
Research Article
Some Remarks on the Mathieu Series

Robert Frontczak
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The object of this note is to present new expressions for the classical Mathieu series in terms of hyperbolic functions.The derivation
is based on elementary arguments concerning the integral representation of the series. The results are used afterwards to prove,
among others, a new relationship between the Mathieu series and its alternating companion. A recursion formula for the Mathieu
series is also presented. As a byproduct, some closed-form evaluations of integrals involving hyperbolic functions are inferred.

1. Introduction

The infinite series

𝑆 (𝑟) =

∞

∑

𝑛=1

2𝑛

(𝑛2 + 𝑟2)
2
, 𝑟 > 0, (1)

is called a Mathieu series. It was introduced in 1890 by É.
L. Mathieu (1835–1890) who studied various problems in
mathematical physics. Since its introduction the series 𝑆(𝑟)
has been studied intensively. Mathieu himself conjectured
that 𝑆(𝑟) < 1/𝑟

2. The conjecture was proved in 1952 by Berg
in [1]. Nowadays, themathematical literature provides a range
of papers dealing with inequalities for the series 𝑆(𝑟). In 1957
Makai [2] derived the double inequality

1

𝑟2 + 1/2
< 𝑆 (𝑟) <

1

𝑟2
. (2)

More recently, Alzer et al. proved in [3] that

1

𝑟2 + 1/ (2𝜁 (3))
< 𝑆 (𝑟) <

1

𝑟2 + 1/6
. (3)

Here, as usual, 𝜁(𝑠) denotes the Riemann zeta function
defined by 𝜁(𝑠) = ∑

∞

𝑛=1
1/𝑛
𝑠, Re(𝑠) > 1. The constants

1/(2𝜁(3)) and 1/6 are the best possible.Other lower andupper
bound estimates for the Mathieu series can be found in the
articles of Qi et al. [4] and Hoorfar and Qi [5].

An integral representation for the Mathieu series (1) is
given by

𝑆 (𝑟) =
1

𝑟
∫

∞

0

𝑥

𝑒𝑥 − 1
sin (𝑟𝑥) 𝑑𝑥. (4)

The integral representationwas used by Elbert in [6] to derive
the asymptotic expansion of 𝑆(𝑟):

𝑆 (𝑟) =

∞

∑

𝑘=0

(−1)
𝑘
𝐵
2𝑘

𝑟2𝑘+2
=

1

𝑟2
−

1

6𝑟4
± ⋅ ⋅ ⋅ (𝑟 󳨀→ ∞) , (5)

where 𝐵
2𝑘

denote the even indexed Bernoulli numbers
defined by the generating function

𝑥

𝑒𝑥 − 1
=

∞

∑

𝑘=0

𝐵
𝑘

𝑥
𝑘

𝑘!
, |𝑥| < 2𝜋. (6)

See also [7] for a derivation.
The Mathieu series admits various generalizations that

have been introduced and investigated intensively in recent
years. The generalizations include the alternating Mathieu
series, the 𝑚-fold generalized Mathieu series, Mathieu 𝑎-
series, and Mathieu (𝑎, 𝜆)-series [8–11]. The generalizations
recapture the classical Mathieu series as a special case. On
the other hand, the alternating Mathieu series, although
connected to its classical companion, is a variant that allows
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a separate study. It was introduced by Pogány et al. in [11] by
the equation

𝑆
∗

(𝑟) =

∞

∑

𝑛=1

(−1)
𝑛−1

2𝑛

(𝑛2 + 𝑟2)
2
, 𝑟 > 0. (7)

It possesses the integral representation

𝑆
∗

(𝑟) =
1

𝑟
∫

∞

0

𝑥

𝑒𝑥 + 1
sin (𝑟𝑥) 𝑑𝑥. (8)

Recently derived bounding inequalities for alternating
Mathieu-type series can be found in the paper of Pogány
and Tomovski [12]. The latest research article on integral
forms for Mathieu-type series is the paper of Milovanović
and Pogány [13]. The authors present a systematic treatment
of the subject based on contour integration. Among others,
the following new integral representation for 𝑆(𝑟) is derived
[13, Corollary 2.2]:

𝑆 (𝑟) = 𝜋∫

∞

0

𝑟
2

− 𝑥
2

+ (1/4)

(𝑥2 − 𝑟2 + (1/4))
2

+ 𝑟2
⋅

𝑑𝑥

cosh2 (𝜋𝑥)
. (9)

In this note we restrict the attention to the classical Mathieu
series. Starting with the integral form (4) new representations
for 𝑆(𝑟) are derived. The derivation is based on elementary
arguments concerning the integrand combined with related
integral identities.The results are used afterwards to establish
interesting properties of the series. Among others, a new
relationship between the Mathieu series and its alternating
variant is derived. A recursion formula for the Mathieu
series is also presented. As a byproduct, some closed-form
evaluations of integrals involving hyperbolic functions are
inferred. Finally, a new proof is given for an exact evaluation
of an infinite series related to 𝑆(𝑟).

