

	
 and 
	
		
			𝑟
			=
			7
		

	
, the 4-string 
	
		
			1
			2
			6
			9
		

	
 will be written in the form 
	
		
			1
			2
			6
			∣
			2
		

	
.
Using the string-terminology instead of the set-terminology, in the sequel, we will call a 
	
		
			(
			𝑑
		

		

			+
		

		
			,
			𝑛
			)
		

	
-subset of 
	
		

			𝑓
		

	
 a 
	
		
			(
			𝑑
		

		

			+
		

		
			,
			𝑛
			)
		

	
-string of 
	
		

			𝑓
		

	
.
3. The Results
The range of values of the integer parameters 
	
		

			𝑛
		

	
,
	
		

			𝑑
		

	
, and 
	
		

			𝑟
		

	
 that we are going to study is the following: 
	
		
			𝑑
			≤
			𝑟
			≤
			𝑛
		

	
. As reported in the first section, we already know that the next result holds for 
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
		

	
 in the case 
	
		
			𝑟
			>
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
		

	
. We state it referring to its proof.
Proposition 1.  If 
	
		
			𝑟
			≥
			𝑑
		

	
 and 
	
		
			𝑟
			>
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
		

	
, then 
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
			=
		

		

			(
		

		

			𝑟
		

		

			𝑑
		

		

			)
		

	
.
Proof. See [1].
Therefore we concentrate our attention on the case 
	
		
			𝑟
			≤
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
		

	
. In order to examine it, we start by considering the partition 
	
		

			𝒫
		

	
 of the real interval 
	
		
			(
			0
			,
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
			]
		

	
:
						
	
 		
			(
			7
			)
		
 	

	
		
			𝒫
			=
		

		

			
		

		
			0
			,
		

		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		
			,
			2
		

		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		
			,
			…
			,
		

		

			(
		

		
			𝑛
			−
			1
		

		

			)
		

		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		
			,
			𝑛
		

		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		

			
		

		

			.
		

	

					The following proposition establishes when an interval determined by 
	
		

			𝒫
		

	
 contains an integer.
Proposition 2.  If 
	
		
			𝑘
			=
			1
			,
			…
			,
			𝑛
		

	
 and if 
	
		
			𝑛
			−
			𝑘
			≢
		

		

			𝑑
		

		

			0
		

	
, there exists a unique integer 
	
		

			𝑟
		

	
 such that
							
	
 		
			(
			8
			)
		
 	

	
		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		

			(
		

		
			𝑛
			−
			𝑘
		

		

			)
		

		
			<
			𝑟
			≤
		

		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		

			(
		

		
			𝑛
			−
			𝑘
			+
			1
		

		

			)
		

		

			,
		

	

						and 
	
		

			𝑟
		

	
 coincides with 
	
		
			⌊
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			(
			𝑛
			−
			𝑘
			+
			1
			)
			⌋
		

	
. Furthermore if 
	
		
			𝑛
			−
			𝑘
			≡
		

		

			𝑑
		

		

			0
		

	
, no integer 
	
		

			𝑟
		

	
 satisfies (8).
Proof. Let 
	
		
			𝑘
			∈
			{
			1
			,
			…
			,
			𝑛
			}
		

	
 and set 
	
		
			𝑚
			=
			𝑛
			−
			𝑘
			+
			1
		

	
. Since the interval 
	
		
			(
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			(
			𝑚
			−
			1
			)
			,
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑚
			]
		

	
 has length 
	
		
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			<
			1
		

	
, there is at most one integer 
	
		

			𝑟
		

	
 that satisfies (8). Let us now write 
	
		

			𝑚
		

	
 in the form
							
	
 		
			(
			9
			)
		
 	

	
		
			𝑚
			=
		

		

			∼
		

		

			𝑞
		

		
			𝑑
			+
			𝑠
			,
		

	

						where 
	
		

			∼
		

		

			𝑞
		

	
,
	
		

			𝑠
		

	
 are integers such that 
	
		

			∼
		

		

			𝑞
		

		
			≥
			0
			,
			1
			≤
			𝑠
			≤
			𝑑
		

	
. Let us suppose now that 
	
		
			𝑛
			−
			𝑘
			≢
		

		

			𝑑
		

		

			0
		

	
; that is, 
	
		
			𝑚
			≢
		

		

			𝑑
		

		

			1
		

	
; then we have 
	
		
			2
			≤
			𝑠
			≤
			𝑑
		

	
.Let 
	
		
			𝑟
			=
			⌊
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑚
			⌋
		

	
. We show that 
	
		

			𝑟
		

	
 satisfies (8).Firstly, the second inequality is straightforward; secondly, for the first inequality we observe 
							
	
 		
			(
			1
			0
			)
		
 	

	
		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		

			(
		

		
			𝑚
			−
			1
		

		

			)
		

		

			=
		

		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		

			
		

		

			∼
		

		

			𝑞
		

		
			𝑑
			+
			𝑠
			−
			1
		

		

			
		

		

			=
		

		

			∼
		

		

			𝑞
		

		

			(
		

		
			𝑑
			−
			1
		

		

			)
		

		

			+
		

		

			(
		

		
			𝑠
			−
			1
		

		

			)
		

		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		

			.
		

