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We study the dynamic behavior of a one-dimensional wave equation with both exponential polynomial kernel memory and viscous
damping under the Dirichlet boundary condition. By introducing some new variables, the time-variant system is changed into
a time-invariant one. The detailed spectral analysis is presented. It is shown that all eigenvalues of the system approach a line
that is parallel to the imaginary axis. The residual and continuous spectral sets are shown to be empty. The main result is the
spectrum-determined growth condition that is one of the most difficult problems for infinite-dimensional systems. Consequently,
an exponential stability is concluded.

1. Introduction

It is known that viscoelastic materials have been widely used
in mechanics, chemical engineering, architecture, traffic,
information, and so on. More and more researchers have
paid close attention to the dynamic behavior and control
of vibration for elastic structures with viscoelasticity over
the past several decades. The most widely used models for
viscoelasticity are the Boltzmann model and Kelvin-Voigt
model. For instance, the results concerning the exponential
asymptotic stability of a linear hyperbolic integrodifferential
equation in Hilbert space are established in [1], which is
an abstract version of the equation of motion for dynamic
linear viscoelastic solids. In [2, 3], the exponential stabilities
of a vibrating beam with one segment made of viscoelastic
material of a Kelvin-Voigt type and a vibrating string with
Boltzmann damping are proved under certain hypotheses of
the smoothness and structural condition of the coefficients of
the system. In [4], the global existence and exponential decay
of solutions of a nonlinear unidimensional wave equation
with a viscoelastic boundary condition are analyzed under
some assumptions. Spectral analyses of a wave equation with
internal Kelvin-Voigt damping and Boltzmann damping are
considered in [5, 6], respectively. The Riesz basis property of

the generalized eigenfunctions of a one-dimensional hyper-
bolic system which is a heat equation incorporating the
effect of thermomechanical coupling and the effect of inertia
is studied in [7]. In [8], a detailed spectral analysis for a
heat equation system which is derived from a thermoelastic
equation with memory type is presented and the spectrum-
determined growth condition and strong exponential stabil-
ity are then concluded. Similar studies from different aspects
for elastic structures with viscoelasticity can also be found in
[9–14] and the references therein.

In this paper, we are interested in the following one-
dimensional wave equation with viscoelastic damping under
the Dirichlet boundary condition:

𝑤
𝑡𝑡
(𝑥, 𝑡) = 𝑎

2
𝑤
𝑥𝑥
(𝑥, 𝑡) + ∫

𝑡

0

𝜅 (𝑡 − 𝑠) 𝑤
𝑥
(𝑥, 𝑠) 𝑑𝑠

− 𝑐𝑤
𝑡
(𝑥, 𝑡) , 0 < 𝑥 < 1, 𝑡 > 0,

𝑤 (0, 𝑡) = 𝑤 (1, 𝑡) = 0, 𝑡 > 0,

𝑤 (𝑥, 0) = 𝑤
0
(𝑥) , 𝑤

𝑡
(𝑥, 0) = 𝑤

1
(𝑥) , 0 < 𝑥 < 1,

(1)
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where 𝑎 and 𝑐 are positive constants and the kernel is taken
as the finite sum of exponential polynomials:

𝜅 (𝑡) =

𝑁

∑

𝑖=1

𝑎
𝑖
𝑒
−𝑏𝑖𝑡
, 0 < 𝑎

𝑖
, 𝑏
𝑖
∈ R, 1 ≤ 𝑁 ∈ N, (2)

and we assume that, for simplicity,

0 < 𝑏
1
< 𝑏
2
< ⋅ ⋅ ⋅ < 𝑏

𝑁
. (3)

Our interest is to investigate the dynamic behavior of
(1)-(2), particularly the large time behavior. The asymptotic
distribution of eigenvalues of the system is discussed in detail.
It is shown that the system operator is of compact resolvent
and hence its spectrum consists of isolated eigenvalues of
finite algebraic multiplicity only. All eigenvalues approach a
line that is parallel to the imaginary axis. The main result is
the spectrum-determined growth condition which is one of
the most difficult problems for infinite-dimensional systems.
Consequently, a strongly exponential stability is concluded.

The paper is organized as follows. In Section 2, we intro-
duce some new variables so that the system (1) with kernel
(2) is reduced to be a time-invariant one. Section 3 is devoted
to the detailed spectral analysis of the newly formulated
system. The main result is the spectrum-determined growth
condition that is presented in Section 4; finally, a strongly
exponential stability is obtained.

2. System Operator Setup

Introduce

𝜑
𝑖
(𝑥, 𝑡) = 𝑎

𝑖
∫

𝑡

0

𝑒
−𝑏𝑖(𝑡−𝑠)

𝑤 (𝑥, 𝑠) 𝑑𝑠, 𝑖 = 1, 2, . . . , 𝑁. (4)

Then 𝜑
𝑖
satisfies

(𝜑
𝑖
)
𝑡
(𝑥, 𝑡) = 𝑎

𝑖
𝑤 (𝑥, 𝑡) − 𝑏

𝑖
𝜑
𝑖
(𝑥, 𝑡) ,

(𝜑
𝑖
)
𝑥
(𝑥, 𝑡) = 𝑎

𝑖
∫

𝑡

0

𝑒
−𝑏𝑖(𝑡−𝑠)

𝑤
𝑥
(𝑥, 𝑠) 𝑑𝑠,

𝜑
𝑖
(𝑥, 0) = 0.

(5)

Thus, we can rewrite the systems (1) and (2) as

𝑤
𝑡𝑡
(𝑥, 𝑡) − 𝑎

2
𝑤
𝑥𝑥
(𝑥, 𝑡) −

𝜕

𝜕𝑥

[

[

𝑁

∑

𝑗=1

𝜑
𝑖
(𝑥, 𝑡)

]

]

+ 𝑐𝑤
𝑡
(𝑥, 𝑡) = 0, 𝑥 ∈ (0, 1) , 𝑡 > 0,

(𝜑
𝑖
)
𝑡
(𝑥, 𝑡) = 𝑎

𝑖
𝑤 (𝑥, 𝑡) − 𝑏

𝑖
𝜑
𝑖
(𝑥, 𝑡) , 𝑖 = 1, 2, . . . , 𝑁,

𝑤 (0, 𝑡) = 𝑤 (1, 𝑡) = 0, 𝑡 > 0,

𝑤 (𝑥, 0)= 𝑤
0
(𝑥) , 𝑤

𝑡
(𝑥, 0) =𝑤

1
(𝑥) , 𝜑

𝑖
(𝑥, 0)= 0,

𝑥 ∈ (0, 1) , 𝑖 = 1, 2, . . . , 𝑁.

(6)

Obviously, the system (6) is a time-invariant system. The
energy function of (6) is given by

𝐸 (𝑡) =

1

2

∫

1

0

[𝑎
2󵄨
󵄨
󵄨
󵄨
𝑤
𝑥
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑤
𝑡
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨

2

+

𝑁

∑

𝑖=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
󸀠

𝑖
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝜑
𝑖
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨

2

)] 𝑑𝑥.

(7)

Motivated by the energy function, it is natural to consider the
system (6) in the following Hilbert spaceH :

H = 𝐻
1

0
(0, 1) × 𝐿

2
(0, 1) × (𝐻

1
(0, 1))

𝑁

, (8)

equipped with the inner product, ∀(𝑤, V, 𝜑
1
, . . . , 𝜑

𝑁
),

(𝑓, 𝑔, ℎ
1
, . . . , ℎ

𝑁
) ∈ H,

⟨(𝑤, V, 𝜑
1
, . . . , 𝜑

𝑁
) , (𝑓, 𝑔, ℎ

1
, . . . , ℎ

𝑁
)⟩
1

= ∫

1

0

𝑎
2
𝑤
󸀠
(𝑥) 𝑓
󸀠
(𝑥)𝑑𝑥 + ∫

1

0

V (𝑥) 𝑔 (𝑥)𝑑𝑥

+

𝑁

∑

𝑖=1

∫

1

0

[𝜑
󸀠

𝑖
(𝑥) ℎ
󸀠

𝑖
(𝑥) + 𝜑

𝑖
(𝑥) ℎ
𝑖
(𝑥)] 𝑑𝑥.

(9)

Now, define the system operatorA : 𝐷(A)(⊂ H) → H by

A(

𝑤

V
𝜑
1

...
𝜑
𝑁

)

⊤

=

(

(

(

(

V

𝑎
2
𝑤
󸀠󸀠
+

𝑑

𝑑𝑥

(

𝑁

∑

𝑖=1

𝜑
𝑖
) − 𝑐V

𝑎
1
𝑤 − 𝑏
1
𝜑
1

...
𝑎
𝑁
𝑤 − 𝑏
𝑁
𝜑
𝑁

)

)

)

)

⊤

,

𝐷 (A)

= {[𝑤, V, 𝜑
1
, . . . , 𝜑

𝑁
] ∈ H

1
| V ∈ 𝐻1

0
(0, 1) , 𝑤

󸀠󸀠
∈ 𝐿
2
(0, 1)} .