2. Main Results

In what follows we will use the following integral identities.
The identities are well known and are stated without proof
(see [14] for a reference).

Lemma 1. For 𝑟 > 0 and Re(𝛽) > 0 it holds that

∫

∞

0

𝑥

𝑒𝛽𝑥 − 1
cos (𝑟𝑥) 𝑑𝑥 = 1

2𝑟2
−

𝜋
2

2𝛽2
csch2 (𝑟𝜋

𝛽
) , (10)

where csch(𝑥) denotes the hyperbolic cosecant of 𝑥 defined by

csch (𝑥) = 1

sinh (𝑥)
=

2

𝑒𝑥 − 𝑒−𝑥
. (11)

Similarly, for 𝑟 > 0 and 𝑛 ⩾ 0 an integer

∫

∞

0

𝑥
2𝑛

𝑒𝑥 − 1
sin (𝑟𝑥) 𝑑𝑥 = (−1)

𝑛
𝜕
2𝑛

𝜕𝑟2𝑛
(
𝜋

2
coth (𝑟𝜋) − 1

2𝑟
) ,

(12)

where coth(𝑥) denotes the hyperbolic cotangent of 𝑥 defined by

coth (𝑥) = cosh (𝑥)
sinh (𝑥)

=
𝑒
2𝑥

+ 1

𝑒2𝑥 − 1
. (13)

Finally, for 𝑟 > 0, Re(𝛽) > 0, and 𝑛 ⩾ 0 an integer

∫

∞

0

𝑥
𝑛

𝑒
−𝛽𝑥 cos (𝑟𝑥) 𝑑𝑥 = (−1)

𝑛
𝜕
𝑛

𝜕𝛽𝑛
(

𝛽

𝛽2 + 𝑟2
) . (14)

Themain theorem of this note is stated next. It gives three
expressions for the Mathieu series in a semi-integral form.

Theorem 2. The Mathieu series 𝑆(𝑟) has the following repre-
sentations

𝑆 (𝑟) =
𝜋

𝑟
coth (𝜋𝑟) − ( 𝜋

sinh (𝜋𝑟)
)

2

−
1

𝑟
∫

∞

0

cosh (𝑥) + 1
sinh (𝑥)

𝑔 (𝑥) sin (𝑟𝑥) 𝑑𝑥,
(15)

𝑆 (𝑟) =
1

𝑟2
−

1

4𝑟4
+ (

𝜋

2𝑟 sinh (𝜋𝑟)
)

2

+
1

𝑟2
∫

∞

0

(
1

𝑥
−
1

2

cosh (𝑥) + 1
sinh (𝑥)

) 𝑔 (𝑥) cos (𝑟𝑥) 𝑑𝑥,

(16)

𝑆 (𝑟) =
1

𝑟2
−
1

𝑟4
+

𝜋

2𝑟3
coth (𝜋𝑟)

+
1

2
(

𝜋

𝑟 sinh (𝜋𝑟)
)

2

+
2

𝑟3
∫

∞

0

𝑔
󸀠

(𝑥)

𝑒𝑥 − 1
sin (𝑟𝑥) 𝑑𝑥,

(17)

where sinh(𝑥) and cosh(𝑥) denote the hyperbolic sine and
cosine functions, respectively, 𝑔(𝑥) = 𝑥/(𝑒

𝑥

− 1), and 𝑔
󸀠

(𝑥)

denotes its first derivative.