	

						Furthermore
							
	
 		
			(
			1
			1
			)
		
 	

	
		
			𝑟
			=
		

		

			
		

		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		

			
		

		

			∼
		

		

			𝑞
		

		
			𝑑
			+
			𝑠
		

		
			
			
		

		

			=
		

		

			
		

		

			∼
		

		

			𝑞
		

		

			(
		

		
			𝑑
			−
			1
		

		

			)
		

		
			+
			𝑠
			−
		

		

			𝑠
		

		
			
		
		

			𝑑
		

		

			
		

		

			=
		

		

			∼
		

		

			𝑞
		

		

			(
		

		
			𝑑
			−
			1
		

		

			)
		

		

			+
		

		

			(
		

		
			𝑠
			−
			1
		

		

			)
		

		

			.
		

	

						Therefore 
	
		
			𝑟
			>
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			(
			𝑚
			−
			1
			)
		

	
, since 
	
		
			𝑠
			≥
			2
		

	
.If 
	
		
			𝑛
			−
			𝑘
			≡
		

		

			𝑑
		

		

			0
		

	
, that is, 
	
		
			𝑚
			≡
		

		

			𝑑
		

		

			1
		

	
, in (9), we have 
	
		
			𝑠
			=
			1
		

	
 and (8) becomes
							
	
 		
			(
			1
			2
			)
		
 	

	
		

			∼
		

		

			𝑞
		

		

			(
		

		
			𝑑
			−
			1
		

		

			)
		

		
			<
			𝑟
			≤
		

		

			∼
		

		

			𝑞
		

		

			(
		

		
			𝑑
			−
			1
		

		

			)
		

		

			+
		

		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		

			.
		

	

						Note that (12) has no integer solutions.
Lemma 3.  Let 
	
		

			𝑟
		

	
 be a positive integer such that
							
	
 		
			(
			1
			3
			)
		
 	

	
		
			𝑑
			≤
			𝑟
			≤
		

		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		
			𝑛
			.
		

	

						Then there exists a unique positive integer 
	
		
			𝑏
			(
			𝑟
			)
			∈
			{
			1
			,
			…
			,
			𝑛
			−
			𝑟
			−
			1
			}
		

	
 that satisfies
							
	
 		
			(
			1
			4
			)
		
 	

	
		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		

			(
		

		
			𝑛
			−
			𝑏
		

		

			(
		

		

			𝑟
		

		
			)
			)
		

		
			<
			𝑟
			≤
		

		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		

			(
		

		
			𝑛
			−
			𝑏
		

		

			(
		

		

			𝑟
		

		

			)
		

		
			+
			1
		

		

			)
		

		

			.
		

	

Proof. By construction of partition 
	
		

			𝒫
		

	
, as in (7), there exists a unique 
	
		
			𝑏
			(
			𝑟
			)
			∈
			{
			1
			,
			…
			,
			𝑛
			}
		

	
 such that (14) holds.We now show that 
	
		
			𝑏
			(
			𝑟
			)
		

	
 cannot exceed 
	
		
			𝑛
			−
			𝑟
			−
			1
		

	
.Firstly, we suppose that 
	
		
			𝑏
			(
			𝑟
			)
			>
			𝑛
			−
			𝑟
		

	
. Then, we write 
	
		
			𝑏
			(
			𝑟
			)
		

	
 in the form 
	
		
			𝑏
			(
			𝑟
			)
			=
			𝑛
			−
			𝑟
			+
			𝜁
		

	
, with 
	
		

			𝜁
		

	
 integer such that 
	
		
			1
			≤
			𝜁
			≤
			𝑟
		

	
. Since 
	
		

			𝑟
		

	
 satisfies (14), we have 
							
	
 		
			(
			1
			5
			)
		
 	

	
		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		

			(
		

		
			𝑟
			−
			𝜁
		

		

			)
		

		
			<
			𝑟
			≤
		

		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		

			(
		

		
			𝑟
			−
			𝜁
			+
			1
		

		

			)
		

		

			;
		

	

						that is,
							
	
 		
			(
			1
			6
			)
		
 	

	
		

			𝜁
		

		

			(
		

		
			1
			−
			𝑑
		

		

			)
		

		
			<
			𝑟
			≤
		

		

			(
		

		
			𝑑
			−
			1
		

		
			)
			(
		

		
			1
			−
			𝜁
		

		

			)
		

		

			.
		

	

						Since 
	
		
			𝜁
			(
			1
			−
			𝑑
			)
			<
			0
		

	
 and 
	
		
			(
			𝑑
			−
			1
			)
			(
			1
			−
			𝜁
			)
			≤
			0
		

	
, there is no positive integer 
	
		

			𝑟
		

	
 that satisfies (16).Secondly, if 
	
		
			𝑏
			(
			𝑟
			)
			=
			𝑛
			−
			𝑟
		

	
, (14) becomes 
							
	
 		
			(
			1
			7
			)
		
 	

	
		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		
			𝑟
			<
			𝑟
			≤
		

		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		

			(
		

		
			𝑟
			+
			1
		

		

			)
		

		

			;
		

	

						that is, 
							
	
 		
			(
			1
			8
			)
		
 	

	
		
			0
			<
			𝑟
			≤
			𝑑
			−
			1
			,
		

	

						contradicting the hypothesis (13).
Using the previous lemma, we find a useful and appreciable upper bound for 
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
		

	
. This is one of our important steps to establish, under suitable hypotheses for 
	
		

			𝑛
		

	
,
	
		

			𝑑
		

	
, and 
	
		

			𝑟
		

	
, an exact value for 
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
		

	
.
Proposition 4.  Let 
	
		

			𝑟
		

	
 be a positive integer that satisfies
							
	
 		
			(
			1
			9
			)
		
 	

	
		
			𝑑
			≤
			𝑟
			≤
		

		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		
			𝑛
			;
		

	

						then
							
	
 		
			(
			2
			0
			)
		
 	

	
		

			𝛾
		

		

			(
		

		
			𝑛
			,
			𝑑
			,
			𝑟
		

		

			)
		

		

			≤
		

		
			m
			i
			n
			{
			𝑏
			(
			𝑟
			)
			,
			𝑑
			−
			1
			}
		

		

			
		

		
			𝑗
			=
			0
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑏
		

		

			(
		

		

			𝑟
		

		

			)
		

		

			𝑗
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		
			𝑑
			−
			𝑗
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			.
		