(10)

Then (6) can be formulated as an abstract evolution equation
inH as

𝑑

𝑑𝑡

𝑌 (𝑡) = A𝑌 (𝑡) , 𝑌 (0) = 𝑌
0
, (11)

where 𝑌(𝑡) = (𝑤(⋅, 𝑡), 𝑤
𝑡
(⋅, 𝑡), 𝜑

1
(⋅, 𝑡), . . . , 𝜑

𝑁
(⋅, 𝑡)) is the state

variable and 𝑌
0
= (𝑤
0
(⋅), 𝑤
1
(⋅), 0, . . . , 0) is the initial value.

Lemma 1. LetA be defined by (10). ThenA−1exists and hence
0 ∈ 𝜌(A), the resolvent set ofA. Moreover,A generates a 𝐶

0
-

semigroup onH.
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Proof. Let 𝑌̃ = (𝑤, Ṽ, 𝜑
1
, . . . , 𝜑

𝑁
) ∈ H. Solve A𝑌 = 𝑌̃ for

𝑌 = (𝑤, V, 𝜑
1
, . . . , 𝜑

𝑁
) ∈ 𝐷(A); that is,

V (𝑥) = 𝑤 (𝑥) ,

𝑎
2
𝑤
󸀠󸀠
(𝑥) +

𝑑

𝑑𝑥

(

𝑁

∑

𝑖=1

𝜑
𝑖
(𝑥)) − 𝑐V (𝑥) = Ṽ (𝑥) ,

𝑎
𝑖
𝑤 (𝑥) − 𝑏

𝑖
𝜑
𝑖
(𝑥) = 𝜑

𝑖
(𝑥) , 𝑖 = 1, 2, . . . , 𝑁,

𝑤 (0) = 𝑤 (1) = 0,

(12)

to give

V (𝑥) = 𝑤 (𝑥) ,

𝜑
𝑖
(𝑥) =

𝑎
𝑖

𝑏
𝑖

𝑤 (𝑥) −

1

𝑏
𝑖

𝜑
𝑖
(𝑥) , 𝑖 = 1, 2, . . . , 𝑁,

(13)

𝑤
󸀠󸀠
(𝑥) +

1

𝑎
2

𝑁

∑

𝑖=1

𝑎
𝑖

𝑏
𝑖

𝑤
󸀠
(𝑥) =

1

𝑎
2
(𝑐𝑤 (𝑥) + Ṽ (𝑥) +

𝑁

∑

𝑖=1

𝜑
󸀠

𝑖
(𝑥)

𝑏
𝑖

) .

(14)

Set 𝐺(𝑥) = 𝑐𝑤(𝑥) + Ṽ(𝑥) + ∑𝑁
𝑖=1
𝜑
󸀠

𝑖
(𝑥)/𝑏
𝑖
, together with the

boundary condition 𝑤(0) = 𝑤(1) = 0 to obtain

𝑤 (𝑥) =

1

𝐴

[𝐶(1 − 𝑒
−(𝐴/𝑎

2
)𝑥
)

+∫

𝑥

0

(1 − 𝑒
−(𝐴/𝑎

2
)(𝑥−𝜏)

)𝐺 (𝜏) 𝑑𝜏] ,

(15)

where

𝐶 = (𝑒
−𝐴/𝑎
2

− 1)

−1

∫

1

0

(1 − 𝑒
−(𝐴/𝑎

2
)(1−𝜏)

)𝐺 (𝜏) 𝑑𝜏,

𝐴 =

𝑁

∑

𝑖=1

𝑎
𝑖

𝑏
𝑖

.

(16)

Collecting (13), (15), and (16), we get the unique solution 𝑌 to
(12). Hence, 𝑌 ∈ 𝐷(A) andA−1 exists, or 0 ∈ 𝜌(A).

Now, we show thatA can generate a𝐶
0
-semigroup onH.

Actually, for any = (𝑤, V, 𝜑
1
, . . . , 𝜑

𝑁
) ∈ 𝐷(A), we have

⟨A𝑌, 𝑌⟩
1

=⟨

(

(

(

(

V

𝑎
2
𝑤
󸀠󸀠
+

𝑑

𝑑𝑥

(

𝑁

∑

𝑖=1

𝜑
𝑖
) − 𝑐V

𝑎
1
𝑤 − 𝑏
1
𝜑
1

...
𝑎
𝑁
𝑤 − 𝑏
𝑁
𝜑
𝑁

)

)

)

)

⊤

,(

𝑤

V
𝜑
1

...
𝜑
𝑁

)

⊤

⟩

= 𝑎
2
⟨V󸀠, 𝑤󸀠⟩

𝐿
2
+⟨𝑎

2
𝑤
󸀠󸀠
+ (

𝑁

∑

𝑖=1

𝜑
𝑖
)

󸀠

− 𝑐V, V⟩
𝐿
2

+

𝑁

∑

𝑖=1

⟨𝑎
𝑖
𝑤
󸀠
− 𝑏
𝑖
𝜑
󸀠

𝑖
, 𝜑
󸀠

𝑖
⟩
𝐿
2
+

𝑁

∑

𝑖=1

⟨𝑎
𝑖
𝑤 − 𝑏
𝑖
𝜑
𝑖
, 𝜑
𝑖
⟩
𝐿
2

= −𝑎
2
⟨V, 𝑤󸀠󸀠⟩

𝐿
2
+ 𝑎
2
⟨𝑤
󸀠󸀠
, V⟩
𝐿
2

+⟨(

𝑁

∑

𝑖=1

𝜑
𝑖
)

󸀠

, V⟩
𝐿
2

− 𝑐‖V‖2
𝐿
2

+

𝑁

∑

𝑖=1

𝑎
𝑖
⟨𝑤
󸀠
, 𝜑
󸀠

𝑖
⟩
𝐿
2
+

𝑁

∑

𝑖=1

𝑎
𝑖
⟨𝑤, 𝜑
𝑖
⟩
𝐿
2

−

𝑁

∑

𝑖=1

𝑏
𝑖

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠

𝑖

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
−

𝑁

∑

𝑖=1

𝑏
𝑖

󵄩
󵄩
󵄩
󵄩
𝜑
𝑖

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 ,

(17)
Re ⟨A𝑌, 𝑌⟩

= Re(⟨(

𝑁

∑

𝑖=1

𝜑
𝑖
)

󸀠

, V⟩
𝐿
2

+

𝑁

∑

𝑖=1

𝑎
𝑖
⟨𝑤
󸀠
, 𝜑
󸀠

𝑖
⟩
𝐿
2
+

𝑁

∑

𝑖=1

𝑎
𝑖
⟨𝑤, 𝜑
𝑖
⟩
𝐿
2)

− 𝑐‖V‖2
𝐿
2 −

𝑁

∑

𝑖=1

𝑏
𝑖

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠

𝑖

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
−

𝑁

∑

𝑖=1

𝑏
𝑖

󵄩
󵄩
󵄩
󵄩
𝜑
𝑖

󵄩
󵄩
󵄩
󵄩

2

𝐿
2

≤ −𝑐‖V‖2
𝐿
2 −

𝑁

∑

𝑖=1

𝑏
𝑖

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠

𝑖

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2

−

𝑁

∑

𝑖=1

𝑏
𝑖

󵄩
󵄩
󵄩
󵄩
𝜑
𝑖

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 +

𝑁

2

‖V‖2
𝐿
2 +

1

2

𝑁

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠

𝑖

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2

+

𝑁

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑎𝑤
󸀠󵄩󵄩
󵄩
󵄩
󵄩

2

𝐿
2
+

1

2

𝑁

∑

𝑖=1

𝑎
2

𝑖

𝑎
2

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠

𝑖

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
+

𝑁

2

‖𝑎𝑤‖
2

𝐿
2

+

1

2

𝑁

∑

𝑖=1

𝑎
2

𝑖

𝑎
2

󵄩
󵄩
󵄩
󵄩
𝜑
𝑖

󵄩
󵄩
󵄩
󵄩

2

𝐿
2

≤ 𝑁

󵄩
󵄩
󵄩
󵄩
󵄩
𝑎𝑤
󸀠󵄩󵄩
󵄩
󵄩
󵄩

2

𝐿
2
+ (

𝑁

2

− 𝑐) ‖V‖2
𝐿
2

+

𝑁

∑

𝑖=1

(

1

2

+

1

2

𝑎
2

𝑖

𝑎
2
− 𝑏
𝑖
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠

𝑖

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2

+

𝑁

∑

𝑖=1

(

1

2

𝑎
2

𝑖

𝑎
2
− 𝑏
𝑖
)
󵄩
󵄩
󵄩
󵄩
𝜑
𝑖

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 ,

(18)

where we have used the fact ‖𝑎𝑤‖2
𝐿
2 ≤ ‖𝑎𝑤

󸀠
‖

2

𝐿
2 . Let

𝑀 = max{𝑁, 𝑁
2

− 𝑐,

1

2

+

1

2

𝑎
2

1

𝑎
2
− 𝑏
1
, . . . ,

1

2

+

1

2

𝑎
2

𝑁

𝑎
2
− 𝑏
𝑁
} .

(19)

Then we have
Re ⟨A𝑌, 𝑌⟩ ≤ 𝑀⟨𝑌, 𝑌⟩ (20)

And, hence, Re⟨(A − 𝑀𝐼)𝑌, 𝑌⟩ ≤ 0. Therefore, by the
Lumer-Phillips theorem [15, p.14, Theorem 4.3], (A − 𝑀𝐼)

generates a 𝐶
0
-semigroup of contractions on H; thus A

is an infinitesimal generator of a 𝐶
0
-semigroup 𝑒A𝑡 by the

perturbation theory of semigroup [15, p.76,Theorem 1.1].
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3. Spectral Analysis of System Operator

In this section, we investigate the distribution of spectrum of
A in the complex plane. Firstly, we consider the eigenvalue
problem.

