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Hydraulic analysis of water distribution networks is an important problem in civil engineering. A widely used approach in steady-
state analysis of water distribution networks is the global gradient algorithm (GGA). However, when the GGA is applied to solve
these networks, zero flows cause a computation failure. On the other hand, there are different mathematical formulations for
hydraulic analysis under pressure-driven demand and leakage simulation. This paper introduces an optimization model for the
hydraulic analysis of water distribution networks using ametaheuristic method called shuffled complex evolution (SCE) algorithm.
In this method, applying if-then rules in the optimization model is a simple way in handling pressure-driven demand and leakage
simulation, and there is no need for an initial solution vector whichmust be chosen carefully inmany other procedures if numerical
convergence is to be achieved. The overall results indicate that the proposed method has the capability of handling various pipe
networks problems without changing inmodel or mathematical formulation. Application of SCE in optimizationmodel can lead to
accurate solutions in pipes with zero flows. Finally, it can be concluded that the proposed method is a suitable alternative optimizer
challenging other methods especially in terms of accuracy.

1. Introduction

A water distribution network is composed of an edge set
consisting of pumps, pipes, valves, and a node set consisting
of reservoirs and pipe intersections [1]. The equations gov-
erning the flows and heads in a water distribution system are
nonlinear, and often a Newton iterative solution algorithm is
used in which a linearized set of equations is solved at each
iteration [2]. The Newton-based global gradient algorithm
(GGA) is a popular method used in solving the water
distribution System (WDS) equations [3]. Given the non-
linearity of the system of equations, the Newton-based com-
putation of the solution involves an iterative two-step process.
The first step includes computing the state variable update,
which requires the solution of linear system derived from the
Jacobian of the WDS equations. The second step deals with
updating estimates of the state variables. The first step is typ-
ically the most computationally expensive process within

the GGA [4]. Furthermore, some of the pipes in a network,
in which the head losses are modeled by the Hazen-Williams
formula, have zero flows. In that case, a key matrix in the
method becomes singular and the matrix to be inverted
becomes ill conditioned [2]. As a result a failure occurs in
the computation. On the other hand, there are no options
for pressure-driven demand and leakage simulation in the
EPANET program. Meanwhile, there is still a chance to de-
velop a new method for water distribution network analysis
in these conditions. In this paper an optimization model is
introduced for hydraulic analysis of water distribution net-
works using a metaheuristic algorithm called shuffled com-
plex evolution (SCE) algorithm.

The analysis of hydraulic networks should be treated as
an optimization problem, as shown by Arora [5], Hall [6],
and Collins et al. [1]. Arora considered a simple two-piped
loop whereas Collins et al. build the basis of their approach
on rigorous theoretical background and developed nonlinear
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Figure 1: Schematic representation of the looped pipe network with
5 unknown nodal heads.

optimization models, whose solutions yielded the hydraulic
network analysis [7]. In this paper the Collins model is
minimized through the application of shuffled complex
evolution algorithm. There is no need to solve linear systems
of equations in this methodology, and handling of pressure-
driven demand and leakage simulation can be done in a
simple way, so an initial solution vector, which is sometimes
critical to the convergence, is not required. Furthermore, the
proposed model does not entail any complicated mathemati-
cal expression and operation. The Collins model is described
in the following section.

2. Cocontent Model Approach

Arora [5] is the first researcher who suggested an approach
based on the principle of conservation of energy. According
to the principle, “Flow in the pipes of a hydraulic network
adjusts so that to minimize the expenditure of the system
energy.” Then, Collins et al. [1] proposed a model termed
the cocontent model, which is based on equations having the
unknown nodal heads as the basic unknowns, that is, based
on 𝐻 equations. The unknown pipe flows are expressed in
terms of the nodal heads and the known pipe resistances, so
that the energy loss in pipe 𝑥 (𝐸

𝑥
) is given by [7]

𝐸
𝑥
= 𝑄
𝑥
ℎ
𝑥
=

[𝐻
𝑖
− 𝐻
𝑗
]
(1/𝑛)+1

𝑅
(1/𝑛)

𝑥

, (1)

in which ℎ
𝑥
is head loss in pipe 𝑥, 𝐻

𝑖
= 𝐻
𝑜𝑖
and 𝐻

𝑗
= 𝐻
𝑜𝑗
,

for source nodes.𝑅
𝑘
is the characteristic parameter of the pipe

resistance which depends on roughness length, diameter, and
unit of measurement. For example, if the Hazen-Williams
equation is used, values 𝑛 and 𝑅 in SI units are defined as
𝑅 = 10.67𝐿/𝐶

1.852

𝐷
4.87, 𝑛 = 1.852. 𝐶, 𝐷, and 𝐿 are the

Hazen-Williams coefficient (depending on the pipematerial),
the diameter, and its length, respectively.