Proof. Let 𝑔(𝑥) = 𝑥/(𝑒
𝑥

−1). Themain argument in the proof
is the observation that 𝑔(𝑥) satisfies the nonlinear differential
equation

𝑔
󸀠

(𝑥) = −𝑔 (𝑥) +
𝑔 (𝑥)

𝑥
−
𝑔
2

(𝑥)

𝑥
, (18)

which may be also written in the form

𝑔 (𝑥) =
𝑔 (𝑥)

𝑥
−
𝑔
2

(𝑥)

𝑥
− 𝑔
󸀠

(𝑥) . (19)

Inserting the relation in (4) and using (12) with 𝑛 = 0 give

𝑆 (𝑟) = −
1

2𝑟2
+
𝜋

2𝑟
coth (𝜋𝑟)

−
1

𝑟
∫

∞

0

(
𝑔
2

(𝑥)

𝑥
+ 𝑔
󸀠

(𝑥)) sin (𝑟𝑥) 𝑑𝑥.
(20)

Since

𝑔
2

(𝑥)

𝑥
= −

1

2
(𝑔 (𝑥) − 𝑔 (𝑥) coth(𝑥

2
)) , (21)
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we see that

𝑆 (𝑟) = −
1

𝑟2
+
𝜋

𝑟
coth (𝜋𝑟)

−
1

𝑟
∫

∞

0

(𝑔 (𝑥) coth(𝑥
2
) + 2𝑔

󸀠

(𝑥)) sin (𝑟𝑥) 𝑑𝑥.

(22)

Integration by parts gives

∫

∞

0

𝑔
󸀠

(𝑥) sin (𝑟𝑥) 𝑑𝑥 = −𝑟∫

∞

0

𝑔 (𝑥) cos (𝑟𝑥) 𝑑𝑥, (23)

which is easily evaluated using (10) with 𝛽 = 1. Finally, the
elementary relation

coth(𝑥
2
) =

1

tanh (𝑥/2)
=
cosh (𝑥) + 1
sinh (𝑥)

(24)

establishes (15). Integrating (4) by parts results in

𝑆 (𝑟) =
1

𝑟2
+
1

𝑟2
∫

∞

0

𝑔
󸀠

(𝑥) cos (𝑟𝑥) 𝑑𝑥. (25)

Equations (18) and (10) give

𝑆 (𝑟) =
1

𝑟2
−

1

2𝑟4
+
1

2
(

𝜋

𝑟 sinh (𝜋𝑟)
)

2

+
1

𝑟2
∫

∞

0

(
𝑔 (𝑥)

𝑥
−
𝑔
2

(𝑥)

𝑥
) cos (𝑟𝑥) 𝑑𝑥.

(26)

Let 𝐺(𝑟) denote the last component of (26); that is,

𝐺 (𝑟) =
1

𝑟2
∫

∞

0

(
𝑔 (𝑥)

𝑥
−
𝑔
2

(𝑥)

𝑥
) cos (𝑟𝑥) 𝑑𝑥. (27)

Then, 𝐺(𝑟) can be evaluated in two different ways. First, the
relation from (21) in combination with (10) shows that

𝐺 (𝑟) =
1

4𝑟4
− (

𝜋

2𝑟 sinh (𝜋𝑟)
)

2

+
1

𝑟2
∫

∞

0

(
1

𝑥
−
1

2

cosh (𝑥) + 1
sinh (𝑥)

) 𝑔 (𝑥) cos (𝑟𝑥) 𝑑𝑥.

(28)

This proves (16). Finally, by the rule of l’Hospital,

lim
𝑥→0

(
𝑔 (𝑥)

𝑥
−
𝑔
2

(𝑥)

𝑥
) = lim
𝑥→0

𝑒
𝑥

− 1 − 𝑥

(𝑒𝑥 − 1)
2
=
1

2
,

lim
𝑥→∞

(
𝑔 (𝑥)

𝑥
−
𝑔
2

(𝑥)

𝑥
) = 0.

(29)

Splitting the integrand of 𝐺(𝑟) into two parts and integrating
by parts in each case, we obtain

𝐺 (𝑟) =
1

𝑟3
∫

∞

0

(
𝑒
𝑥

+ 1

(𝑒𝑥 − 1)
2
−

2𝑥𝑒
𝑥

(𝑒𝑥 − 1)
3
) sin (𝑟𝑥) 𝑑𝑥. (30)

In the last equation we have used the fact that

lim
𝑥→0

sin (𝑟𝑥)
𝑒𝑥 − 1

= lim
𝑥→0

𝑥 sin (𝑟𝑥)
(𝑒𝑥 − 1)

2
= 𝑟. (31)

Since
𝑒
𝑥

+ 1

(𝑒𝑥 − 1)
2
=

1

𝑒𝑥 − 1
+

2

(𝑒𝑥 − 1)
2
, (32)

𝐺(𝑟) is equal to

𝐺 (𝑟) =
1

𝑟3
∫

∞

0

sin (𝑟𝑥)
𝑒𝑥 − 1

𝑑𝑥

+
1

𝑟3
∫

∞

0

(
2

(𝑒𝑥 − 1)
2
−

2𝑥𝑒
𝑥

(𝑒𝑥 − 1)
3
) sin (𝑟𝑥) 𝑑𝑥.