Suppose that A𝑌 = 𝜆𝑌 for 𝜆 ∈ C and 0 ̸= 𝑌 =

(𝑤, V, 𝜑
1
, . . . , 𝜑

𝑁
) ∈ 𝐷(A); that is,

V (𝑥) = 𝜆𝑤 (𝑥) ,

𝑎
2
𝑤
󸀠󸀠
(𝑥) +

𝑑

𝑑𝑥

(

𝑁

∑

𝑖=1

𝜑
𝑖
(𝑥)) − 𝑐V (𝑥) = 𝜆V (𝑥) ,

𝑎
𝑖
𝑤 (𝑥) − 𝑏

𝑖
𝜑
𝑖
(𝑥) = 𝜆𝜑

𝑖
(𝑥) , 𝑖 = 1, 2, . . . , 𝑁,

𝑤 (0) = 𝑤 (1) = 0.

(21)

Proposition 2. LetA be defined as in (10). Then 𝜆 = −𝑏
𝑖
, 𝑖 =

1, 2, . . . , 𝑁, are eigenvalues of A, which are corresponding to
eigenfunctions 𝑒

𝑖+2
, 𝑖 = 1, 2, . . . , 𝑁, respectively, where 𝑒

𝑖
is

a constant function whose element is the 𝑖th element of the
canonical basis of R𝑁+2. Moreover, each of these eigenvalues
is algebraically simple.

Proof. We only give the proof for 𝜆 = −𝑏
1
because other

cases can be treated similarly. Let 𝜆 = −𝑏
1
and the eigenvalue

problem becomes

V (𝑥) = −𝑏
1
𝑤 (𝑥) ,

𝑎
2
𝑤
󸀠󸀠
(𝑥) +

𝑑

𝑑𝑥

(

𝑁

∑

𝑖=1

𝜑
𝑖
(𝑥)) − 𝑐V (𝑥) = −𝑏

1
V (𝑥) ,

𝑎
1
𝑤 (𝑥) = 0,

𝑎
𝑖
𝑤 (𝑥) − 𝑏

𝑖
𝜑
𝑖
(𝑥) = −𝑏

1
𝜑
𝑖
(𝑥) , 𝑖 = 2, . . . , 𝑁.

(22)

From the third equation of (22), it has 𝑤 ≡ 0. This in turn,
together with the fourth equation of (22), yields

(𝑏
1
− 𝑏
𝑖
) 𝜑
𝑖
(𝑥) = 0, 𝑖 = 2, . . . , 𝑁, (23)

and, by (3), we arrive at

𝜑
𝑖
(𝑥) = 0, 𝑖 = 2, . . . , 𝑁. (24)

By the first and the second equations of (22), these yield

V (𝑥) = 0, 𝜑
󸀠

1
(𝑥) = 0, 0 < 𝑥 < 1. (25)

Therefore, 𝑒
3
is an eigenfunction ofA corresponding to −𝑏

1
.

Further computation of (A + 𝑏
1
𝐼)𝐹
1
= −𝑒

3
, where 𝐹

1
=

(𝑔, ℎ, 𝜓
1
, . . . , 𝜓

𝑁
) ∈ 𝐷(A), yields

ℎ (𝑥) + 𝑏
1
𝑔 (𝑥) = 0, 0 < 𝑥 < 1,

𝑎
2
𝑔
󸀠󸀠
(𝑥) +

𝑑

𝑑𝑥

(

𝑁

∑

𝑖=1

𝜓
𝑖
(𝑥)) + (𝑏

1
− 𝑐) ℎ (𝑥) = 0, 0 < 𝑥 < 1,

𝑎
1
𝑔 (𝑥) = −1, 0 < 𝑥 < 1,

(𝑏
1
− 𝑏
𝑖
) 𝜓
𝑖
(𝑥) + 𝑎

𝑖
𝑔 (𝑥) = 0, 𝑖 = 2, . . . , 𝑁, 0 < 𝑥 < 1,

𝑔 (0) = 𝑔 (1) = 0.

(26)

We claim that (26) has no solution since 𝑔must satisfy

𝑔 (𝑥) = −

1

𝑎
1

, 𝑔 (0) = 𝑔 (1) = 0, (27)

which is impossible. Hence 𝜆 = −𝑏
1
is algebraically simple.

The proof is complete.

When 𝜆 ̸= − 𝑏
𝑖
, 𝑖 = 1, 2, . . . , 𝑁, it follows from (21) that

V (𝑥) = 𝜆𝑤 (𝑥) ,

𝜑
𝑖
(𝑥) =

𝑎
𝑖

𝜆 + 𝑏
𝑖

𝑤 (𝑥) , 𝑖 = 1, 2, . . . , 𝑁.

(28)

And 𝑤 satisfies

𝑎
2
𝑤
󸀠󸀠
(𝑥) + (

𝑁

∑

𝑖=1

𝑎
𝑖

𝜆 + 𝑏
𝑖

)𝑤
󸀠
(𝑥)

− (𝜆
2
+ 𝑐𝜆)𝑤 (𝑥) = 0, 0 < 𝑥 < 1,

𝑤 (0) = 𝑤 (1) = 0.

(29)

Lemma 3. Let A be defined by (10); then Re 𝜆 < 0 for any
𝜆 ∈ 𝜎
𝑝
(A) and 𝜆 ̸= − 𝑏

𝑖
, 𝑖 = 1, 2, . . . , 𝑁.

Proof. Firstly, we show that Re𝜆 ≤ 0. When 𝜆 ∈ 𝜎
𝑝
(A), 𝜆 ̸= −

𝑏
𝑖
, 𝑖 = 1, 2, . . . , 𝑁, (29) gives

𝑎
2
𝑤
󸀠󸀠
(𝑥) +

𝑁

∑

𝑖=1

𝑎
𝑖

𝜆 + 𝑏
𝑖

𝑤
󸀠
(𝑥) − (𝜆

2
+ 𝑐𝜆)𝑤 (𝑥) = 0. (30)

Multiply by 𝑤, the conjugate of 𝑤, and integrate over [0, 1]
with respect to 𝑥 for the equation to give

𝑎
2
∫

1

0

𝑤
󸀠󸀠
(𝑥)𝑤 (𝑥) 𝑑𝑥 +

𝑁

∑

𝑖=1

𝑎
𝑖

𝜆 + 𝑏
𝑖

∫

1

0

𝑤
󸀠
(𝑥) 𝑤 (𝑥) 𝑑𝑥

− (𝜆
2
+ 𝑐𝜆)∫

1

0

|𝑤 (𝑥)|
2
𝑑𝑥 = 0.

(31)

That is,

𝑎
2
∫

1

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑤
󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 + (𝜆
2
+ 𝑐𝜆)∫

1

0

|𝑤 (𝑥)|
2
𝑑𝑥 = 0. (32)

Replace 𝜆 = 𝛼 + 𝑖𝛽, 𝛼, 𝛽 ∈ R in the above formula to get

𝑎
2
∫

1

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑤
󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 + (𝛼
2
− 𝛽
2
+ 𝑐𝛼)∫

1

0

|𝑤 (𝑥)|
2
𝑑𝑥

+ 𝑖 (2𝛼𝛽 + 𝑐𝛽)∫

1

0

|𝑤 (𝑥)|
2
𝑑𝑥 = 0.

(33)

Let the real and imaginary parts of the equation equal zero to
obtain

𝑎
2󵄩󵄩
󵄩
󵄩
󵄩
𝑤
󸀠󵄩󵄩
󵄩
󵄩
󵄩

2

𝐿
2
+ (𝛼
2
− 𝛽
2
+ 𝑐𝛼) ‖𝑤‖

2

𝐿
2 = 0,

(2𝛼𝛽 + 𝑐𝛽) ‖𝑤‖
2

𝐿
2 = 0.

(34)
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If 𝛽 = 0, from the first equation of (34), then it has

𝛼 = −

𝑎
2󵄩󵄩
󵄩
󵄩
󵄩
𝑤
󸀠󵄩󵄩
󵄩
󵄩
󵄩

2

𝐿
2
+ 𝛼
2
‖𝑤‖
2

𝐿
2

𝑐‖𝑤‖
2

𝐿
2

≤ 0. (35)

If 𝛽 ̸= 0, from the second equation of (34), then we have

(2𝛼 + 𝑐) ‖𝑤‖
2

𝐿
2 = 0, (36)

so

𝛼 = −

𝑐

2

< 0. (37)

Secondly, we prove that Re 𝜆 ̸= 0. We use contradiction
argument. Suppose that Re 𝜆 = 0, 𝜆 ∈ 𝜎

𝑝
(A); letting 𝜆 =

𝑖𝜏, 𝜏 ∈ R(𝜏 ̸= 0), from (34), we have

𝑎
2󵄩󵄩
󵄩
󵄩
󵄩
𝑤
󸀠󵄩󵄩
󵄩
󵄩
󵄩

2

𝐿
2
− 𝜏
2
‖𝑤‖
2

𝐿
2 = 0,

𝑐𝜏‖𝑤‖
2

𝐿
2 = 0.