Now consider the network of Figure 1, with the known
and unknown parameters as shown therein. Let the unknown
nodal heads at nodes 1, 2, 3, 4, and 5 be𝐻

1
,𝐻
2
,𝐻
3
,𝐻
4
, and

𝐻
5
, respectively. Herein also consider a ground node 𝐺 with

fixed known level𝐻
0𝐺
, as shown in Figure 1.The nodes 1, 2, 3,

and 5 are connected to the ground node 𝐺 with pseudopipes,

carrying the known nodal outflows 𝑞
1
, 𝑞
2
, 𝑞
3
, and 𝑞

5
as shown

in Figure 1.
The cocontent optimization model is expressed as
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(2)

where ℎ
𝐿
is local loss for valve and ℎ

𝑝
is pump head.

The first eight terms of the objective function repre-
sent the energy loss in real pipes 1, . . . , 8 of the network,
respectively, and the last four terms show (1/𝑛 + 1) times
the energy loss in the pseudopipes [7]. It should be noted
that there are no constraints and therefore an unconstrained
model in four decision variables is made. For minimization
of optimization model, which is partially differentiating in
unknown heads, the node-flow continuity equations are
created. Therefore, the solution of the cocontent model gives
the values of the unknown heads such that the node-flow
continuity relationships are satisfied [7].

By partially differentiating (2) with respect to𝐻
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(3)

That is the purely head-based formulations of the network
equations. So cocontentmodel not onlyminimizes the energy
of flow but also preserves water balance in network. For
simplicity, 𝐻

0𝐺
can be taken as zero. The general cocontent

model can be expressed as

Min 𝐶 (𝐻) = ∑
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(4)

Collins et al. [1] suggested the solution of the NLP
optimization of the model. The methods they used were (1)
the Frank-Wolfe method, (2) a piecewise linear approxima-
tion, and (3) the convex simplex method, which are highly
dependent on initial guesses and in some cases converge to
an incorrect solution [1].

3. Head Dependent Analysis

In the common approaches, it is presumed that the nodal
demands are always satisfied at all demand nodes, irrespec-
tive of the available HGL values at demand nodes [7]. But in
practice, when the head at a node is insufficient, a reduction
in the water flowing from the tap is expected and, at worst,
the discharge that can be drafted will be zero, regardless
of the actual demand [8]. There are several solutions for
these conditions, in the literature. Wagner et al. [9] and
Chandapillai [10] suggested a parabolic relationship between
required nodal head and minimum head. Their relationships
are

𝑞
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,

𝑞
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, 𝐻
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≤ 𝐻
𝑗
.

(5)

𝐻
∗ is the required nodal head. In this situation, applying

if-then rules in the optimization model is a simple way in
handling the above formulation.

4. Leakage Simulation

Water losses via leakages constitute a major challenge to the
effective operation of municipal WDS since they represent
not only diminished revenue for utilities but also undermined
service quality [11] and wasted energy resources [12]. In order
to conduct a more accurate analysis of a WDS, such as a
better estimate of flow through the network (with respect
to both satisfied demand and losses through leakage), a
hydraulic analysis capable of accounting for pressure-driven
(also known as head-driven) demand and leakage flow at
the pipe level should prove invaluable. To reach this goal, a
leakage model is expressed as follows [13]:

𝑞
𝑘-leak = {

𝛽
𝑘
𝑙
𝑘
(𝑃
𝑘
)
𝛼𝑘
, if 𝑃

𝑘
> 0,

0, if 𝑃
𝑘
≤ 0,

(6)

where 𝑃
𝑘
is average pressure in the pipe computed as the

mean of the pressure values at the end nodes 𝑖 and𝑗 of the
𝑘th pipe; and 𝑙

𝑘
is length of that pipe. Variables 𝛼

𝑘
and 𝛽

𝑘
are

two leakage model parameters [14]. The allocation of leakage
to the two end nodes can be performed in a number of ways
[15]. Here the nodal leakage flow 𝑞

𝑗-leak is computed as the
sum of 𝑞

𝑘-leak flows of all pipes connected to node 𝑗 as follows:

𝑞
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(7)

where 𝑃
𝑘
= (𝑃
𝑖
+ 𝑃
𝑗
)/2. This formulation also easily applies

to cocontent model without any mathematical complexity.
Numerical example 4 demonstrates hydraulic analysis of a
real pipe network in this situations.