(33)

For the first integral we apply once more the result from (12)
with 𝑛 = 0. Direct calculation shows that the expression
in brackets under the second integral sign is equal to
2𝑔
󸀠

(𝑥)/(𝑒
𝑥

− 1). This completes the proof.

The elementary relation in (18) seems to have been
overseen in the literature. It allows to express 𝑆(𝑟) in terms
of the hyperbolic sine and cosine functions, respectively.
The representations may turn out to be useful to study the
properties of 𝑆(𝑟). For the remainder of this note, however,
we will mainly work with (15). The equation will be used to
infer interesting consequences, which we are going to present
immediately. Additionally, in Section 3 it will be outlined that
(18) is also useful to study some topics that are related to the
evaluation of 𝑆(𝑟).

Concerning the integrands in Theorem 2 we make the
following observations. Firstly, standard arguments show that
(cosh(𝑥) + 1)/ sinh(𝑥)𝑔(𝑥) > 0 for 𝑥 > 0 and

lim
𝑥→0

cosh (𝑥) + 1
sinh (𝑥)

𝑔 (𝑥) sin (𝑟𝑥) = 2𝑟. (34)

Secondly, 1/𝑥 − 1/2(cosh(𝑥) + 1)/ sinh(𝑥)𝑔(𝑥) < 0 for 𝑥 > 0

and

lim
𝑥→0

(
1

𝑥
−
1

2

cosh (𝑥) + 1
sinh (𝑥)

) 𝑔 (𝑥) cos (𝑟𝑥) = 0. (35)

Finally, since 𝑒𝑥−1 < 𝑥𝑒
𝑥 for 𝑥 > 0, it is clear that 𝑔󸀠(𝑥)/(𝑒𝑥−

1) < 0 and

lim
𝑥→0

𝑔
󸀠

(𝑥) sin (𝑟𝑥)
𝑒𝑥 − 1

= −
𝑟

2
. (36)

Figure 1 illustrates the results from Theorem 2 numerically.
𝑆(𝑟) is plotted together with (15)–(17), where the new rep-
resentations are decomposed into nonintegral and integral
parts (termed first and second parts, resp.). More precisely,
this means that (15) is decomposed in the following manner:

First Part = 𝜋

𝑟
coth (𝜋𝑟) − ( 𝜋

sinh (𝜋𝑟)
)

2

,

Second Part = −
1

𝑟
∫

∞

0

cosh (𝑥) + 1
sinh (𝑥)

𝑔 (𝑥) sin (𝑟𝑥) 𝑑𝑥.
(37)

Equations (16) and (17) are decomposed analogously.
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Figure 1: Numerical (graphical) illustrations of the results fromTheorem 2.

A first interesting consequence of the theorem is the
following closed-form evaluation of an integral.

Corollary 3. Let 𝑔(𝑥) = 𝑥/(𝑒
𝑥

− 1). Then, it holds that

∫

∞

0

cosh (𝑥) + 1
sinh (𝑥)

𝑔 (𝑥) 𝑥 𝑑𝑥 = 2 (2𝜁 (2) − 𝜁 (3)) ≈ 4.1756.

(38)

Proof. From (1) it is obvious that lim
𝑟→0

𝑆(𝑟) = 2𝜁(3).
Further, from the identity for Bernoulli numbers (see [14])

∫

∞

0

𝑥
2𝑛−1

𝑒𝑝𝑥 − 1
𝑑𝑥 = (−1)

𝑛−1

(
2𝜋

𝑝
)

2𝑛

𝐵
2𝑛

4𝑛
, 𝑛 = 1, 2, 3, . . . ,

(39)

and the fact that 𝐵
2
= 1/6, we easily deduce that

lim
𝑟→0

2∫

∞

0

𝑔 (𝑥) cos (𝑟𝑥) 𝑑𝑥

= lim
𝑟→0

(
1

𝑟2
− (

𝜋

sinh (𝜋𝑟)
)

2

) = 2𝜁 (2) ,

lim
𝑟→0

(
𝜋

𝑟
coth (𝜋𝑟) − 1

𝑟2
) = 2𝜁 (2) .