	

Proof. Since 
	
		
			1
			≤
			𝑏
			(
			𝑟
			)
			≤
			𝑛
			−
			𝑟
			−
			1
		

	
, we construct a weight function 
	
		
			𝑓
			∈
			𝑊
		

		

			𝑛
		

	
, with 
	
		

			𝑓
		

		

			+
		

		
			=
			𝑟
		

	
, such that
							
	
 		
			(
			2
			1
			)
		
 	

	
		

			𝜙
		

		

			(
		

		
			𝑓
			,
			𝑑
		

		

			)
		

		

			=
		

		
			m
			i
			n
			{
			𝑏
			(
			𝑟
			)
			,
			𝑑
			−
			1
			}
		

		

			
		

		
			𝑗
			=
			0
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑏
		

		

			(
		

		

			𝑟
		

		

			)
		

		

			𝑗
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		
			𝑑
			−
			𝑗
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			.
		

	

						This is sufficient to prove the (20).Let 
	
		
			ℎ
			=
			m
			i
			n
			{
			𝑏
			(
			𝑟
			)
			,
			𝑑
			−
			1
			}
		

	
. Let 
	
		

			𝛼
		

	
 be a positive real number. In order to simplify the notation, we call 
	
		

			𝛽
		

	
 the number 
	
		
			(
			(
			𝑟
			+
			𝑏
			(
			𝑟
			)
			(
			−
			𝛼
			)
			)
			/
			(
			𝑛
			−
			𝑟
			−
			𝑏
			(
			𝑟
			)
			)
			)
		

	
, in such a way that 
							
	
 		
			(
			2
			2
			)
		
 	

	
		
			𝑟
			+
			𝑏
		

		

			(
		

		

			𝑟
		

		
			)
			(
		

		
			−
			𝛼
		

		

			)
		

		

			+
		

		

			(
		

		
			𝑛
			−
			𝑟
			−
			𝑏
		

		

			(
		

		

			𝑟
		

		
			)
			)
			(
		

		
			−
			𝛽
		

		

			)
		

		
			=
			0
		

	

						holds.At this point we define the function
	
 		
			(
			2
			3
			)
		
 	

	
		

			𝑓
		

		

			𝛼
		

		

			∶
		

		
			1
			⋯
			𝑟
			𝑟
			+
			1
			⋯
			𝑟
			+
			𝑏
		

		

			(
		

		

			𝑟
		

		

			)
		

		
			𝑟
			+
		

		

			(
		

		

			𝑏
		

		

			(
		

		

			𝑟
		

		

			)
		

		
			+
			1
		

		

			)
		

		
			⋯
			𝑟
			+
		

		

			(
		

		
			𝑛
			−
			𝑟
		

		

			)
		

		
			↓
			⋯
			↓
			↓
			⋯
			↓
			↓
			⋯
			↓
		

		
			1
			⋯
			1
			−
			𝛼
			⋯
			−
			𝛼
			−
			𝛽
			⋯
			−
			𝛽
			.
		

	

					We now show that, for 
	
		

			𝛼
		

	
 sufficiently small, that is,
	
 		
			(
			2
			4
			)
		
 	

	
		
			0
			<
			𝛼
			<
			m
			i
			n
		

		

			
		

		

			𝑟
		

		
			
		
		

			𝑏
		

		

			(
		

		

			𝑟
		

		

			)
		

		

			,
		

		

			𝑑
		

		
			
		
		

			ℎ
		

		
			−
			1
			,
		

		

			𝑑
		

		
			
		
		

			𝑏
		

		

			(
		

		

			𝑟
		

		

			)
		

		

			
		

		
			𝑟
			−
		

		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		

			(
		

		
			𝑛
			−
			𝑏
		

		

			(
		

		

			𝑟
		

		
			)
			)
		

		

			
		

		

			
		

		

			,
		

	

	
		

			𝑓
		

		

			𝛼
		

	
 is a weight function that satisfies (21).In fact,(a)  the denominator of 
	
		

			𝛽
		

	
, due to Lemma 3, is a positive number. Furthermore the numerator of 
	
		

			𝛽
		

	
 is a positive number if and only if 
	
		
			𝛼
			<
			(
			𝑟
			/
			𝑏
			(
			𝑟
			)
			)
		

	
. Therefore (24) and the definition of 
	
		

			𝛽
		

	
 assure that 
	
		

			𝑓
		

		

			𝛼
		

	
 is a weight function.(b)  Having 
	
		
			𝛼
			<
			𝑑
			/
			ℎ
			−
			1
		

	
 is equivalent to require
							
	
 		
			(
			2
			5
			)
		
 	

	
		
			1
			+
			⋯
			+
			1
		

		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

		
			𝑑
			−
			ℎ
		

		
			t
			i
			m
			e
			s
		

		
			+
			(
			−
			𝛼
			)
			+
			⋯
			+
			(
			−
			𝛼
			)
		

		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

		

			ℎ
		

		
			t
			i
			m
			e
			s
		

		
			>
			0
			.
		