5. Application of Shuffled Complex Evolution
Algorithm for Minimizing Cocontent Model

This study introduces the shuffled complex evolution (SCE)
algorithm for the hydraulic analysis. Since the algorithm
was originally developed to solve optimization problems, the
hydraulic network analysis was introduced into an optimiza-
tion problem (cocontent model). One advantage of the SCE
algorithm is that it does not need an initial solution vector
which must be chosen carefully in many other procedures
if numerical convergence is to be achieved. Furthermore,
application of SCE algorithm in cocontent model does not
require any complicated mathematical expression and opera-
tion. In this model, pressure-driven demand and leakage can
be simulated easily and there is no failure in computation in
zero flow conditions.

5.1. Shuffled Complex Evolution (SCE). Shuffled complex
evolution (SCE) is a simple powerful and population-based
stochastic optimization algorithm that outperforms many
metaheuristic algorithms in numerical single-objective opti-
mization problems. This method is based on a synthesis of
four concepts: (1) combination of deterministic and proba-
bilistic approaches; (2) systematic evolution of a “complex”
of points spanning the parameter space, in the direction of
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f(x): objective function

xi: decision variable (pipe diameter)

N: number of decision variables

S: number of solution vectors

P: number of complexes

m = number of points in each complex

i = 1 : S

Randomly generate the solutions

Evaluate objective function

Calculate cost function C(H)

Sort the solutions

Allocate solutions to complexes

For i = 1 : B (number of inner iterations)

Select the subcomplexes from the complexes
Compute the centroid of the worst point
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exclude worst solution
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through the centroid

Randomly generate
a solution

Contraction
Combine the solutions in the

evolved complexes into

a single sample population

Sort the solution vectors

Terminate
competitions

Repeat Steps
3, 4, and 5

NI = number of iterations

NI

Step 1: initialize parameters Step 2: generate samples

Step 4: CCE algorithm

Step 3: shuffle complexes

Step 5: shuffle complexes

Step 6: check stopping criterion

Figure 2: SCE procedure for minimization of cocontent model.

global improvement; (3) competitive evolution; (4) complex
shuffling [16]. The “complex” is similar to the genetic pool
in the GA. The synthesis of these operators makes the SCE
method effective and robust and also flexible and efficient
[17].

In SCE method, each individual represents a feasible
solution for the problem.The searchwithin the feasible region
is conducted by first dividing the set of current feasible

trial solutions into several complexes, each containing equal
number of trial solutions. Each complex represents a local
area of the whole domain. Concurrent and independent
searches within each complex are conducted until each
converges to its local optimal value. Each of the complexes,
which are now defined by new trial solutions, is collected
into a common pool, shuffled by ranking according to their
objective function value, and then further divided into new
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complexes. The procedure is terminated when none of the
local optima found among the complexes can improve on
the best current local optimum. The SCE method used
the downhill simplex method to accomplish local searches.
So, shuffled complex evolution tries to balance between a
wide scan of a large solution space and deep search of
promising locations. It depends mainly on partitioning the
solution space into local communities and performing local
search within these communities.Then, it shuffles these local
communities to perform global search.

The steps of the procedure of SCE, as shown in Figure 2,
include the following.

Step 1: initialize problem and algorithm parameters.
Step 2: samples generation.
Step 3: rank solutions.
Step 4: partition into complexes.
Step 5: start Competitive Complex Evolution (CCE).
Step 6: shuffle complexes.
Step 7: check the stopping criterion.

5.1.1. Step 1: Initialize the Problem and Algorithm Parameters.
In Step 1, the optimization problem is specified as follows:

Min 𝐶 (𝐻) = ∑

𝑥


𝐻
𝑖
+ ℎ
𝑝𝑥
− ℎ
𝐿𝑥
− 𝐻
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𝑗

𝑞
𝑜𝑗
(𝐻
𝑗
) ,

(8)

where 𝐶(𝐻) is an objective function; 𝐻 is the set of each
decision variable. In this paper, the objective function is
the cocontent model; the unknown heads are the decision
variables.