(40)

Hence,

lim
𝑟→0

(
𝜋

𝑟
coth (𝜋𝑟) − ( 𝜋

sinh (𝜋𝑟)
)

2

) = 4𝜁 (2) . (41)

The assertion follows from (15).

It is clear that a successive repetition of integration by
parts in Theorem 2 will produce a range of other expressions
for 𝑆(𝑟). Among others, from (15) and the fact that

tanh(𝑥
2
) =

cosh (𝑥) − 1
sinh (𝑥)

(42)

it is fairly easy to produce the following characterization:

𝑆 (𝑟) =
𝜋

𝑟
coth (𝜋𝑟) − ( 𝜋

sinh (𝜋𝑟)
)

2

+ ∫

∞

0

ln (cosh (𝑥) − 1) 𝑔 (𝑥) cos (𝑟𝑥) 𝑑𝑥

+
1

𝑟
∫

∞

0

ln (cosh (𝑥) − 1) 𝑔󸀠 (𝑥) sin (𝑟𝑥) 𝑑𝑥.

(43)

In the above characterization the sine and cosine functions
appear simultaneously as integrands. Now, in view of the
previous proof and (18) it is straightforward to get

∫

∞

0

ln (cosh (𝑥) − 1) (2𝑔 (𝑥) − 𝑔 (𝑥) 𝑔 (−𝑥)) 𝑑𝑥

= 2 (𝜁 (3) − 2𝜁 (2)) ,

(44)

where we have used the relation 𝑥 + 𝑔(𝑥) = 𝑔(−𝑥). Further-
more, since direct computation verifies that

𝑔 (𝑥) 𝑔 (−𝑥) =
1

2
𝑥
2

1

cosh (𝑥) − 1 (45)
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the last integral may be written in the form

∫

∞

0

ln (cosh (𝑥) − 1) 𝑔 (𝑥) 𝑑𝑥

= 𝜁 (3) − 2𝜁 (2) + ∫

∞

0

(
𝑥

2
)

2 ln (cosh (𝑥) − 1)
cosh (𝑥) − 1

𝑑𝑥.

(46)

A further interesting consequence of the previous theorem
is the following new integral-type representation for the
alternating Mathieu series 𝑆∗(𝑟).

Proposition 4. The alternating Mathieu series 𝑆∗(𝑟) may be
represented as

𝑆
∗

(𝑟) = −𝑆 (𝑟) +
𝜋

2

cosh (𝜋𝑟) − 1
sinh (𝜋𝑟)

(
1

𝑟
+

𝜋

sinh (𝜋𝑟)
) + 𝐽 (𝑟) ,

(47)

with

𝐽 (𝑟) =
1

𝑟
∫

∞

0

(
1

cosh (𝑥) + 1
−

1

sinh (𝑥)
) 𝑔 (𝑥) sin (𝑟𝑥) 𝑑𝑥.

(48)

Proof. We start with the identity

𝑆
∗

(𝑟) = 𝑆 (𝑟) −
1

4
𝑆 (

𝑟

2
) . (49)

In view of (15) and applying the relation

coth(𝜋𝑟
2
) = coth (𝜋𝑟) + 1

sinh (𝜋𝑟)
, (50)

we obtain

𝑆
∗

(𝑟) =
𝜋

2𝑟
coth (𝜋𝑟) − 𝜋

2𝑟

1

sinh (𝜋𝑟)

+ (
𝜋

2 sinh ((1/2)𝜋𝑟)
)

2

− (
𝜋

sinh (𝜋𝑟)
)

2

+ 𝐼 (𝑟) ,

(51)

where

𝐼 (𝑟) = −
1

𝑟
∫

∞

0

cosh (𝑥) + 1
sinh (𝑥)

𝑔 (𝑥) sin (𝑟𝑥) 𝑑𝑥

+
1

2𝑟
∫

∞

0

cosh (𝑥) + 1
sinh (𝑥)

𝑔 (𝑥) sin(1
2
𝑟𝑥) 𝑑𝑥.