(38)

From the second equation, we obtain 𝜏 = 0 or ‖𝑤‖ = 0. If
‖𝑤‖ = 0 holds, it has 𝑤(𝑥) ≡ 0; then, from (28), we have
V(𝑥) = 𝜑

𝑖
(𝑥) = 0, 𝑖 = 1, . . . , 𝑁. Hence, it has only 𝜏 = 0. This

is a contradiction. The proof is complete.

Now, we give the asymptotic fundamental solutions of
(29) as |𝜆| → ∞.

Lemma 4. Suppose that 0 ̸= 𝜆 ∈ 𝜎
𝑝
(A) and 𝜆 ̸= − 𝑏

𝑖
, 𝑖 =

1, 2, . . . , 𝑁, 𝑥 ∈ [0, 1], where 𝜎
𝑝
(A) stands for the point

spectrum set of A. Then 𝑒
(𝜆/𝑎)𝑥 and 𝑒

−(𝜆/𝑎)𝑥 are linearly
independent fundamental solutions of𝑤󸀠󸀠(𝑥) − (𝜆2/𝑎2)𝑤(𝑥) =
0, and

𝑤
󸀠󸀠
(𝑥) + (

1

𝑎
2

𝑁

∑

𝑖=1

𝑎
𝑖

𝜆 + 𝑏
𝑖

)𝑤
󸀠
(𝑥) −

𝜆
2
+ 𝑐𝜆

𝑎
2

𝑤 (𝑥) = 0, (39)

as |𝜆| → ∞ has the following asymptotic fundamental
solutions:

𝑤
1
(𝑥) = 𝑒

(𝜆/𝑎)𝑥
[𝑤
10
(𝑥) + 𝑤

11
(𝑥) 𝜆
−1
] + O (𝜆

−2
) ,

𝑤
2
(𝑥) = 𝑒

−(𝜆/𝑎)𝑥
[𝑤
20
(𝑥) + 𝑤

21
(𝑥) 𝜆
−1
] + O (𝜆

−2
) ,

(40)

where

𝑤
10
(𝑥) = 𝑒

(𝑐/2𝑎)𝑥
, 𝑤

11
(𝑥) = −(

𝑐
2

8𝑎

+

𝑘

2𝑎
2
)𝑥𝑒
(𝑐/2𝑎)𝑥

,

𝑤
20
(𝑥) = 𝑒

−(𝑐/2𝑎)𝑥
, 𝑤

21
(𝑥) = (

𝑐
2

8𝑎

−

𝑘

2𝑎
2
)𝑥𝑒
−(𝑐/2𝑎)𝑥

,

𝑘 =

𝑁

∑

𝑖=1

𝑎
𝑖
> 0.

(41)

Proof. Thefirst claim is trivial.We only need to show that (40)
is the asymptotic fundamental solution of (39). This can be
done along the same way of Birkhoff [16] and Naimark [17].
Here we present briefly a simple calculation to (40). Let

𝑤
1
(𝑥, 𝜆) := 𝑒

(𝜆/𝑎)𝑥
[𝑤
10
(𝑥) +

𝑤
11
(𝑥)

𝜆

] ,

𝑤
2
(𝑥, 𝜆) := 𝑒

−(𝜆/𝑎)𝑥
[𝑤
20
(𝑥) +

𝑤
21
(𝑥)

𝜆

] ,

(42)

where 𝑤
𝑗0
(𝑥) and 𝑤

𝑗1
(𝑥), 𝑗 = 1, 2, are some functions to be

determined, and

D (𝑤) = 𝑤
󸀠󸀠
(𝑥) +

1

𝑎
2
(

𝑁

∑

𝑖=1

𝑎
𝑖

𝜆 + 𝑏
𝑖

)𝑤
󸀠
(𝑥) −

𝜆
2
+ 𝑐𝜆

𝑎
2

𝑤 (𝑥) .

(43)

Substitute 𝑤
1
(𝑥, 𝜆) and 𝑤

2
(𝑥, 𝜆) into D(𝑤), respectively, to

yield

𝑒
−(𝜆/𝑎)𝑥

D (𝑤
1
(𝑥, 𝜆))

=

2𝜆

𝑎

[𝑤
󸀠

10
(𝑥) + 𝑤

󸀠

11
(𝑥) 𝜆
−1
] + [𝑤

󸀠󸀠

10
(𝑥) + 𝑤

󸀠󸀠

11
(𝑥) 𝜆
−1
]

−

𝑐𝜆

𝑎
2
[𝑤
10
(𝑥) + 𝑤

11
(𝑥) 𝜆
−1
]

+

𝜆

𝑎
3
(

𝑁

∑

𝑖=1

𝑎
𝑖

𝜆 + 𝑏
𝑖

)[𝑤
10
(𝑥) + 𝑤

11
(𝑥) 𝜆
−1
]

+

1

𝑎
2
(

𝑁

∑

𝑖=1

𝑎
𝑖

𝜆 + 𝑏
𝑖

)[𝑤
󸀠

10
(𝑥) + 𝑤

󸀠

11
(𝑥) 𝜆
−1
]

= 𝜆 [

2

𝑎

𝑤
󸀠

10
(𝑥) −

𝑐

𝑎

𝑤
10
(𝑥)]

+ [𝑤
󸀠󸀠

10
(𝑥) +

∑
𝑁

𝑖=1
𝑎
𝑖

𝑎
3

𝑤
10
(𝑥) +

2

𝑎

𝑤
󸀠

11
(𝑥) −

𝑐

𝑎
2
𝑤
11
(𝑥)]

+ 𝜆
−1
[𝑤
󸀠󸀠

11
(𝑥) −

1

𝑎
3
(

𝑁

∑

𝑖=1

𝑎
𝑖
𝑏
𝑖

1 + 𝜆
−1
𝑏
𝑖

)𝑤
10
(𝑥)

+

1

𝑎
3
(

𝑁

∑

𝑖=1

𝑎
𝑖

1 + 𝜆
−1
𝑏
𝑖

)𝑤
11
(𝑥)]

+ 𝜆
−1
[

1

𝑎
2
(

𝑁

∑

𝑖=1

𝑎
𝑖

1 + 𝜆
−1
𝑏
𝑖

)𝑤
󸀠

10
(𝑥)

+

1

𝑎
2
(

𝑁

∑

𝑖=1

𝑎
𝑖

𝜆 + 𝑏
𝑖

)𝑤
󸀠

11
(𝑥)]

= 𝜆 [

2

𝑎

𝑤
󸀠

10
(𝑥) −

𝑐

𝑎

𝑤
10
(𝑥)]

+ [𝑤
󸀠󸀠

10
(𝑥) +

∑
𝑁

𝑖=1
𝑎
𝑖

𝑎
3

𝑤
10
(𝑥) +

2

𝑎

𝑤
󸀠

11
(𝑥) −

𝑐

𝑎
2
𝑤
11
(𝑥)]

+ 𝜆
−1
𝐺
1
(𝑥, 𝜆) ,
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𝑒
(𝜆/𝑎)𝑥

D (𝑤
2
(𝑥, 𝜆))

= −

2𝜆

𝑎

[𝑤
󸀠

20
(𝑥) + 𝑤

󸀠

21
(𝑥) 𝜆
−1
]

+ [𝑤
󸀠󸀠

20
(𝑥) + 𝑤

󸀠󸀠

21
(𝑥) 𝜆
−1
] −

𝑐𝜆

𝑎
2
[𝑤
20
(𝑥) + 𝑤

21
(𝑥) 𝜆
−1
]

−

𝜆

𝑎
3
(

𝑁

∑

𝑖=1

𝑎
𝑖

𝜆 + 𝑏
𝑖

)[𝑤
20
(𝑥) + 𝑤

21
(𝑥) 𝜆
−1
]

+

1

𝑎
2
(

𝑁

∑

𝑖=1

𝑎
𝑖

𝜆 + 𝑏
𝑖

)[𝑤
󸀠

20
(𝑥) + 𝑤

󸀠

21
(𝑥) 𝜆
−1
]

= 𝜆 [−

2

𝑎

𝑤
󸀠

20
(𝑥) −

𝑐

𝑎
2
𝑤
20
(𝑥)]

+ [𝑤
󸀠󸀠

20
(𝑥) −

1

𝑎
3
(

𝑁

∑

𝑖=1

𝑎
𝑖
)𝑤
20
(𝑥)

−

2

𝑎

𝑤
󸀠

21
(𝑥) −

𝑐

𝑎
2
𝑤
21
(𝑥) ]

+ 𝜆
−1
[𝑤
󸀠󸀠

21
(𝑥) +

1

𝑎
3
(

𝑁

∑

𝑖=1

𝑎
𝑖
𝑏
𝑖

1 + 𝜆
−1
𝑏
𝑖

)𝑤
20
(𝑥)

−

1

𝑎
3
(

𝑁

∑

𝑖=1

𝑎
𝑖

1 + 𝜆
−1
𝑏
𝑖

)𝑤
21
(𝑥)]

+ 𝜆
−1
[

1

𝑎
2
(

𝑁

∑

𝑖=1

𝑎
𝑖

1 + 𝜆
−1
𝑏
𝑖

)𝑤
󸀠

20
(𝑥)