5.1.2. Step 2: Samples Generation. The initial population for
the DE is created arbitrarily by the following formula:

𝐻(𝑖, 𝑗) = 𝐻min (𝑖, 𝑗) + 𝜏 (𝐻min (𝑖, 𝑗) − 𝐻max (𝑖, 𝑗)) , (9)

where 𝜏 denotes a uniformly distributed randomvaluewithin
the range [0, 1]. 𝐻min(𝑖, 𝑗) and 𝐻max(𝑖, 𝑗) are maximum and
minimum limits of variable 𝑗 and node 𝑖.Then the fitness val-
ues 𝐶(𝐻) of all the individuals of population are calculated.
The position matrix of the population of generation 𝐺 can be
represented as

𝑃
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]
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]
]
]
]
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]
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1
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1

. . . . . . 𝐻
𝑛 Pop
𝑁
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]
]
]
]
]
]
]
]
]
]
]
]

]

, (10)

in which𝑁 is the number of unknown nodes.

5.1.3. Step 3: Rank Solutions. In this step, the s solutions are
sorted in order of increasing criterion value, so that the first
vector represents the smallest value of the objective function
and the last vector indicates the largest value.

5.1.4. Step 4: Partition into Complexes. The 𝑠 solutions are
partitioned into 𝑝 complexes, each containing𝑚 points. The
complexes are partitioned such that the first complex contains
every 𝑝(𝑘− 1) + 1 ranked point, the second complex contains
every 𝑝(𝑘 − 1) + 2 ranked point, and so on, where 𝑘 = 1,

2, . . . , 𝑚 [16].

5.1.5. Step 5: Start Competitive Complex Evolution (CCE).
CCE algorithm is based on the simplex downhill search
scheme and is one key component of SCE algorithm. This
algorithm is presented as follows.

(1) A subcomplex by randomly selecting 𝑞 solutions from
the complex according to a trapezoidal probability
distribution is constructed. The probability distri-
bution is specified such that the best solution has
the highest chance of being selected to form the
subcomplex and the worst point has the least chance.

(2) Theworst solution of the subcomplex is identified and
the centroid of the subcomplex without including the
worst solution is computed as follows:

CR (𝑖) = (1/ (𝑚 − 1))

𝑚−1

∑

𝑗=1

𝑠 (𝑖, 𝑗) , 𝑖 = 1, . . . , 𝑃. (11)

(3) In this step, reflection operator is used, by reflecting
the worst point through the centroid according to the
following formula:

𝐻
new

(𝑖, 𝑗) = 2 ∗ CR (𝑖) − 𝐻 (𝑖,worst) . (12)

If the newly generated solution is within the feasible
space, go to (4); otherwise, randomly generate a point
within the feasible space by Equation (9) and go to (6).

(4) If the newly generated solution is better than the
worst solution, then it is replaced by the new solution.
Otherwise go to (5).

(5) In this step, contraction operator is applied, by com-
puting a solution halfway between the centroid and
the worst point:

𝐻
new

(𝑖, 𝑗) =
(CR (𝑖) − 𝐻 (𝑖,worst))

2
. (13)

If the contraction solution is better than the worst
solution, then it is replaced by the contraction solu-
tion. Otherwise, go to (6). This step is imported from
competitive complex evolution (CCE).

(6) A solution within the feasible space is generated
randomly and the worst solution is replaced by the
randomly generated solution.

(7) Steps (2)–(6) are repeated 𝛼 times and steps (1)–(7)
are repeated 𝛽 times.
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5.1.6. Step 6: Shuffle Complexes. The solutions in the evolved
complexes into a single sample population are combined
and the sample population is sorted in order of increasing
criterion value and is shuffled into 𝑝 complexes.

5.1.7. Step 7: Check the Stopping Criterion. In this section,
Steps 3, 4, and 5 are repeated until the termination criterion
is satisfied.

It should be noted that the competitive complex evolu-
tion (CCE) algorithm is required for the evolution of each
complex. Each point of a complex is a potential “parent”
with the ability to participate in the process of reproducing
offspring. A subcomplex functions like a pair of parents. Use
of a stochastic scheme to construct subcomplexes allows the
parameter space to be searched more thoroughly. The idea
of competitiveness is introduced in forming subcomplexes
where the stronger survives better and breeds healthier off-
spring than the weaker. Inclusion of the competitive measure
expedites the search towards promising regions.