(52)

For the second integral, a change of variable (𝑦 = 1/2𝑥) is
used in combination with themultiple-angle formulas for the
hyperbolic sine and cosine functions, respectively, to get

cosh (2𝑥) + 1
sinh (2𝑥)

= coth (𝑥) , (53)

and hence

𝐼 (𝑟) = −
1

𝑟
∫

∞

0

( (𝑔 (𝑥) − 𝑔 (2𝑥)) coth (𝑥)

+
𝑔 (𝑥)

sinh (𝑥)
) sin (𝑟𝑥) 𝑑𝑥.

(54)

Next, since

𝑔 (2𝑥) =
2𝑔 (𝑥)

𝑒𝑥 + 1
, (55)

𝐼(𝑟) can be simplified to

𝐼 (𝑟) = −
1

𝑟
∫

∞

0

( coth (𝑥) coth(𝑥
2
)

+
1

sinh (𝑥)
) 𝑔 (𝑥) sin (𝑟𝑥) 𝑑𝑥.

(56)

The relation

coth (𝑥) coth(𝑥
2
) =

cosh (𝑥)
cosh (𝑥) + 1

= 1 −
1

cosh (𝑥) + 1
(57)

shows that 𝐼(𝑟) = −𝑆(𝑟)+𝐽(𝑟).The final formula follows from

(
𝜋

2 sinh ((1/2)𝜋𝑟)
)

2

− (
𝜋

sinh (𝜋𝑟)
)

2

=
𝜋
2

sinh2 (𝜋𝑟)
(cosh2 (1

2
𝜋𝑟) − 1)

(58)

and the half-angle formula

cosh (1
2
𝑥) = √

cosh (𝑥) + 1
2

. (59)

Corollary 5. It holds that

∫

∞

0

(
1

cosh (𝑥) + 1
−

1

sinh (𝑥)
) 𝑔 (𝑥) 𝑥 𝑑𝑥

=
7

2
𝜁 (3) − 3𝜁 (2) ≈ −0.7276,

(60)

∫

∞

0

(
1

cosh (𝑥) + 1
+ coth (𝑥)) 𝑔 (𝑥) 𝑥 𝑑𝑥

=
3

2
𝜁 (3) + 𝜁 (2) ≈ 3.4480.

(61)

Proof. We have lim
𝑟→0

(𝑆
∗

(𝑟)+𝑆(𝑟)) = 7/2𝜁(3). Additionally,
using similar arguments as in Corollary 3, it can be shown
that

lim
𝑟→0

(
𝜋

2

cosh (𝜋𝑟) − 1
sinh (𝜋𝑟)

(
1

𝑟
+

𝜋

sinh (𝜋𝑟)
)) = 3𝜁 (2) . (62)

This proves the first expression. The second follows from
combining (38) and (60).

The next assertion provides a recursion formula for the
Mathieu series. Surprisingly, it is also a consequence of
Proposition 4.

Corollary 6. For 𝑟 > 0 define the function 𝑓(𝑟) as

𝑓 (𝑟) =
𝜋

2

cosh (𝜋𝑟) − 1
sinh (𝜋𝑟)

(
1

𝑟
+

𝜋

sinh (𝜋𝑟)
) + 𝐽 (𝑟) , (63)
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where 𝐽(𝑟) is given in (48).Then, for 𝑛 ⩾ 1 one has the recursion
formula

𝑆 (
𝑟

2𝑛
) = 2
3𝑛

𝑆 (𝑟) −

𝑛−1

∑

𝑖=0

2
3𝑖+2

𝑓(
𝑟

2𝑛−(𝑖+1)
) . (64)

Proof. Combine (47) and (49) to get

𝑆 (
𝑟

2
) = 8𝑆 (𝑟) − 4𝑓 (𝑟) . (65)

Successive repetition of the identity establishes the stated
formula.

3. Evaluation of a Related Series

It is interesting to mention that (18) may be used to prove a
result for a closed-form evaluation of an infinite series that is
related to 𝑆(𝑟). More precisely, if we define the function 𝑇(𝑟)
for 𝑟 ∈ R by the infinite series

𝑇 (𝑟) =

∞

∑

𝑛=1

𝑛
2

− 𝑟
2

(𝑛2 + 𝑟2)
2
, 𝑇 (0) = 𝜁 (2) =

𝜋
2

6
, (66)

then 𝑆(𝑟) and 𝑇(𝑟) are connected via the following relation-
ship. Consider the (complex) function

𝑔 (𝑧) =

∞

∑

𝑛=0

1

(𝑛 + 𝑧)
2
= (

𝑑

𝑑𝑧
)

2

ln Γ (𝑧) , 𝑧 ̸= 0, −1, −2, . . .