+

1

𝑎
2
(

𝑁

∑

𝑖=1

𝑎
𝑖

𝜆 + 𝑏
𝑖

)𝑤
󸀠

21
(𝑥)]

= 𝜆 [−

2

𝑎

𝑤
󸀠

20
(𝑥) −

𝑐

𝑎
2
𝑤
20
(𝑥)]

+ [𝑤
󸀠󸀠

20
(𝑥) −

1

𝑎
3
(

𝑁

∑

𝑖=1

𝑎
𝑖
)𝑤
20
(𝑥)

−

2

𝑎

𝑤
󸀠

21
(𝑥) −

𝑐

𝑎
2
𝑤
21
(𝑥) ]

+ 𝜆
−1
𝐺
2
(𝑥, 𝜆) ,

(44)

where

𝐺
𝑗
(𝑥, 𝜆) = (−1)

𝑗

𝑁

∑

𝑖=1

𝑎
𝑖
𝑏
𝑖

𝑎
3
(1 + 𝜆

−1
𝑏
𝑖
)

𝑤
𝑗0
(𝑥)

+ (−1)
𝑗−1

𝑁

∑

𝑖=1

𝑎
𝑖

𝑎
3
(1 + 𝜆

−1
𝑏
𝑖
)

𝑤
𝑗1
(𝑥)

+

𝑁

∑

𝑖=1

𝑎
𝑖

𝑎
2
(1 + 𝜆

−1
𝑏
𝑖
)

𝑤
󸀠

𝑗0
(𝑥)

+

𝑁

∑

𝑖=1

𝑎
𝑖

𝑎
2
(𝜆 + 𝑏

𝑖
)

𝑤
󸀠

𝑗1
(𝑥) + 𝑤

󸀠󸀠

𝑗1
(𝑥) , 𝑗 = 1, 2.

(45)

Moreover, there exists some positive constant 𝛾 such that
󵄨
󵄨
󵄨
󵄨
󵄨
𝐺
𝑗
(𝑥, 𝜆)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝛾, ∀𝑥 ∈ [0, 1] . (46)

Thus, letting the coefficients of 𝜆1 and 𝜆0 be zero gives
2

𝑎

𝑤
󸀠

10
(𝑥) −

𝑐

𝑎

𝑤
10
(𝑥) = 0,

2

𝑎

𝑤
󸀠

20
(𝑥) +

𝑐

𝑎
2
𝑤
20
(𝑥) = 0,

𝑤
󸀠󸀠

10
(𝑥) +

𝑘

𝑎
3
𝑤
10
(𝑥) +

2

𝑎

𝑤
󸀠

11
(𝑥) −

𝑐

𝑎
2
𝑤
11
(𝑥) = 0,

𝑤
󸀠󸀠

20
(𝑥) −

𝑘

𝑎
3
𝑤
20
(𝑥) −

2

𝑎

𝑤
󸀠

21
(𝑥) −

𝑐

𝑎
2
𝑤
21
(𝑥) = 0,

(47)

where 𝑘 is given by (41).
Now, use the condition𝑤

𝑗0
(0) = 1, 𝑤

𝑗1
(0) = 0, 𝑗 = 1, 2, to

get

𝑤
10
(𝑥) = 𝑒

(𝑐/2𝑎)𝑥
, 𝑤

11
(𝑥) = −(

𝑐
2

8𝑎

+

𝑘

2𝑎
2
)𝑥𝑒
(𝑐/2𝑎)𝑥

,

𝑤
20
(𝑥) = 𝑒

−(𝑐/2𝑎)𝑥
, 𝑤

21
(𝑥) = (

𝑐
2

8𝑎

−

𝑘

2𝑎
2
)𝑥𝑒
−(𝑐/2𝑎)𝑥

.

(48)

These are the expressions of (41). When |𝜆| is large enough,
we can obtain the linearly independent asymptotic funda-
mental solutions of (39) given by (40) (see [16]):

𝑤
1
(𝑥) = 𝑒

(𝜆/𝑎)𝑥
[𝑤
10
(𝑥) +

𝑤
11
(𝑥)

𝜆

] + O (𝜆
−2
) ,

𝑤
2
(𝑥) = 𝑒

−(𝜆/𝑎)𝑥
[𝑤
20
(𝑥) +

𝑤
21
(𝑥)

𝜆

] + O (𝜆
−2
) .

(49)

The proof is complete.

Assume that 𝜆 ̸= 0 and 𝜆 ̸= − 𝑏
𝑖
, 𝑖 = 1, 2, . . . , 𝑁, and let

𝑤 (𝑥) = 𝜉𝑤
1
(𝑥) + 𝜂𝑤

2
(𝑥) , (50)

where 𝑤
𝑗
(𝑥), 𝑗 = 1, 2, are given by (40). Then substitute the

above into the boundary conditions of (29) to obtain

Δ (𝜆) [𝜉, 𝜂]
⊤

= 0, (51)

where

Δ (𝜆) = (

1 1

𝑤
1
(1) 𝑤

2
(1)
) . (52)

Hence (29) admits nontrivial solution if and only if
det (Δ (𝜆)) = 0, (53)

and the eigenvalues of (29) are the zeros of (53). Notice that

det (Δ (𝜆)) = 𝑤
2
(1) − 𝑤

1
(1)

= 𝑒
−𝜆/𝑎

[𝑤
20
(1) + 𝑤

21
(1) 𝜆
−1
]

− 𝑒
𝜆/𝑎

[𝑤
10
(1) + 𝑤

11
(1) 𝜆
−1
] + O (𝜆

−2
)

= 𝑒
−𝜆/𝑎

[𝑒
−𝑐/2𝑎

+ 𝑏𝑒
−𝑐/2𝑎

𝜆
−1
]

− 𝑒
𝜆/𝑎

[𝑒
𝑐/2𝑎

− 𝑑𝑒
𝑐/2𝑎

𝜆
−1
] + O (𝜆

−2
) ,

(54)
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where

𝑏 =

𝑐
2

8𝑎

−

𝑘

2𝑎
2
, 𝑑 =

𝑐
2

8𝑎

+

𝑘

2𝑎
2
, (55)

and 𝑘 is given in Lemma 4.
Therefore det(Δ(𝜆)) = 0 produces

𝑒
−𝜆/𝑎

[𝑒
−𝑐/2𝑎

+ 𝑏𝑒
−𝑐/2𝑎

𝜆
−1
]

− 𝑒
𝜆/𝑎

[𝑒
𝑐/2𝑎

− 𝑑𝑒
𝑐/2𝑎

𝜆
−1
] + O (𝜆

−2
) = 0,

(56)

which further leads to

𝑒
−𝜆/𝑎

𝑒
−𝑐/2𝑎

− 𝑒
𝜆/𝑎
𝑒
𝑐/2𝑎

+ O (𝜆
−1
) = 0. (57)

At last, the solutions of 𝑒(2𝜆+𝑐)/𝑎 − 1 = 0 are

̃
𝜆
𝑛
= −

𝑐

2

+ 𝑎𝑛𝜋𝑖, 𝑛 ∈ Z. (58)

Apply the Rouché theorem to (57) to give the solutions of (57)
as follows:

𝜆
𝑛
=
̃
𝜆
𝑛
+ O (𝑛

−1
) = −

𝑐

2

+ 𝑎𝑛𝜋𝑖 + O(
1

𝑛

) , 𝑛 ∈ Z. (59)

We summarize the above analysis as the following Theo-
rem.

Theorem5. The eigenvalues of (29) have the following asymp-
totic expressions:

𝜆
𝑛
= −

𝑐

2

+ 𝑎𝑛𝜋𝑖 + O (𝑛
−1
) , 𝑛 ∈ Z, (60)

especially,

Re 𝜆
𝑛
󳨀→ −

𝑐

2

< 0 as |𝑛| 󳨀→ ∞. (61)

That is, Re 𝜆 = −𝑐/2 is the asymptote of the eigenvalues 𝜆
𝑛

given by (60). Furthermore, the corresponding eigenfunctions
𝑤
𝑛
(𝑥), 𝑛 ∈ Z, have the asymptotic expressions

𝑤
𝑛
(𝑥) = sin 𝑛𝜋𝑥 + O (𝑛

−1
) ,

𝜆
−1

𝑛
𝑤
𝑛
(𝑥) = −

𝑖

𝑎𝑛𝜋

sin 𝑛𝜋𝑥 + O (𝑛
−1
) .

(62)

Moreover, {𝑤
𝑛
(𝑥), 𝑛 ∈ Z} and {𝜆

−1

𝑛
𝑤
𝑛
(𝑥), 𝑛 ∈ Z} are

approximately normalized in 𝐿2(0, 1) in the sense that there
exist positive constants 𝑐

1
and 𝑐
2
independent of 𝑛 such that,

for 𝑛 ∈ Z,

𝑐
1
≤
󵄩
󵄩
󵄩
󵄩
𝑤
𝑛

󵄩
󵄩
󵄩
󵄩𝐿
2 ,

󵄩
󵄩
󵄩
󵄩
󵄩
𝜆
−1

𝑛
𝑤
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
≤ 𝑐
2
. (63)

Proof. From above statement, (60) has been proved. We only
need to show (62)-(63) to be valid. Since 𝜆 ̸= 0, −𝑏

𝑖
, 𝑖 =

1, 2, . . . , 𝑁, in view of (52) and (60), Lemma 4, and some facts
in linear algebra, the eigenfunction 𝑤 corresponding to the
eigenvalue 𝜆 is given by

𝑤 (𝜆, 𝑥) = det( 1 1

𝑤
1
(𝑥) 𝑤

2
(𝑥)

) = 𝑤
2
(𝑥) − 𝑤

1
(𝑥)

= 𝑒
−(𝜆/𝑎)𝑥

𝑒
−(𝑐/2𝑎)𝑥

− 𝑒
(𝜆/𝑎)𝑥

𝑒
(𝑐/2𝑎)𝑥

+ O (𝜆
−1
) .