A more detailed presentation of the SCE algorithm has
been given by Duan et al. [17].

6. Numerical Examples

In this section, the hydraulic analyses for several conditions
in some water distribution networks are performed. All com-
putations were executed inMATLAB programming language
environment with an Intel(R) Core(TM) 2Duo CPU P8700
@ 2.53GHz and 4.00GB RAM. In order to demonstrate the
effectiveness of SCE comparedwith othermethods, this study
proposes the use of mass balance and energy balance in the
network.The average of mass and energy balance is shown by
𝛿 and it is calculated by the following formula:
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For Figure 1 and (2) 𝛿 is calculated as follows:

𝛿 = mean(
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To check the performance of the SCE for the minimiza-
tion of cocontent model, in all examples, ten optimization
runswere performed using different random initial solutions.

6.1. Numerical Example 1. In this part, the verification of
the above mentioned model was conducted via numerical
simulation based on an extremely simplified network scheme
(5 nodes and 7 pipes) schematically shown in Figure 3 [18].
The pipes resistances were 𝑅

1
= 1.5625, 𝑅

2
= 50, 𝑅

3
= 100,

𝑅
4
= 12.5, 𝑅

5
= 75, 𝑅

6
= 200, and 𝑅

7
= 100, as reported in

Todini [18] for this network.
The SCE technique is applied to solve this problem

according to three cases. The bound variables were set
between 90 and 100m. The problem is also solved using the
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Figure 3: Schematic representation of the looped pipe network used
in numerical example 1.
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Figure 4: Convergence history of numerical example 1 (form 1).

global gradient algorithm (GGA) and the results are com-
pared with those obtained by the SCE. The best, worst, and
average solutions of SCE algorithm in three cases are shown
in Table 1. As it can be seen in Table 1, in all cases SCE
that found the optimal solution more accurately than GGA
method. The average number of function evaluation is about
2000 in case 1 and about 100000 in case 3. This shows SCE
can converge to global optimum rapidly but reaching high
accuracy needs more operations. The convergence process of
SCE algorithm has been shown in two forms in Figures 4
and 5. The absolute value of 𝛿 is calculated for each iteration
in Figure 4 and the amount of objective function 𝐶(𝐻) is
calculated for each iteration in Figure 5.

6.2. Numerical Example 2. Example 2 considers the sym-
metric network shown in Figure 6. It has 11 pipes, seven
junctions at which the head is unknown, and one fixed head
node reservoir at 40m elevation and all other nodes are
at zero elevation. All pipes have diameters, 𝐷, of 250mm
and lengths, 𝐿, of 1,000m. Node 8 has a demand of 80 l/s,
and all other nodes have zero demands. In the steady state,
this network has zero flows in pipes 2, 6, and 9 because of
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Table 1: Average of mass and energy balance for numerical example 1.

SCE 𝛿 Average number of function evaluations
Best Worst Mean Std

Number of complexes 4
4.60𝐸 − 08 7.06𝐸 − 07 3.04𝐸 − 07 2.30𝐸 − 07 2.03𝐸 + 03

Number of iterations in inner loop 4
Number of complexes 9

1.19𝐸 − 08 3.01𝐸 − 08 2.04𝐸 − 08 6.40𝐸 − 09 1.00𝐸 + 05
Number of iterations in inner loop 9
Number of complexes 10

1.04𝐸 − 08 4.19𝐸 − 08 2.52𝐸 − 08 8.28𝐸 − 09 1.00𝐸 + 05
Number of iterations in inner loop 15
Global gradient algorithm Maximum accuracy 6.40𝐸 − 06

Table 2: Head and parameter 𝛿 in numerical example 2.

Node number 𝐻 (m) [2] 𝐻 (m) 𝛿 [2] 𝛿 (SCE)
1 40 40 0 0
2 36.6813 36.6853 0 1.8𝐸 − 07

3 36.6813 36.6853 0 1.8𝐸 − 07

4 33.3626 33.3706 6.5𝐸 − 07 8.4E − 08
5 33.3626 33.3706 6.5𝐸 − 07 8.7E − 08
6 30.044 30.0559 6.5𝐸 − 07 6.7E − 08
7 30.044 30.0559 6.5𝐸 − 07 6.6E − 08
8 26.7253 26.7411 5.2𝐸 − 05 1.2E − 10
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Figure 5: Convergence history of numerical example 1 (form 2).

symmetry. The head loss is modeled by the Hazen-Williams
equation, and each pipe has a Hazen-Williams coefficient
𝐶 = 120 [2]. When the GGA is used in this network, the
iterates trend toward the solution and the flows in pipes 2,
6, and 9 approach zero. As this happens, the Jacobian matrix
becomes more and more badly conditioned, and the solution
computed becomes ill conditioned [2]. Elhay and Simpson
[2] proposed a regularization procedure for the GGA which
prevents failure of the solution process provided that a flow
in the network is ultimately zero or near zero.