(67)

with Γ(𝑧) being the Gamma function. Note first that

∞

∑

𝑛=1

1

(𝑛 + 𝑖𝑟)
2
=

∞

∑

𝑛=1

(𝑛 − 𝑖𝑟)
2

(𝑛2 + 𝑟2)
2
= 𝑇 (𝑟) − 𝑖𝑟𝑆 (𝑟) . (68)

Comparing the two equations we see that

𝑇 (𝑟) − 𝑖𝑟𝑆 (𝑟) = 𝑔 (1 + 𝑖𝑟) = 𝑔 (𝑖𝑟) +
1

𝑟2
. (69)

The function 𝑇(𝑟) admits an exact evaluation (see [7]) for
which we can provide a new elementary proof applying
the analytical structure of 𝑆(𝑟). However, in contrary to the
pervious section where we have focused on integral-type
expressions, we change the point of view and work with
summation-type representations of 𝑆(𝑟).

Proposition 7. The function 𝑇(𝑟) can be evaluated exactly as

𝑇 (𝑟) =
1

2𝑟2
(1 − (

𝜋𝑟

sinh (𝜋𝑟)
)

2

) , 𝑟 ̸= 0. (70)

Proof. Once more, let 𝑔(𝑥) = 𝑥/(𝑒
𝑥

− 1). We start with (18)
and (26). Since

1

𝑒𝑥 − 1
=

∞

∑

𝑛=1

𝑒
−𝑛𝑥

, 𝑥 > 0, (71)

we have
1

(𝑒𝑥 − 1)
2
=

∞

∑

𝑛=1

𝑛𝑒
−(𝑛+1)𝑥

, 𝑥 > 0,

𝑔 (𝑥)

𝑥
−
𝑔
2

(𝑥)

𝑥
=

∞

∑

𝑛=1

𝑛𝑒
−𝑛𝑥

−

∞

∑

𝑛=1

𝑛𝑒
−(𝑛+1)𝑥

− 𝑥

∞

∑

𝑛=1

𝑛𝑒
−(𝑛+1)𝑥

.

(72)

Thus, after interchanging summation and integration and
applying (14)

∫

∞

0

(
𝑔 (𝑥)

𝑥
−
𝑔
2

(𝑥)

𝑥
) cos (𝑟𝑥) 𝑑𝑥 = 𝐶, (73)

where

𝐶 =

∞

∑

𝑛=1

𝑛
2

𝑛2 + 𝑟2
−

∞

∑

𝑛=1

𝑛 (𝑛 + 1)

(𝑛 + 1)
2

+ 𝑟2

−

∞

∑

𝑛=1

𝑛
(𝑛 + 1)

2

− 𝑟
2

((𝑛 + 1)
2

+ 𝑟2)
2
.

(74)

This gives

𝑆 (𝑟) =

∞

∑

𝑛=1

𝑛

((𝑛 + 1)
2

+ 𝑟2)
2
+
1

𝑟2
−

1

2𝑟4
+
1

2
(

𝜋

𝑟 sinh (𝜋𝑟)
)

2

+
1

𝑟2

∞

∑

𝑛=1

(
𝑛
2

𝑛2 + 𝑟2
−

𝑛 (𝑛 + 1)

(𝑛 + 1)
2

+ 𝑟2

−
𝑛(𝑛 + 1)

2

((𝑛 + 1)
2

+ 𝑟2)
2
) .

(75)

From the identity
∞

∑

𝑛=1

𝑛

((𝑛 + 1)
2

+ 𝑟2)
2
=
1

2
𝑆 (𝑟) −

∞

∑

𝑛=1

1

(𝑛2 + 𝑟2)
2 (76)

we arrive at

𝑆 (𝑟) = −

∞

∑

𝑛=1

2

(𝑛2 + 𝑟2)
2
+
2

𝑟2
−
1

𝑟4
+ (

𝜋

𝑟 sinh (𝜋𝑟)
)

2

+
2

𝑟2

∞

∑

𝑛=1

(
𝑛
2

𝑛2 + 𝑟2
−

𝑛 (𝑛 + 1)

(𝑛 + 1)
2

+ 𝑟2

−
𝑛(𝑛 + 1)

2

((𝑛 + 1)
2

+ 𝑟2)
2
) .