	
This condition assures that the subsets of the type
	
 		
			(
			2
			6
			)
		
 	

	
		

			[
		

		
			1
			,
			…
			,
			𝑟
		

		

			]
		

		

			+
		

		

			𝑑
		

		

			[
		

		
			𝑟
			+
			1
			,
			…
			,
			𝑟
			+
			𝑏
		

		

			(
		

		

			𝑟
		

		

			)
		

		

			]
		

		

			−
		

		

			0
		

		

			,
		

		
			i
			n
			t
			o
			t
			a
			l
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑏
		

		

			(
		

		

			𝑟
		

		

			)
		

		

			0
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		

			𝑑
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			[
		

		
			1
			,
			…
			,
			𝑟
		

		

			]
		

		

			+
		

		
			𝑑
			−
			1
		

		

			[
		

		
			𝑟
			+
			1
			,
			…
			,
			𝑟
			+
			𝑏
		

		

			(
		

		

			𝑟
		

		

			)
		

		

			]
		

		

			−
		

		

			1
		

		

			,
		

		
			i
			n
			t
			o
			t
			a
			l
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑏
		

		

			(
		

		

			𝑟
		

		

			)
		

		

			1
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		
			𝑑
			−
			1
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		
			⋮
			⋮
			⋮
			⋮
		

		

			[
		

		
			1
			,
			…
			,
			𝑟
		

		

			]
		

		

			+
		

		
			𝑑
			−
			ℎ
		

		

			[
		

		
			𝑟
			+
			1
			,
			…
			,
			𝑟
			+
			𝑏
		

		

			(
		

		

			𝑟
		

		

			)
		

		

			]
		

		

			−
		

		

			ℎ
		

		

			,
		

		
			i
			n
			t
			o
			t
			a
			l
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑏
		

		

			(
		

		

			𝑟
		

		

			)
		

		

			ℎ
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		
			𝑑
			−
			ℎ
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

	
are 
	
		
			(
			𝑑
		

		

			+
		

		
			,
			𝑛
			)
		

	
-subsets of 
	
		

			𝑓
		

		

			𝛼
		

	
.(c)  Firstly we note that the requirement 
							
	
 		
			(
			2
			7
			)
		
 	

	
		
			𝛼
			<
		

		

			𝑑
		

		
			
		
		

			𝑏
		

		

			(
		

		

			𝑟
		

		

			)
		

		

			
		

		
			𝑟
			−
		

		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		

			(
		

		
			𝑛
			−
			𝑏
		

		

			(
		

		

			𝑟
		

		
			)
			)
		

		

			
		

	

						is equivalent to require
							
	
 		
			(
			2
			8
			)
		
 	

	
		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		

			(
		

		
			𝑛
			−
			𝑏
		

		

			(
		

		

			𝑟
		

		
			)
			)
		

		
			+
			𝛼
		

		

			𝑏
		

		

			(
		

		

			𝑟
		

		

			)
		

		
			
		
		

			𝑑
		

		
			<
			𝑟
			.
		

	

						Lemma 3 assures the existence of a such 
	
		

			𝛼
		

	
. Note that (28) is equivalent to
							
	
 		
			(
			2
			9
			)
		
 	

	
		
			1
			+
			⋯
			+
			1
		

		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

		
			𝑑
			−
			1
		

		
			t
			i
			m
			e
			s
		

		

			+
		

		

			(
		

		
			−
			𝛽
		

		

			)
		

		
			<
			0
			,
		

	

						which assures that the 
	
		
			(
			𝑑
		

		

			+
		

		
			,
			𝑛
			)
		

	
-strings of 
	
		

			𝑓
		

		

			𝛼
		

	
 are only of the type (26). Therefore we have constructed a weight function 
	
		
			𝑓
			=
			𝑓
		

		

			𝛼
		

	
 with 
	
		

			𝑟
		

	
 being nonnegative elements which satisfies (21).
We now concentrate our attention on the subinterval 
	
		
			(
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			(
			𝑛
			−
			1
			)
			,
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
			]
		

	
. By Proposition 2 there is a unique value of 
	
		

			𝑟
		

	
 contained in this subinterval. For this value formula (20) becomes simpler as expressed in the following result.
Corollary 5.  Let 
	
		

			𝑟
		

	
 be a positive integer such that 
	
		
			𝑟
			≥
			𝑑
		

	
 and 
	
		
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			(
			𝑛
			−
			1
			)
			<
			𝑟
			≤
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
		

	
. Then
							
	
 		
			(
			3
			0
			)
		
 	

	
		

			𝛾
		

		

			(
		

		
			𝑛
			,
			𝑑
			,
			𝑟
		

		

			)
		

		

			≤
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		

			𝑑
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			+
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		
			𝑑
			−
			1
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			.
		