The SCEparameters are set as follows: number of decision
variables = 7; number of points in each complex = 15; number
of complexes for case 1 = 4, case 2 = 9, and case 3 = 10; number
of iterations in inner loop for case 1 = 4, case 2 = 9, and
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Figure 6: Schematic representation of the looped pipe network used
in numerical example 2.

case 3 = 15. The bound variables were set between 25 and
40m. The previous best solution for this network, when it is
simulated using the Elhay algorithm, and the average solution
of SCE algorithm are shown in the second and third columns
of Table 2, respectively. As can be observed in Table 2, mass
and energy balance (𝛿) in SCE are more accurate than the
Elhay algorithm. Table 3 compares the results of applying the
SCE algorithm in three cases.The convergence process of SCE
algorithm has been shown in two forms in Figures 7 and 8.
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Table 3: Average of mass and energy balance for numerical example 2.

SCE 𝛿 Average number of function evaluations
Best Worst Mean Std

Number of complexes 4
2.21𝐸 − 06 7.24𝐸 − 06 4.65𝐸 − 06 1.61𝐸 − 06 4.19𝐸 + 03

Number of iterations in inner loop 4
Number of complexes 9

1.05𝐸 − 06 5.35𝐸 − 06 3.46𝐸 − 06 1.51𝐸 − 06 9.29𝐸 + 03
Number of iterations in inner loop 9
Number of complexes 10

6.36𝐸 − 08 1.78𝐸 − 07 1.08𝐸 − 07 3.89𝐸 − 08 1.72𝐸 + 04
Number of iterations in inner loop 15
Global gradient algorithm Maximum accuracy Fail
Elhay algorithm Maximum accuracy 7.42𝐸 − 06

Table 4: Head and parameter 𝛿 in numerical example 3.

Node number 𝑍 (m) SCE 3 steps SCE 3 steps SCE 3 steps
𝐻 (m) 𝐻 (m) 𝐻 − 𝑍 𝐻 − 𝑍 𝛿 𝛿

1 140 140 140 0 0 0 0
2 80 129.304 130.07 49.304 50.07 1.49E − 07 3.10𝐸 − 04

3 90 132.288 132.76 42.288 42.76 1.26E − 07 0.0041
4 70 109.587 110.96 39.587 40.96 2.03E − 07 0.0022
5 80 80.000 88.54 0.000 8.54 0.058 1.51E − 04
6 90 90.000 91.45 0.000 1.45 0.0069 6.02E − 04
7 90 90.000 90.00 0.000 0.00 0.080 0.1421
8 100 88.922 90.43 −11.078 −9.57 5.84E − 08 0.0439
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Figure 7: Convergence history of numerical example 2 (form 1).

The absolute value of 𝛿 is calculated for each iteration in
Figure 7 and the value of head pressure in node 2, 𝐻(2), is
calculated for each iteration in Figure 8.

6.3. Numerical Example 3. The simplified water distribution
network shown in Figure 9 was used in order to demonstrate
the advantages of the proposed model in pressure-driven
demand condition. For the sake of simplicity, the same

H
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Figure 8: Convergence history of head pressure (𝑚) in node 2 for
numerical example 2 (form 2).

Hazen-Williams roughness coefficient 𝐶 = 130 was assumed
for all the 14 pipes of identical length of 1000m, while no local
losses have been added. The following diameters have been
used in the example: 500mm (P-2); 400mm (P-1); 300mm
(P-4, P-7); 250mm (P-10); 200mm (P-3, P-5, P-6, and P-13);
150mm (P-8, P-9, P-11, P-12, and P-14). The nodal demands
are listed in the following tables together with the ground
elevation 𝑍

𝑖
. Without loss of generality, in this example, the
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Figure 9: Schematic representation of the looped pipe network used
in numerical example 3.

minimum head requirement 𝐻
𝑖

∗ has been assumed to be
equal to the ground elevation 𝑍

𝑖
[8]. So the relationship

between the required nodal head and minimum head is

𝑞
𝑗
= {

0, 𝐻
𝑗
< 𝑍
𝑗
,

𝑞
𝑗
, 𝑍
𝑗
≤ 𝐻
𝑗
.