(64)

Owing to the fact of (60) that

𝜆
𝑛

𝑎

+

𝑐

2𝑎

= 𝑛𝜋𝑖 + O (𝑛
−1
) , 𝑛 ∈ Z, (65)

(62) is hence proved by taking

𝑤
𝑛
(𝑥) =

1

2

𝑖𝑤 (𝜆
𝑛
, 𝑥) . (66)

Finally,

󵄩
󵄩
󵄩
󵄩
𝑤
𝑛

󵄩
󵄩
󵄩
󵄩𝐿
2 = ∫

1

0

sin2𝑛𝜋𝑥𝑑𝑥 + O (𝑛
−1
) =

1

2

+ O (𝑛
−1
) ,

󵄩
󵄩
󵄩
󵄩
󵄩
𝜆
−1

𝑛
𝑤
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2

= ∫

1

0

(−

𝑖

𝑎𝑛𝜋

sin 𝑛𝜋𝑥)(− 𝑖

𝑎𝑛𝜋

sin 𝑛𝜋𝑥)𝑑𝑥 + O (𝑛
−1
)

=

1

2𝑎
2
𝑛
2
𝜋
2
+ O (𝑛

−1
) .

(67)

These give (63). The proof is complete.

The following result is the consequence ofTheorem 5 and
Proposition 2.

Theorem 6. LetA be defined as in (10). Then

(i) A has the eigenvalues

{−𝑏
𝑖
, 𝑖 = 1, 2, . . . , 𝑁}⋃{𝜆

𝑛
, 𝜆
𝑛
, 𝑛 ∈ N

+
} , (68)

where 𝜆
𝑛0
have the asymptotic expressions (60),

(ii) the eigenfunction corresponding to −𝑏
𝑖
is 𝑒
𝑖+2

for any
𝑖 = 1, 2, . . . , 𝑁;

(iii) the eigenfunctions corresponding to𝜆
𝑛
and𝜆

𝑛
are given

by

𝑊
𝑛0
(𝑥) = (

1

𝑛𝜋

sin 𝑛𝜋𝑥, 𝑖𝑎 sin 𝑛𝜋𝑥, 0, . . . , 0)

+ (0, 1, 1, . . . , 1)O (𝑛
−1
) ,

𝑊
𝑛0
(𝑥) = (

1

𝑛𝜋

sin 𝑛𝜋𝑥, −𝑖𝑎 sin 𝑛𝜋𝑥, 0, . . . , 0)

+ (0, 1, 1, . . . , 1)O (𝑛
−1
) ,

(69)

for 𝑛 → ∞, respectively, where 𝑤
𝑛
(𝑥) =

(1/𝑛𝜋) sin 𝑛𝜋𝑥, 𝜆
𝑛
𝑤
𝑛
(𝑥) = 𝑖𝑎 sin 𝑛𝜋𝑥 + O(𝑛−1) and 𝜑

𝑛

is given by

(𝜑
𝑖
)
𝑛
(𝑥) =

𝑎
𝑖

𝜆
𝑛
+ 𝑏
𝑖

𝑤
𝑛
(𝑥) = O (𝑛

−1
) . (70)

Concerning about 𝜎(A), we haveTheorem 7.

Theorem 7. Let A be defined as in (10). Then 𝜎
𝑟
(A) and

𝜎
𝑐
(A) are empty sets, where 𝜎

𝑟
(A) and 𝜎

𝑐
(A) denote the set

of residual and continuous spectrum ofA, respectively.
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Proof. We need only to prove that 𝜆 ∈ 𝜌(A), when 𝜆 ∉

𝜎
𝑝
(A). Letting 𝜆 ∉ 𝜎

𝑝
(A), then 𝜆 ̸= − 𝑏

𝑖
, 𝑖 = 1, 2, . . . , 𝑁.

Solve (𝜆𝐼 −A)(𝑤, V, 𝜑
1
, . . . , 𝜑

𝑁
) = (𝑤, Ṽ, 𝜑

1
, . . . , 𝜑

𝑁
) for 𝑊̃ =

(𝑤, Ṽ, 𝜑
1
, . . . , 𝜑

𝑁
) ∈ H and𝑊 = (𝑤, V, 𝜑

1
, . . . , 𝜑

𝑁
) ∈ 𝐷(A);

that is,

𝜆𝑤 (𝑥) − V (𝑥) = 𝑤 (𝑥) ,

𝜆V (𝑥) − [

[

𝑎
2
𝑤
󸀠󸀠
(𝑥) + (

𝑁

∑

𝑖=1

𝜑
𝑖
(𝑥))

󸀠

− 𝑐V (𝑥)]

]

= Ṽ (𝑥) ,

𝜆𝜑
𝑖
(𝑥) − (𝑎

𝑖
𝑤 (𝑥) − 𝑏

𝑖
𝜑
𝑖
(𝑥)) = 𝜑

𝑖
(𝑥) ,

𝑤 (0) = 𝑤 (1) = 0

(71)

to get

V (𝑥) = 𝜆𝑤 (𝑥) − 𝑤 (𝑥) ,

𝜑
𝑖
(𝑥) =

1

𝜆 + 𝑏
𝑖

(𝑎
𝑖
𝑤 (𝑥) + 𝜑

𝑖
(𝑥)) , 𝑖 = 1, . . . , 𝑁,

(72)

and so
𝑁

∑

𝑖=1

𝜑
𝑖
(𝑥) = 𝑤 (𝑥)

𝑁

∑

𝑖=1

𝑎
𝑖

𝜆 + 𝑏
𝑖

+

𝑁

∑

𝑖=1

𝜑
𝑖
(𝑥)

𝜆 + 𝑏
𝑖

. (73)

Set

𝜃 (𝑥) = 𝑎
2
𝑤
󸀠
(𝑥) +

𝑁

∑

𝑖=1

𝜑
𝑖
(𝑥)

= 𝑎
2
𝑤
󸀠
(𝑥) + 𝑤 (𝑥)

𝑁

∑

𝑖=1

𝑎
𝑖

𝜆 + 𝑏
𝑖

+

𝑁

∑

𝑖=1

𝜑
𝑖
(𝑥)

𝜆 + 𝑏
𝑖

.

(74)

Then we can write (71) as

𝜃 (𝑥) = 𝑎
2
𝑤
󸀠
(𝑥) + 𝑝

1
(𝜆) 𝑤 (𝑥) + 𝜑 (𝑥) ,

𝜃
󸀠
(𝑥) = (𝜆

2
+ 𝑐𝜆)𝑤 (𝑥) − Ṽ (𝑥) − (𝜆 + 𝑐)𝑤 (𝑥) ,

𝑤 (0) = 𝑤 (1) = 0,

(75)

where

𝑝 (𝜆) =

𝑁

∑

𝑖=1

𝑎
𝑖

𝜆 + 𝑏
𝑖

, 𝜑 (𝑥) =

𝑁

∑

𝑖=1

𝜑
𝑖
(𝑥)

𝜆 + 𝑏
𝑖

. (76)

Hence (75) can be rewritten as the following first-order
system of differential equations:

𝑑

𝑑𝑥

(

𝑤 (𝑥)

𝜃 (𝑥)
) = (

−

𝑝 (𝜆)

𝑎
2

1

𝑎
2

𝜆
2
+ 𝑐𝜆 0

)(

𝑤 (𝑥)

𝜃 (𝑥)
)

− (

1

𝑎
2
𝜑 (𝑥)

Ṽ (𝑥) + (𝜆 + 𝑐)𝑤 (𝑥)
) ,

𝑤 (0) = 𝑤 (1) = 0.