(77)
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Next, we simplify the sums in the above equation for 𝑆(𝑟)
further. Using the fact that 𝑛(𝑛 + 1) = (𝑛 + 1)

2

− (𝑛 + 1) it
is straightforward to show that

∞

∑

𝑛=1

(
𝑛
2

𝑛2 + 𝑟2
−

𝑛 (𝑛 + 1)

(𝑛 + 1)
2

+ 𝑟2
)

= 𝑟
2

∞

∑

𝑛=1

(
1

(𝑛 + 1)
2

+ 𝑟2
−

1

𝑛2 + 𝑟2
)

+

∞

∑

𝑛=1

𝑛 + 1

(𝑛 + 1)
2

+ 𝑟2

= −
𝑟
2

1 + 𝑟2
+

∞

∑

𝑛=1

𝑛 + 1

(𝑛 + 1)
2

+ 𝑟2
.

(78)

The last identity is true since the first sum on the right-hand
side of the equality telescopes. This gives

𝑆 (𝑟) = −
2

1 + 𝑟2
−

∞

∑

𝑛=1

2

(𝑛2 + 𝑟2)
2
+
2

𝑟2
−
1

𝑟4

+ (
𝜋

𝑟 sinh (𝜋𝑟)
)

2

−
2

𝑟2 (1 + 𝑟2)

+
2

𝑟2

∞

∑

𝑛=1

(
𝑛

𝑛2 + 𝑟2
−

𝑛(𝑛 + 1)
2

((𝑛 + 1)
2

+ 𝑟2)
2
) ,

(79)

which may be written as

𝑆 (𝑟) =

∞

∑

𝑛=1

−2

(𝑛2 + 𝑟2)
2
+
2

𝑟2
(−

1

2𝑟2
+
1

2
(

𝜋

sinh (𝜋𝑟)
)

2

)

+
2

𝑟2

∞

∑

𝑛=1

(
𝑛

𝑛2 + 𝑟2
−

𝑛(𝑛 + 1)
2

((𝑛 + 1)
2

+ 𝑟2)
2
) .

(80)

Finally, notice that

2

𝑟2

∞

∑

𝑛=1

(
𝑛

𝑛2 + 𝑟2
−

𝑛(𝑛 + 1)
2

((𝑛 + 1)
2

+ 𝑟2)
2
) =

2

𝑟2

∞

∑

𝑛=1

𝑛𝑟
2

+ 𝑛
2

(𝑛2 + 𝑟2)
2
.

(81)

This leads to canceling out 𝑆(𝑟) in (80) and the proof is
complete.

Remark 8. Using the further observation that𝑔2(𝑥)/𝑥may be
expressed as

𝑔
2

(𝑥)

𝑥
= 𝑥𝑒
−2𝑥

(1 +
𝑔 (𝑥)

𝑥
+ 𝑒
𝑥

(
𝑔 (𝑥)

𝑥
)

2

)

=
𝑥𝑒
−𝑥

𝑒𝑥 − 1
+

𝑥𝑒
−𝑥

(𝑒𝑥 − 1)
2

(82)

it is possible to derive the following summation-type form of
𝑆(𝑟):

𝑆 (𝑟) =

− (1 + 𝑟
4

)

(𝑟2 (1 + 𝑟2))
2
+ (

𝜋

𝑟 sinh (𝜋𝑟)
)

2

+
2

𝑟2

∞

∑

𝑛=1

(
𝑛 − 1

𝑛2 + 𝑟2
−

𝑛(𝑛 + 2)
2

((𝑛 + 2)
2

+ 𝑟2)
2
) .

(83)

4. Conclusion

In this paper new expressions for the Mathieu series were
derived in terms of hyperbolic functions. To derive the
new identities, a basic property of the function 𝑥/(𝑒

𝑥

− 1)

was utilized. Using a particular identity it was possible to
prove a new relationship between the Mathieu series and
the alternating variant. Also, a new recursion formula and
some interesting closed-form evaluations of definite integrals
involving hyperbolic functions were established. Finally, a
new elementary proof for an evaluation of an infinite series
related to the Mathieu series was presented.

It would be interesting to knowwhether the new identities
can be used to derive new (double) inequalities for the series.
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[10] T. K. Pogány and Ž. Tomovski, “On multiple generalized
Mathieu series,” Integral Transforms and Special Functions, vol.
17, no. 4, pp. 285–293, 2006.
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