(16)

Todini [8] proposed a three-step approach for solving this
network and its solution is reported in the 4th column of
Table 4. In the proposed method pressure-driven model can
be applied in hydraulic analysis without any mathematical
formulation. In this situation, an if-then rule is added to
cocontent model and optimization process is conducted.The
number of decision variables in SCE algorithm is 7; the bound
variables were set between 50 and 140m. ten optimization
runs were performed using different random initial solutions
for all the cases and the results are illustrated in Table 5.
Results confirm that SCE is more accurate compared with
Todini algorithm in case 2 and case 3. In Table 4, the best
result is shown in bold, and it is considered that the method
of SCE has calculated the best value of 𝛿 at 5 nodes while
the Todini method has done it at 2 nodes. The convergence
process of SCE algorithm has been shown in two forms in
Figures 10 and 11.The absolute value of 𝛿 is calculated for each
iteration in Figure 10 and the value of head pressure in node
2,𝐻(2), is calculated for each iteration in Figure 11.

6.4. Numerical Example 4. The fourth considered network
is a real planned network designed for an industrial area
in Apulian Town (Southern Italy). The network layout is
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Figure 10: Convergence history of numerical example 3 (form 1).
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Figure 11: Convergence history of head pressure (𝑚) in node 2 for
numerical example 3 (form 2).

illustrated in Figure 12 and the corresponding data are
provided in Table 6. With respect to the leakages, they have
been assumed to be pressure-driven (see (6)) given that they
are implemented in the pressure driven network simulation
model as described above [14]. The parameter 𝛽 = 1.0632 ×
10
−7 and 𝛼 = 1.2, as reported in Giustolisi et al. [14] for this

network. Giustolisi et al. [14] proposed a hydraulic simulation
model, which fully integrates a classic hydraulic simulation
algorithm, such as that of Todini and Pilati [3] found in
EPANET 2, with a pressure-driven model that entails a
more realistic representation of the leakage. They applied
their model in this network. The results are demonstrated
in Table 7. In this table, the best result is shown in bold,
and it is considered that the method of SCE has calculated
the best value of 𝛿 at 14 nodes while the Gistulishi method
has done it at 9 nodes. In the proposed method, there is no
need to modify the mathematical formulation for hydraulic
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Table 5: Average of mass and energy balance for numerical example 3.

SCE 𝛿 Average number of function evaluations
Best Worst Mean Std

Number of complexes 5
3.32𝐸 − 02 7.97𝐸 − 02 5.95𝐸 − 02 1.62𝐸 − 02 4.30𝐸 + 04

Number of iterations in inner loop 5
Number of complexes 9

2.07𝐸 − 02 5.44𝐸 − 02 2.52𝐸 − 02 1.09𝐸 − 02 6.27𝐸 + 04
Number of iterations in inner loop 9
Number of complexes 10

2.07𝐸 − 02 2.07𝐸 − 02 2.07𝐸 − 02 2.17𝐸 − 08 6.04𝐸 + 04
Number of iterations in inner loop 15
Three-step approach [8] Maximum accuracy 2.76𝐸 − 02

Table 6: Hydraulic data relevant to numerical example 4.

Pipe number 𝐿 (m) 𝐷 (mm)
1 348.5 327
2 955.7 290
3 483 100
4 400.7 290
5 791.9 100
6 404.4 368
7 390.6 327
8 482.3 100
9 934.4 100
10 431.3 184
11 513.1 100
12 428.4 184
13 419 100
14 1023.1 100
15 455.1 164
16 182.6 290
17 221.3 290
18 583.9 164
19 452 229
20 794.7 100
21 717.7 100
22 655.6 258
23 165.5 100
24 252.1 100
25 331.5 100
26 500 204
27 579.9 164
28 842.8 100
29 792.6 100
30 846.3 184
31 164 258
32 427.9 100
33 379.2 100
34 158.2 368

analysis. An if-then rule is added to cocontent model and
the optimization process is performed easily. As you can see
in Table 8, SCE found the optimal solution more accurately
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Figure 12: Schematic representation of the looped pipe network
used in the numerical example 4.
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Figure 13: Convergence history of numerical example 4 (form 1).

than the Giustolisi algorithm. The convergence process of
SCE algorithm has been shown in two forms in Figures 4 and
5. The absolute value of 𝛿 is calculated for each iteration in
Figure 13 and the amount of head pressure in node 20,𝐻(20),
is calculated for each iteration in Figure 14.
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Table 7: Head and parameter 𝛿 in numerical example 4.