(77)

Let

𝐴 (𝜆) = (

−

𝑝 (𝜆)

𝑎
2

1

𝑎
2

𝜆
2
+ 𝑐𝜆 0

) . (78)

Then it has

𝑒
𝐴(𝜆)𝑥

= (

𝑎
11
(𝜆, 𝑥) 𝑎

12
(𝜆, 𝑥)

𝑎
21
(𝜆, 𝑥) 𝑎

22
(𝜆, 𝑥)

) , (79)

where

𝑎
11
(𝜆, 𝑥) = −

𝑝 (𝜆)

2√𝑞 (𝜆)

Φ (𝜆, 𝑥) +

1

2

Ψ (𝜆, 𝑥) ,

𝑎
12
(𝜆, 𝑥) =

1

√𝑞 (𝜆)

Φ (𝜆, 𝑥) ,

𝑎
21
(𝜆, 𝑥) =

𝑎
2
(𝜆
2
+ 𝑐𝜆)

√𝑞 (𝜆)

Φ (𝜆, 𝑥) ,

𝑎
22
(𝜆, 𝑥) =

𝑝 (𝜆)

2√𝑞 (𝜆)

Φ (𝜆, 𝑥) +

1

2

Ψ (𝜆, 𝑥) ,

Φ (𝜆, 𝑥) = (𝑒
((−𝑝(𝜆)+√𝑞(𝜆))/2𝑎

2
)𝑥
− 𝑒
((−𝑝(𝜆)−√𝑞(𝜆))/2𝑎

2
)𝑥
) ,

Ψ (𝜆, 𝑥) = (𝑒
((−𝑝(𝜆)+√𝑞(𝜆))/2𝑎

2
)𝑥
+ 𝑒
((−𝑝(𝜆)−√𝑞(𝜆))/2𝑎

2
)𝑥
) ,

(80)

and 𝑞(𝜆) is given by

𝑞 (𝜆) = 𝑝
2
(𝜆) + 4𝑎

2
(𝜆
2
+ 𝑐𝜆) . (81)

The general solution of (77) is then found to be

(

𝑤 (𝑥)

𝜃 (𝑥)
) = 𝑒
𝐴(𝜆)𝑥

(

𝑤 (0)

𝜃 (0)
)

− ∫

𝑥

0

𝑒
𝐴(𝜆)(𝑥−𝜏)

(

1

𝑎
2
𝜑 (𝜏)

Ṽ (𝜏) + (𝜆 + 𝑐)𝑤 (𝜏)
)𝑑𝜏.

(82)
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Since 𝑤(0) = 0, it has

𝑤 (𝑥) = 𝑎
12
(𝜆, 𝑥) 𝜃 (0)

− ∫

𝑥

0

[

𝜑 (𝜏)

𝑎
2
𝑎
11
(𝜆, 𝑥 − 𝜏)

+ 𝑎
12
(𝜆, 𝑥 − 𝜏) (Ṽ (𝜏) + (𝜆 + 𝑐)𝑤 (𝜏)) ] 𝑑𝜏,

(83)

𝜃 (𝑥) = 𝑎
22
(𝜆, 𝑥) 𝜃 (0)

− ∫

𝑥

0

[

𝜑 (𝜏)

𝑎
2
𝑎
21
(𝜆, 𝑥 − 𝜏)

+ 𝑎
22
(𝜆, 𝑥 − 𝜏) (Ṽ (𝜏) + (𝜆 + 𝑐)𝑤 (𝜏)) ] 𝑑𝜏.

(84)

When 𝑊̃ = (𝑤, Ṽ, 𝜑
1
, . . . , 𝜑

𝑁
) = 0, (83) and (84) reduce to the

eigenvalue problem

𝑤 (𝑥) = 𝑎
12
(𝜆, 𝑥) 𝜃 (0) , 𝜃 (𝑥) = 𝑎

22
(𝜆, 𝑥) 𝜃 (0) . (85)

So, when 𝜆 ∈ 𝜎
𝑝
(A), 𝜆 ̸= − 𝑏

𝑖
, 𝑖 = 1, 2, . . . , 𝑁, if and only if

𝑎
12
(𝜆, 1) = 0, that is,

1

√𝑞 (𝜆)

(𝑒
(−𝑝(𝜆)+√𝑞(𝜆))/2𝑎

2

− 𝑒
(−𝑝(𝜆)−√𝑞(𝜆))/2𝑎

2

) = 0, (86)

which yields

𝑒
(−𝑝(𝜆)+√𝑞(𝜆))/2𝑎

2

− 𝑒
(−𝑝(𝜆)−√𝑞(𝜆))/2𝑎

2

= 0. (87)

This is the characteristic determinant of A, which has the
asymptotic form given by (60).

Now, since 𝜆 ∉ 𝜎
𝑝
(A), it has

𝑎
12
(𝜆, 1)

=

1

√𝑞 (𝜆)

(𝑒
(−𝑝(𝜆)+√𝑞(𝜆))/2𝑎

2

− 𝑒
(−𝑝(𝜆)−√𝑞(𝜆))/2𝑎

2

) ̸= 0.

(88)

By the boundary condition 𝑤(1) = 0, we have

𝜃 (0) =

1

𝑎
12
(𝜆, 1)

× ∫

1

0

[

𝜑 (𝜏)

𝑎
2
𝑎
11
(𝜆, 1 − 𝜏)

+ 𝑎
12
(𝜆, 1 − 𝜏) (Ṽ (𝜏) + (𝜆 + 𝑐)𝑤 (𝜏)) ] 𝑑𝜏.

(89)

Hence 𝑤(𝑥) is uniquely determined by (83) and 𝑤
󸀠

∈

𝐿
2
(0, 1). Once 𝑤 is known, V(𝑥) and 𝜑

𝑖
(𝑥) are also uniquely

determined by (72). So (𝜆𝐼 − A)
−1 exists and is bounded.

Therefore 𝜆 ∈ 𝜌(A). The proof is complete.

4. Spectrum-Determined Growth Condition
and Exponential Stability

Now we are in a position to consider the main result of this
part, the so-called spectrum-determined growth condition
for system (11), which is one of the most hard problems
for infinite-dimensional systems. Our proof is based on the
following characterization condition (see [18, Corollary 3.40,
p.144]).

Lemma 8. Let 𝑇(𝑡) be a 𝐶
0
-semigroup on a Hilbert space 𝐻

with its generator𝐴. Let 𝜔(𝐴) be the growth bound of 𝑇(𝑡) and
let

𝑠 (𝐴) := sup {Re 𝜆 | 𝜆 ∈ 𝜎 (𝐴)} (90)

be the spectral bound of 𝐴. Then

𝜔 (𝐴) = inf {𝜔 > 𝑠 (𝐴) | sup
𝛽∈R

󵄩
󵄩
󵄩
󵄩
𝑅 (𝛼 + 𝑖𝛽, 𝐴)

󵄩
󵄩
󵄩
󵄩

< 𝑀
𝛼
< ∞, ∀𝛼 ≥ 𝜔} .

(91)

We also need Lemma 1.2 of [19].

Lemma 9. Let

𝐷 (𝜆) := 1 +

𝑛

∑

𝑖=1

𝑃
𝑖
(𝜆) 𝑒
𝛼𝑖𝜆
, (92)

where 𝑃
𝑖
(𝜆) are polynomials of 𝜆, 𝛼

𝑖
are some complex

numbers, and n is a positive integer.Then, for all𝜆 outside those
circles of radius 𝜀 > 0 that centered at the zeros of𝐷(⋅), one has

|𝐷 (𝜆)| ≥ 𝐶 (𝜀) > 0 (93)

for some constant 𝐶(𝜀) that depends only on 𝜀.

Lemma 10. Let

𝐷
0
(𝜆) := 𝑒

((−𝑝(𝜆)+√𝑞(𝜆))/2𝑎
2
)𝑥
− 𝑒
((−𝑝(𝜆)−√𝑞(𝜆))/2𝑎

2
)𝑥
, (94)

where 𝑝(𝜆) and 𝑞(𝜆) are given by (76) and (81), respectively.
Then, as indicated by (87), all eigenvalues 𝜆

𝑛
claimed by (60)

are zeros of 𝐷
0
(𝜆). Moreover, for all 𝜆 that are outside those

circles centered at 𝜆
𝑛
with radius 𝜀 > 0, one has

󵄨
󵄨
󵄨
󵄨
𝐷
0
(𝜆)

󵄨
󵄨
󵄨
󵄨
≥ 𝑒

Re𝜆/𝑎
𝐶
0
(𝜀) > 0, (95)

for some constant 𝐶
0
(𝜀) that depends only on 𝜀.

Proof. By (57), it has

󵄨
󵄨
󵄨
󵄨
𝐷
0
(𝜆)

󵄨
󵄨
󵄨
󵄨
= −𝑒
𝜆/𝑎
𝑒
𝑐/2𝑎

[1 − 𝑒
−2𝜆/𝑎

𝑒
−𝑐/𝑎

+ O (𝜆
−1
)] . (96)
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Then the desired result follows from Lemma 9. The proof is
complete.

Theorem 11. Let A be defined by (10). Then the spectrum-
determined growth condition holds true for 𝑒A𝑡 : 𝑠(A) = 𝜔(A).