	

Proof. The result follows directly from Proposition 4 since 
	
		
			𝑏
			(
			𝑟
			)
			=
			1
		

	
.
The aim of the next proposition is to try to individuate a lower bound for 
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
		

	
 starting from 
	
		
			𝜙
			(
			𝑓
			,
			𝑑
			)
		

	
. Recalling that 
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
			=
			m
			i
			n
			{
			𝜙
			(
			𝑓
			,
			𝑑
			)
			∶
			𝑓
			∈
			𝑊
		

		

			𝑛
		

		
			,
			𝑓
		

		

			+
		

		
			=
			𝑟
			}
		

	
, we have the following result.
Proposition 6.  Let r be a positive integer such that 
	
		
			𝑑
			≤
			𝑟
			≤
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
		

	
. Let 
	
		
			𝑓
			∈
			𝑊
		

		

			𝑛
		

	
, with 
	
		

			𝑓
		

		

			+
		

		
			=
			𝑟
		

	
, as in (3). If
							
	
 		
			(
			3
			1
			)
		
 	

	
		

			𝑥
		

		

			1
		

		
			+
			𝑦
		

		
			𝑛
			−
			𝑟
		

		
			≥
			0
			,
		

	

						then
							
	
 		
			(
			3
			2
			)
		
 	

	
		

			𝜙
		

		

			(
		

		
			𝑓
			,
			𝑑
		

		

			)
		

		

			≥
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			𝑟
			−
			1
		

		
			𝑑
			−
			2
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			(
		

		
			𝑛
			−
			𝑟
		

		

			)
		

		

			+
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		

			𝑑
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			≥
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		

			𝑑
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			+
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		
			𝑑
			−
			1
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			.
		

	

Proof. We can consider the d-strings of 
	
		
			{
			1
			,
			…
			,
			𝑛
			}
		

	
 of type
							
	
 		
			(
			3
			3
			)
		
 	

	
		
			1
			𝑖
		

		

			1
		

		
			⋯
			𝑖
		

		
			𝑑
			−
			2
		

		

			∣
		

		

			(
		

		
			𝑛
			−
			𝑟
		

		

			)
		

		

			,
		

	

						where 
	
		

			𝑖
		

		

			1
		

		
			⋯
			𝑖
		

		
			𝑑
			−
			2
		

	
 are chosen in 
	
		
			{
			2
			,
			…
			,
			𝑟
			}
		

	
.By virtue of (31), each string of the type (33) is a 
	
		
			(
			𝑑
		

		

			+
		

		
			,
			𝑛
			)
		

	
-string of 
	
		

			𝑓
		

	
.On the other hand, since 
	
		

			𝑦
		

		

			1
		

		
			≥
			𝑦
		

		

			2
		

		
			≥
			⋯
			≥
			𝑦
		

		
			𝑛
			−
			𝑟
		

	
, each string of type
							
	
 		
			(
			3
			4
			)
		
 	

	
		
			1
			𝑖
		

		

			1
		

		
			⋯
			𝑖
		

		
			𝑑
			−
			2
		

		
			∣
			𝑘
			,
		

	

						where 
	
		

			𝑖
		

		

			1
		

		
			⋯
			𝑖
		

		
			𝑑
			−
			2
		

	
 are chosen in 
	
		
			{
			2
			,
			…
			,
			𝑟
			}
		

	
 and 
	
		

			𝑘
		

	
 in 
	
		
			{
			1
			,
			…
			,
			𝑛
			−
			𝑟
			}
		

	
, will be a 
	
		
			(
			𝑑
		

		

			+
		

		
			,
			𝑛
			)
		

	
-string of 
	
		

			𝑓
		

	
.The distinct strings of the type (34) are exactly 
	
		

			
		

		
			𝑟
			−
			1
		

		
			𝑑
			−
			2
		

		

			
		

		
			(
			𝑛
			−
			𝑟
			)
		

	
. There are moreover all the 
	
		
			(
			𝑑
		

		

			+
		

		
			,
			𝑛
			)
		

	
-strings of 
	
		

			𝑓
		

	
 that are the 
	
		

			𝑑
		

	
-strings on 
	
		
			{
			1
			,
			…
			,
			𝑟
			}
		

	
. This proves the first inequality in (32). Moreover, since 
	
		
			𝑟
			≤
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
		

	
, we also have 
	
		
			𝑛
			−
			𝑟
			≥
			(
			𝑟
			/
			(
			𝑑
			−
			1
			)
			)
		

	
. Therefore 
							
	
 		
			(
			3
			5
			)
		
 	

	
		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			𝑟
			−
			1
		

		
			𝑑
			−
			2
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			(
		

		
			𝑛
			−
			𝑟
		

		

			)
		

		

			≥
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			𝑟
			−
			1
		

		
			𝑑
			−
			2
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			𝑟
		

		
			
		
		
			𝑑
			−
			1
		

		

			=
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		
			𝑑
			−
			1
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			.
		

	

						Thus the second inequality also holds.
Proposition 6 leads us to state the following conjecture.
Remark 7. We conjecture that
							
	
 		
			(
			3
			6
			)
		
 	

	
		

			𝛾
		

		

			(
		

		
			𝑛
			,
			𝑑
			,
			𝑟
		

		

			)
		

		

			=
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		

			𝑑
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			+
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		
			𝑑
			−
			1
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

	

						where 
	
		
			𝑟
			≥
			𝑑
		

	
 and 
	
		
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			(
			𝑛
			−
			1
			)
			<
			𝑟
			≤
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
		

	
.Note that, in order to prove (36), by Corollary 5, it is sufficient to show
							
	
 		
			(
			3
			7
			)
		
 	

	
		

			𝛾
		

		

			(
		

		
			𝑛
			,
			𝑑
			,
			𝑟
		

		

			)
		

		

			≥
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		

			𝑑
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			+
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		
			𝑑
			−
			1
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			.
		