Node number 𝑞 (l/s) 𝐻 (m) (Giustolisi algorithm) 𝐻 (m) 𝛿 (Giustolisi algorithm) 𝛿 (SCE)
1 10.863 26.9 33.29 0.154743 0.004738
2 17.034 24.81 31.83 0.02131 0.006532
3 14.947 21.3 27.39 0.059002 0.005364
4 14.28 17.22 25.34 0.001257 0.005033
5 10.133 23.54 30.89 0.026184 0.004018
6 15.35 20.1 29.02 0.030898 0.005399
7 9.114 18.91 27.94 0.017147 0.003087
8 10.51 17.9 27.34 0.00227 0.003545
9 12.182 17.85 26.35 0.002936 0.003867
10 14.579 12.66 23.24 0.008277 0.004362
11 9.007 16.23 25.95 0.031554 0.002723
12 7.575 10.12 22.05 0.002732 0.002138
13 15.2 10.03 22.45 0.0126 0.004328
14 13.55 15.41 25.95 0.001318 0.004352
15 9.226 14 24.17 0.002199 0.002934
16 11.2 14.36 24.05 0.007089 0.003586
17 11.469 15.3 25.42 0.000103 0.00361
18 10.818 18.83 28.38 0.011889 0.003908
19 14.675 19.35 28.39 5.43E − 05 0.005097
20 13.318 10.01 23.79 0.013059 0.003974
21 14.631 11.48 22.35 0.003276 0.004141
22 12.012 14 25.46 0.003901 0.003677
23 10.326 10.45 20.11 0.002551 0.002979
24 — 36.45 36.45 — —

Table 8: Average of mass and energy balance for numerical example 4.

SCE 𝛿 Average number of function evaluations
Best Worst Mean Std

Number of complexes 5
4.00𝐸 − 03 4.50𝐸 − 02 4.10𝐸 − 03 2.75𝐸 − 04 6.59𝐸 + 04

Number of iterations in inner loop 5
Number of complexes 9

3.90𝐸 − 03 4.15𝐸 − 03 4.00𝐸 − 03 3.96𝐸 − 05 1.15𝐸 + 05
Number of iterations in inner loop 9
Number of complexes 10

3.70𝐸 − 03 4.10𝐸 − 03 3.90𝐸 − 03 2.53𝐸 − 05 1.19𝐸 + 05
Number of iterations in inner loop 15
Giustolisi algorithm Maximum accuracy 1.81𝐸 − 02

In general, 4 different pipe networks were considered
in this paper and different mathematical formulations were
used for the hydraulic analysis of these networks. However,
the overall results indicate that the proposed method has
the capability of handling various pipe networks problems
with no change in the model or mathematical formulation.
Application of SCE in cocontent model can result in finding
accurate solutions in pipes with zero flows and the pressure-
driven demand and leakage simulation can be solved through
applying if-then rules in cocontent model. As a result, it
can be concluded that the proposed method is a suitable
alternative optimizer, challenging othermethods especially in
terms of accuracy.

7. Conclusions

The objective of the present paper was to provide an inno-
vative approach in the analysis of the water distribution
networks based on the optimization model. The cocontent
model is minimized using shuffled complex evolution (SCE)
algorithm. The methodology is illustrated here using four
networks with different layouts. The results reveal that
the proposed method has the capability to handle various
pipe networks problems without changing in model or
mathematical formulation. The advantage of the proposed
method lies in the fact that there is no need to solve
linear systems of equations, pressure-driven demand and
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Figure 14: Convergence history of head-pressure (𝑚) in node 20 for
example, 4 (form 2).

leakage simulation are handled in a simple way, accu-
rate solutions can be found in pipes with zero flows,
and it does not need an initial solution vector which must be
chosen carefully in many other procedures if numerical con-
vergence is to be achieved. Furthermore, the proposedmodel
does not require any complicated mathematical expression
and operation. Finally, it can be concluded that the proposed
method is a viable alternative optimizer that challenges other
methods particularly in view of accuracy.
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