Proof. By Lemma 8, the proof will be accomplished if we can
prove that, for any 𝜆 ̸= 0 and 𝜆 = 𝛼 + 𝑖𝛽 ∈ C with 𝛼 ≥ 𝜔 >

𝑠(A) and 𝛽 ∈ R, there exists a constant𝑀
𝛼
such that

sup
𝛽∈R

󵄩
󵄩
󵄩
󵄩
𝑅 (𝛼 + 𝑖𝛽,A)

󵄩
󵄩
󵄩
󵄩
≤ 𝑀
𝛼
< ∞. (97)

Let 𝜆 = 𝛼 + 𝑖𝛽 ∈ C with 𝛼 ≥ 𝜔 > 𝑠(A) and 𝛽 ∈ R. For any
𝑌̃ = (𝑤, Ṽ, 𝜑

1
, . . . , 𝜑

𝑁
) ∈ H

1
, from the proof of Theorem 7,

𝑌 = 𝑅(𝜆,A)𝑌̃ = (𝑤, V, 𝜑
1
, . . . , 𝜑

𝑁
) ∈ 𝐷(A) satisfies

𝑤 (𝑥) = 𝑎
12
(𝜆, 𝑥) 𝜃 (0)

− ∫

𝑥

0

[

𝜑 (𝜏)

𝑎
2
𝑎
11
(𝜆, 𝑥 − 𝜏)

+𝑎
12
(𝜆, 𝑥 − 𝜏) (Ṽ (𝜏) + (𝜆 + 𝑐)𝑤 (𝜏)) ] 𝑑𝜏,

V (𝑥) = 𝜆𝑤 (𝑥) − 𝑤 (𝑥) , 𝜑 (𝑥) =

𝑁

∑

𝑖=1

𝜑
𝑖
(𝑥)

𝜆 + 𝑏
𝑖

,

𝜑
𝑖
(𝑥) =

𝑎
𝑖

𝜆 + 𝑏
𝑖

𝑤 (𝑥) +

1

𝜆 + 𝑏
𝑖

𝜑
𝑖
(𝑥) , 𝑖 = 1, 2, . . . , 𝑁,

𝜃 (0) =

1

𝑎
12
(𝜆, 1)

× ∫

1

0

[

𝜑 (𝜏)

𝑎
2
𝑎
11
(𝜆, 1 − 𝜏)

+ 𝑎
12
(𝜆, 1 − 𝜏) (Ṽ (𝜏) + (𝜆 + 𝑐) 𝑤 (𝜏)) ] 𝑑𝜏,

(98)

where 𝑎
1𝑘
(𝜆, 𝑥), 𝑘 = 1, 2, are given by (80).

Firstly, it is easy to see that there is a positive constant𝑀
1𝛼

such that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑝 (𝜆)

√𝑞 (𝜆)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀
1𝛼
< ∞. (99)

Secondly, for simplicity, let 𝑑
1
(𝜆) = Re(−𝑝(𝜆) + √𝑞(𝜆)) and

𝑑
2
(𝜆) = Im(−𝑝(𝜆) + √𝑞(𝜆)), since

∫

1

0

𝑒
±((−𝑝(𝜆)+√𝑞(𝜆))/2𝑎

2
)𝑥
𝑒
±((−𝑝(𝜆)+√𝑞(𝜆))/2𝑎

2
)𝑥
𝑑𝑥

= ∫

1

0

𝑒
±(1/2𝑎

2
)[−𝑝(𝜆)+√𝑞(𝜆)+(−𝑝(𝜆)+√𝑞(𝜆))]𝑥

𝑑𝑥

= ±

𝑎
2

𝑑
1
(𝜆)

(𝑒
±𝑑1(𝜆)/𝑎

2

− 1) ,

∫

1

0

𝑒
±((−𝑝(𝜆)+√𝑞(𝜆))/2𝑎

2
)𝑥
𝑒
∓((−𝑝(𝜆)+√𝑞(𝜆))/2𝑎

2
)𝑥
𝑑𝑥

= ∫

1

0

𝑒
±(1/2𝑎

2
)[−𝑝(𝜆)+√𝑞(𝜆)−(−𝑝(𝜆)+√𝑞(𝜆))]𝑥

𝑑𝑥

=

{
{

{
{

{

1, 𝛽 = 0,

±

𝑎
2

𝑖𝑑
2
(𝜆)

(𝑒
±𝑖𝑑2(𝜆)/𝑎

2

− 1) , 𝛽 ̸= 0,

(±

−𝑝 (𝜆) + √𝑞 (𝜆)

2𝑎
2

)(±

−𝑝 (𝜆) + √𝑞 (𝜆)

2𝑎
2

)

× ∫

1

0

𝑒
±((−𝑝(𝜆)+√𝑞(𝜆))/2𝑎

2
)𝑥
𝑒
±((−𝑝(𝜆)+√𝑞(𝜆))/2𝑎

2
)𝑥
𝑑𝑥

= ±

𝑎
2
(𝑑
2

1
(𝜆) + 𝑑

2

2
(𝜆))

𝑑
1
(𝜆)

(𝑒
±𝑑1(𝜆)/𝑎

2

− 1) ,

(±

−𝑝 (𝜆) + √𝑞 (𝜆)

2𝑎
2

)(∓

−𝑝 (𝜆) + √𝑞 (𝜆)

2𝑎
2

)

× ∫

1

0

𝑒
±((−𝑝(𝜆)+√𝑞(𝜆))/2𝑎

2
)𝑥
𝑒
∓((−𝑝(𝜆)+√𝑞(𝜆))/2𝑎

2
)𝑥
𝑑𝑥

=

{
{
{
{

{
{
{
{

{

−(𝑑
2

1
(𝜆) + 𝑑

2

2
(𝜆)) , 𝛽 = 0,

±

𝑎
2
(𝑑
2

1
(𝜆) + 𝑑

2

2
(𝜆))

𝑖𝑑
2
(𝜆)

(𝑒
±𝑖𝑑2(𝜆)/𝑎

2

− 1) , 𝛽 ̸= 0.

(100)

So combing (99), there is a positive constant𝑀
2𝛼

such that

sup
𝛽∈R

󵄩
󵄩
󵄩
󵄩
󵄩
𝑎
𝑗𝑘
(𝜆, ⋅)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
≤ 𝑀
2𝛼
< ∞,

sup
𝛽∈R

󵄩
󵄩
󵄩
󵄩
󵄩
𝑎
󸀠

𝑗𝑘
(𝜆, ⋅)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
≤ 𝑀
3𝛼
< ∞,

1 ≤ 𝑗, 𝑘 ≤ 2.

(101)

Thirdly, by Proposition 2 andTheorem 7, it has

𝑠 (A) = sup {Re 𝜆 | 𝜆 ∈ 𝜎 (A)} = sup {Re 𝜆 | 𝜆 ∈ 𝜎
𝑝
(A)} .

(102)

Define
𝜀
𝛼
= inf
𝜆𝑛∈𝜎𝑝(A),𝛽∈R

󵄨
󵄨
󵄨
󵄨
𝜆
𝑛
− 𝛼 − 𝑖𝛽

󵄨
󵄨
󵄨
󵄨
. (103)
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By Lemma 10, there exists a positive constant𝐶
0
(𝜀
𝛼
) depend-

ing only on 𝛼 such that

󵄨
󵄨
󵄨
󵄨
𝐷
0
(𝜆)

󵄨
󵄨
󵄨
󵄨
= 𝑒
((−𝑝(𝜆)+√𝑞(𝜆))/2𝑎

2
)𝑥
− 𝑒
((−𝑝(𝜆)−√𝑞(𝜆))/2𝑎

2
)𝑥

≥ 𝑒
𝛼/𝑎
𝐶
0
(𝜀
𝛼
) > 0.

(104)

Hence, by (86), there exists a positive constant𝑀
4𝛼

depend-
ing only on 𝛼 such that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑎
12
(𝜆, 1)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀
4𝛼
< ∞. (105)

So, by the Cauchy-Schwartz inequality, it follows from (101)
and the last equation of (98) that there is a positive constant
𝑀
5𝛼

such that

sup
𝛽∈R

|𝜃 (0)| ≤ 𝑀
5𝛼

󵄩
󵄩
󵄩
󵄩
󵄩
𝑌̃

󵄩
󵄩
󵄩
󵄩
󵄩H

< ∞. (106)

Finally, from (98), there is a positive constant𝑀
𝛼
such that

sup
𝛽∈R

‖𝑌‖H

= sup
𝛽∈R

{𝑎
2󵄩󵄩
󵄩
󵄩
󵄩
𝑤
󸀠󵄩󵄩
󵄩
󵄩
󵄩𝐿
2
+ ‖V‖
𝐿
2 +

𝑁

∑

𝑖=1

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠

𝑖

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
+
󵄩
󵄩
󵄩
󵄩
𝜑
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
2)}

≤ 𝑀
𝛼

󵄩
󵄩
󵄩
󵄩
󵄩
𝑌̃

󵄩
󵄩
󵄩
󵄩
󵄩H

< ∞.

(107)

This gives (97). The proof is complete.

The following result gives a strongly exponential stability
for the system (1).

Theorem 12. 𝑒A𝑡 is exponentially stable; that is, there exist
constants𝑀 > 1, 𝜔 > 0 such that

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
A𝑡󵄩󵄩
󵄩
󵄩
󵄩
≤ 𝑀𝑒
−𝜔𝑡
, (108)

or, equivalently,

𝐸 (𝑡) =

1

2

∫

1

0

[𝑎
2󵄨
󵄨
󵄨
󵄨
𝑤
𝑥
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑤
𝑡
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨

2

+

𝑁

∑

𝑖=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
󸀠

𝑖
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝜑
𝑖
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨

2

)] 𝑑𝑥

≤ 𝑀𝑒
−𝜔𝑡
𝐸 (0) =

𝑀

2

𝑒
−𝜔𝑡

∫

1

0

(
󵄨
󵄨
󵄨
󵄨
𝑤
0
(𝑥)

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑤
1
(𝑥)

󵄨
󵄨
󵄨
󵄨

2

) 𝑑𝑥.

(109)

Proof. By the spectrum-determined growth condition
claimed byTheorem 11, the asymptote for eigenvalues of (61)
and (109), 𝑒A𝑡, is exponentially stable if and only if

Re 𝜆 < 0, ∀𝜆 ∈ 𝜎 (A) . (110)

From Proposition 2, Lemma 3, and Theorem 7, for arbitrary,
𝜆 ∈ 𝜎(A), Re 𝜆 < 0. The proof is complete.
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