	
In the particular case 
	
		
			𝑛
			=
			2
			𝑑
			+
			2
		

	
 and 
	
		
			𝑟
			=
			2
			𝑑
			−
			1
		

	
 the previous conjecture has been proved in [3].
In the next result we show that our conjecture (36) is true when 
	
		
			𝑛
			=
			𝑑
			+
			2
		

	
 and 
	
		
			𝑟
			=
			𝑑
		

	
.
Proposition 8.  If 
	
		
			𝑛
			=
			𝑑
			+
			2
		

	
 and 
	
		
			𝑟
			=
			𝑑
		

	
, then 
							
	
 		
			(
			3
			8
			)
		
 	

	
		

			𝛾
		

		

			(
		

		
			𝑛
			,
			𝑑
			,
			𝑟
		

		

			)
		

		

			=
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		

			𝑑
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			+
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		
			𝑑
			−
			1
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			.
		

	

Proof. We observe that if 
	
		
			𝑛
			=
			𝑑
			+
			2
		

	
 and 
	
		
			𝑟
			=
			𝑑
		

	
, then 
	
		
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			(
			𝑛
			−
			1
			)
			<
			𝑟
			≤
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
		

	
. Hence, by Corollary 5,
							
	
 		
			(
			3
			9
			)
		
 	

	
		

			𝛾
		

		

			(
		

		
			𝑛
			,
			𝑑
			,
			𝑟
		

		

			)
		

		

			≤
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		

			𝑑
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			+
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		
			𝑑
			−
			1
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			.
		

	
Therefore, in order to have the thesis, we must prove that
							
	
 		
			(
			4
			0
			)
		
 	

	
		

			𝛾
		

		

			(
		

		
			𝑛
			,
			𝑑
			,
			𝑟
		

		

			)
		

		

			≥
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		

			𝑑
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			+
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		
			𝑑
			−
			1
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			.
		

	

						Let us note that as a direct consequence of Corollary 5 and Proposition 6 it follows that if 
	
		

			𝑟
		

	
 is a positive integer with 
	
		
			𝑟
			≥
			𝑑
		

	
 such that 
	
		
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			(
			𝑛
			−
			1
			)
			<
			𝑟
			≤
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
		

	
, then
							
	
 		
			(
			4
			1
			)
		
 	

	
		
			m
			i
			n
		

		

			
		

		

			𝜙
		

		

			(
		

		
			𝑓
			,
			𝑑
		

		

			)
		

		
			∶
			𝑓
			∈
			𝑊
		

		

			𝑛
		

		
			,
			𝑓
		

		

			+
		

		
			=
			𝑟
			,
			𝑥
		

		

			1
		

		
			+
			𝑦
		

		
			𝑛
			−
			𝑟
		

		
			≥
			0
		

		

			
		

		

			=
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		

			𝑑
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			+
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		
			𝑑
			−
			1
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			.
		

	
Therefore by (41) inequality (40) is equivalent to the following:
							
	
 		
			(
			4
			2
			)
		
 	

	
		
			m
			i
			n
		

		

			
		

		

			𝜙
		

		

			(
		

		
			𝑓
			,
			𝑑
		

		

			)
		

		
			∶
			𝑓
			∈
			𝑊
		

		

			𝑛
		

		
			,
			𝑓
		

		

			+
		

		
			=
			𝑟
			,
			𝑥
		

		

			𝑘
		

		
			+
			𝑦
		

		
			𝑛
			−
			𝑟
		

		
			<
			0
			,
		

		
			f
			o
			r
			e
			v
			e
			r
			y
		

		
			𝑘
			=
			1
			,
			…
			,
			𝑟
		

		

			}
		

		

			≥
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		

			𝑑
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			+
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑟
		

		
			𝑑
			−
			1
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			.
		

	
So, to prove inequality (40), it is sufficient to prove that, for each 
	
		
			𝑓
			∈
			𝑊
		

		

			𝑛
		

	
 such that 
	
		

			𝑓
		

		

			+
		

		
			=
			𝑟
		

	
 and 
	
		

			𝑥
		

		

			1
		

		
			+
			𝑦
		

		
			𝑛
			−
			𝑟
		

		
			=
			𝑥
		

		

			1
		

		
			+
			𝑦
		

		

			2
		

		
			<
			0
		

	
, we have 
	
		
			𝜙
			(
			𝑓
			,
			𝑑
			)
			≥
		

		

			(
		

		

			𝑟
		

		

			𝑑
		

		

			)
		

		

			+
		

		

			(
		

		

			𝑟
		

		
			𝑑
			−
			1
		

		

			)
		

	
. We set
	
		
			𝑝
			=
		

		

			(
		

		

			𝑟
		

		
			𝑑
			−
			1
		

		

			)
		

	
and let 
	
		

			𝐴
		

		

			1
		

		
			,
			…
			,
			𝐴
		

		

			𝑝
		

	
 be all the 
	
		
			(
			𝑑
			−
			1
			)
		

	
-strings in 
	
		
			[
			𝑟
			]
		

	
. At this point we consider the following configurations:
							
	
 		
			(
			4
			3
			)
		
 	

	
		

			𝐴
		

		

			1
		

		
			∣
			1
			𝑖
		

		

			1
		

		
			∣
			2
		

		
			⋮
			⋮
		

		

			𝐴
		

		

			𝑝
		

		
			∣
			1
			𝑖
		

		

			𝑝
		

		
			∣
			2
			,
		

	

						where 
	
		
			{
			𝑖
		

		

			𝑗
		

		
			}
			=
			[
			𝑟
			]
			⧵
			𝐴
		

		

			𝑗
		

		
			(
			𝑗
			=
			1
			,
			…
			,
			𝑝
			)
		

	
. Since 
	
		

			𝑓
		

	
 is a weight function and 
	
		

			𝑥
		

		

			𝑖
		

		

			𝑗
		

		
			+
			𝑦
		

		

			2
		

		
			<
			0
		

	
 for 
	
		
			𝑗
			=
			1
			,
			…
			,
			𝑝
		

	
, it follows that all the 
	
		

			𝑑
		

	
-strings 
	
		

			𝐴
		

		

			1
		

		
			∣
			1
			,
			…
			,
			𝐴
		

		

			𝑝
		

		
			∣
			1
		

	
 are nonnegative 
	
		

			𝑑
		

	
-tuple of the form 
	
		
			(
			𝑑
			−
			1
			,
			1
			)
		

	
 associated with 
	
		

			𝑓
		

	
. Therefore 
	
		
			𝜙
			(
			𝑓
			,
			𝑑
			)
			≥
		

		

			(
		

		

			𝑟
		

		

			𝑑
		

		

			)
		

		
			+
			𝑝
			=
		

		

			(
		

		

			𝑟
		

		

			𝑑
		

		

			)
		

		

			+
		

		

			(
		

		

			𝑟
		

		
			𝑑
			−
			1
		

		

			)
		

	
. This proves (42), and hence also (40) is proved.
In Table 1 we list all the known values of 
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
		

	
 in the range 
	
		
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			(
			𝑛
			−
			1
			)
			<
			𝑟
			≤
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
		

	
. Let us note that when the integer 
	
		

			𝑑
		

	
 is fixed and 
	
		

			𝑛
		

	
 runs in 
	
		
			{
			𝑑
			+
			1
			,
			𝑑
			+
			2
			,
			…
			}
		

	
, by Proposition 2, we find at most an integer value 
	
		

			𝑟
		

	
 such that 
	
		
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			(
			𝑛
			−
			1
			)
			<
			𝑟
			≤
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
		

	
.
Table 1
	

	
	
		

			𝑛
		

	
	
	
		

			𝑟
		

	
	
	
		
			𝑛
			−
			𝑟
		

	
	 
	

	
	
		
			𝑑
			+
			1
		

	
	
	
		

			∄
		

	
	
	
		

			∄
		

	
	 
	
	
		
			𝑑
			+
			2
		

	
	
	
		

			𝑑
		

	
	 2 	 Proposition 8
	
	
		

			⋮
		

	
	
	
		

			⋮
		

	
	
	
		

			⋮
		

	
	 
	
	
		
			𝑑
			+
			(
			𝑑
			−
			1
			)
		

	
	
	
		
			2
			𝑑
			−
			3
		

	
	 2 	 
	
	
		
			2
			𝑑
		

	
	
	
		
			2
			𝑑
			−
			2
		

	
	 2 	 Proposition 2.5 in [3]
	

	
	
		
			2
			𝑑
			+
			1
		

	
	
	
		

			∄
		

	
	
	
		

			∄
		

	
	 
	
	
		
			2
			𝑑
			+
			2
		

	
	
	
		
			2
			𝑑
			−
			1
		

	
	 3 	 Proposition 2.4 in [3]
	
	
		

			⋮
		

	
	
	
		

			⋮
		

	
	
	
		

			⋮
		

	
	 
	

	
	
		
			𝑘
			𝑑
			+
			1
		

	
	
	
		

			∄
		

	
	
	
		

			∄
		

	
	 
	
	
		

			⋮
		

	
	
	
		

			⋮
		

	
	
	
		

			⋮
		

	
	 
	
	
		
			𝑘
			𝑑
			+
			𝑡
		

	
	
	
		
			𝑘
			(
			𝑑
			−
			1
			)
			+
			(
			𝑡
			−
			1
			)
		

	
	
	
		
			𝑘
			+
			1
		

	
	 
	
	
		

			⋮
		

	
	
	
		

			⋮
		

	
	
	
		

			⋮
		

	
	 
	
	
		
			(
			𝑘
			+
			1
			)
			𝑑
		

	
	
	
		
			(
			𝑘
			+
			1
			)
			(
			𝑑
			−
			1
			)
		

	
	
	
		
			(
			𝑘
			+
			1
			)
		

	
	 Proposition 2.5 in [3]
	
	
		

			⋮
		

	
	
	
		

			⋮
		

	
	
	
		

			⋮
		

	
	 
	



In Table 1, 
	
		
			𝑘
			=
			1
			,
			2
			,
			…
		

	
 and 
	
		
			𝑡
			∈
			{
			1
			,
			…
			,
			𝑑
			}
		

	
. Moreover, if 
	
		
			𝑡
			=
			1
		

	
, then there does not exist an integer 
	
		

			𝑟
		

	
 such that 
	
		
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			(
			𝑛
			−
			1
			)
			<
			𝑟
			≤
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
		

	
. In the last column we have marked the cases in which the conjecture (36) is proved. In particular, we note that, for every 
	
		

			𝑘
		

	
, the case 
	
		
			𝑡
			=
			𝑑
		

	
 corresponds to 
	
		
			𝑛
			=
			(
			𝑘
			+
			1
			)
			𝑑
		

	
, which implies 
	
		
			𝑟
			=
			(
			𝑘
			+
			1
			)
			(
			𝑑
			−
			1
			)
			=
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
		

	
. For these values of 
	
		

			𝑟
		

	
 we know that (36) holds (see [3]) and the conjecture (36) is true.
We give now a simple combinatorial interpretation of the inequalities 
						
	
 		
			(
			4
			4
			)
		
 	

	
		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		

			(
		

		
			𝑛
			−
			1
		

		

			)
		

		
			<
			𝑟
			≤
		

		
			𝑑
			−
			1
		

		
			
		
		

			𝑑
		

		
			𝑛
			.
		

	

For this purpose let us note that the last inequalities are equivalent to the following:
						
	
 		
			(
			4
			5
			)
		
 	

	
		

			(
		

		
			𝑛
			−
			𝑟
			−
			1
		

		
			)
			(
		

		
			𝑑
			−
			1
		

		

			)
		

		
			<
			𝑟
			≤
		

		

			(
		

		
			𝑛
			−
			𝑟
		

		
			)
			(
		

		
			𝑑
			−
			1
		

		

			)
		

		

			.
		

	

Let now 
	
		

			𝑟
		

	
 be a positive integer that satisfies (45) and 
	
		
			𝑓
			∈
			𝑊
		

		

			𝑛
		

	
, with 
	
		

			𝑓
		

		

			+
		

		
			=
			𝑟
		

	
, as in (3). Let us consider the following representation:
						
	
 		
			(
			4
			6
			)
		
 	

	
		
			⌞
			⌟
			+
			⌞
			⌟
			+
			⋯
			+
			⌞
			⌟
			+
			𝑘
		

		

			1
		

		
			⌞
			⌟
			+
			⌞
			⌟
			+
			⋯
			+
			⌞
			⌟
			+
			𝑘
		

		

			2
		

		

			⋮
		

		
			⌞
			⌟
			+
			⌞
			⌟
			+
			⋯
			+
			⌞
			⌟
			+
			𝑘
		

		
			𝑛
			−
			𝑟
			−
			1
		

		
			⌞
			⌟
			+
			⌞
			⌟
			+
			⋯
			+
			⌞
			⌟
			+
			𝑘
		

		
			𝑛
			−
			𝑟
		

		

			,
		

	

					where every 
	
		
			⌞
			⌟
		

	
 can be seen as a “box” initially empty and every row contains 
	
		
			𝑑
			−
			1
		

	
 boxes. Each of such boxes can be occupied by at most one nonnegative element of 
	
		

			𝑓
		

	
. Thus (45) is equivalent to state that 
	
		
			𝑛
			−
			𝑟
			−
			1
		

	
 rows in (46) must be completely occupied, whereas the last row must contain at least a nonempty box and, furthermore, the number of nonnegative elements of 
	
		

			𝑓
		

	
 cannot exceed the number of empty boxes in (46). This combinatorial interpretation of (45) suggests to examine firstly the 
	
		
			(
			𝑑
		

		

			+
		

		
			,
			𝑛
			)
		

	
-strings of 
	
		

			𝑓
		

	
 of the form 
	
		
			+
			⋯
			+
			−
		

	
, that is, a subset with 
	
		
			𝑑
			−
			1
		

	
 nonnegative elements and only one negative.
4. Conclusions and Further Developments
In this paper we continue the research approach started in [1, 3] to the problem of determining new identities and new bounds concerning the numbers 
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
		

	
. After a brief introduction to these numbers and their combinatorial context, we establish some preliminary results necessary to delimit the range of the integers parameters 
	
		

			𝑛
		

	
, 
	
		

			𝑑
		

	
, and 
	
		

			𝑟
		

	
 that we study. Next we give a relevant upper bound for numbers 
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
		

	
 (Proposition 4). Afterwards we focus our attention on the range 
	
		
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			(
			𝑛
			−
			1
			)
			<
			𝑟
			≤
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
		

	
 (Corollary 5). In this context, Proposition 6 and the study of 
	
		
			𝜙
			(
			𝑓
			,
			𝑑
			)
		

	
 bring us to conjecture a strong lower bound for 
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
		

	
 on the subinterval 
	
		
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			(
			𝑛
			−
			1
			)
			<
			𝑟
			≤
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
		

	
. Finally, we prove our conjecture in the case 
	
		
			𝑛
			=
			𝑑
			+
			2
		

	
 and 
	
		
			𝑟
			=
			𝑑
		

	
, and this provides an exact value for 
	
		
			𝛾
			(
			𝑟
			+
			2
			,
			𝑟
			,
			𝑟
			)
		

	
. We think that our approach of dividing the intervals of variation of the integers parameters 
	
		

			𝑛
		

	
, 
	
		

			𝑑
		

	
, and 
	
		

			𝑟
		

	
 in particular types of subintervals can be useful in order to determine further upper and lower bound for 
	
		
			𝛾
			(
			𝑛
			,
			𝑑
			,
			𝑟
			)
		

	
. In future papers our purpose will be:(i)to study other subintervals, trying to extend and generalize the validity of the results of this paper;(ii)to prove conjecture (36) in all the range 
	
		
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			(
			𝑛
			−
			1
			)
			<
			𝑟
			≤
			(
			(
			𝑑
			−
			1
			)
			/
			𝑑
			)
			𝑛
		

	
.
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