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We derive a formula for the reliability of a 𝑑-dimensional consecutive-𝑘-out-of-𝑛:F system, that is, a formula for the probability
that an 𝑛

1
× ⋅ ⋅ ⋅ × 𝑛

𝑑
array whose entries are (independently of each other) 0 with probability 𝑝 and 1 with probability 𝑞 = 1−𝑝 does

not include a contiguous 𝑠
1
× ⋅ ⋅ ⋅ × 𝑠

𝑑
subarray whose every entry is 1.

1. Introduction

Consider a pipeline punctuated by several pumping stations.
Suppose the pumping stations are redundant in that if one
of them fails, then its predecessor will be strong enough to
pump the fluid past it to the next pumping station. Perhaps
each pump will even be able to compensate for the failure of
its successor and its successor’s successor but perhaps not for
the failure of the first 3 pumping stations in the chain of its
successors. In this case, the system fails if and only if among
the sequence of pumping stations there exists a consecutive
run of 3 or more failed pumping stations. This is an example
of what is known as a consecutive-𝑘-out-of-𝑛:F system.

Suppose that such a system having 𝑛 nodes fails if and
only if 𝑘 consecutive nodes fail, and suppose that any given
node in the systemworks correctlywith probability𝑝 ∈ [0, 1],
independently of the other nodes. Then the probability that
any given node fails is 𝑞 = 1 − 𝑝. The reliability of the system
is the probability 𝑅(𝑘, 𝑛; 𝑞) that the system does not fail.Then
𝑅(𝑘, 𝑛; 𝑞) = 1 − 𝑃(𝑘, 𝑛; 𝑞), where 𝑃(𝑘, 𝑛; 𝑞) is the probability
that the sequence of 𝑛 nodes includes a contiguous interval of
𝑘 or more failed nodes. Here we are using notation as in [1].

As noted in [1], the concept of the reliability of a consec-
utive system was introduced to Engineering by Kontoleon in
1980 [2]. In the following year Chiang and Niu [3] discussed
some applications of consecutive systems. The concept has
been generalised in several directions, for instance, to systems
deemed to have failed if and only if they include 𝑘 consecutive

failed components or 𝑓 failed components [4], 𝑘 consecutive
components of which at least 𝑟 have failed [5], and at least𝑚
nonoverlapping runs of 𝑘 consecutive failed components [6].
In 2001 Chang et al. published a book on the subject [7]. Four
reviews are also available [8–11].

An exact formula for 𝑅(𝑘, 𝑛; 𝑞) first appeared in [12]. de
Moivre’s approach depends on deriving the generating func-
tion (see [13]) for 𝑃(𝑘, 𝑛; 𝑞). This work has been rephrased in
a modern style in [14]. Much later a different exact formula
for 𝑅(𝑘, 𝑛; 𝑞) using Markov chains was found [15–17].

Both of these exact formulae for 𝑅(𝑘, 𝑛; 𝑞) are difficult
to use in Engineering, where values of 𝑘 and 𝑛 may be very
large. Efficient algorithms have been found [18, 19], but even
with modern computing resources, evaluating the formulae
takes a lot of time and memory. This problem has been
addressed at length in the study of upper and lower bounds
for 𝑅(𝑘, 𝑛; 𝑞). Such bounds have been found which are close
approximations to the exact value of 𝑅(𝑘, 𝑛; 𝑞) and which are
also much easier to evaluate than the exact value of 𝑅(𝑘, 𝑛; 𝑞).
In [1, 20, 21] the authors compare many such results from the
1980s to the present day.

Dăuş and Beiu were the first to use de Moivre’s original
formula to derive upper and lower bounds for 𝑅(𝑘, 𝑛; 𝑞). As
shown in [1] this method compares very favourably with the
previous upper and lower bounds, especially for small 𝑞, and
also with the exact algorithms given in [18, 19] (using their
bounds is about 100 times faster than the algorithm from [18]
and 1000 times faster than the algorithm from [19]).
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One possible extension to higher dimensions is as follows.
Given 𝑑 ∈ N and 𝑛1, 𝑛2, . . . , 𝑛𝑑 ∈ N, suppose that some
system is represented by an 𝑛1 × 𝑛2 × ⋅ ⋅ ⋅ × 𝑛𝑑 array of 0s and
1s. Suppose that each node in the array is 0 with probability
𝑝 ∈ [0, 1] and is 1 with probability 𝑞 = 1 − 𝑝, independently
of the other nodes. Suppose that 𝑠1, 𝑠2, . . . , 𝑠𝑑 ∈ N are
given, with 𝑠

𝑟
≤ 𝑛
𝑟
for each 𝑟, and suppose that the system

is deemed to have failed if and only if the 𝑑-dimensional
array includes a contiguous 𝑠1 × 𝑠2 × ⋅ ⋅ ⋅ × 𝑠𝑑 subarray of
1s. Define the reliability of the system as the probability
𝑅(𝑠1, . . . , 𝑠𝑑, 𝑛1, . . . , 𝑛𝑑; 𝑞) that the system does not fail, and let
𝑃(𝑠1, . . . , 𝑠𝑑, 𝑛1, . . . , 𝑛𝑑; 𝑞) = 1 − 𝑅(𝑠1, . . . , 𝑠𝑑, 𝑛1, . . . , 𝑛𝑑; 𝑞), so
that 𝑃(𝑠1, . . . , 𝑠𝑑, 𝑛1, . . . , 𝑛𝑑; 𝑞) is the probability that the array
includes a contiguous 𝑠1 × 𝑠2 × ⋅ ⋅ ⋅ × 𝑠𝑑 subarray of 1s.

Let us survey in chronological order some recent papers
dealing with the higher dimensional case. In [22] the 2-
dimensional special case 𝑅(𝑠, 𝑠, 𝑛, 𝑛; 𝑞) is treated. Upper and
lower bounds are found by reducing to the 1-dimensional
case. Using empirical approximations to the exact value,
𝑅(𝑠, 𝑠, 𝑛, 𝑛; 𝑞) is plotted as a function of 𝑞 for 𝑛 = 5 and
𝑠 = 2, 3, and 4, for 𝑛 = 10 and 𝑠 = 2, 4, 6, and 8, and for
𝑛 = 50 and 𝑠 = 2, 5, 10, and 20. The authors do not attempt
to find an explicit expression for 𝑅(𝑠, 𝑠, 𝑛, 𝑛; 𝑞). In [23] the
2-dimensional case is considered, for 𝑅(𝑠1, 𝑠2, 𝑛1, 𝑛2; 𝑞) with
(𝑠1, 𝑠2) ∈ {1, 𝑛1} × {1, 𝑛2}. Exact formulae are derived by
comparison with the 1-dimensional case. Similar results are
also given for a cylindrical version of the 2-dimensional array.
The 2-dimensional case 𝑅(𝑠, 𝑠, 𝑛, 𝑛; 𝑞) of [22] is revisited in
[24]. Again, upper and lower bounds are given, but in the
more general case where the probabilities of distinct nodes of
the system failing are not necessarily equal. For the general 2-
dimensional case𝑅(𝑠1, 𝑠2, 𝑛1, 𝑛2; 𝑞), recursive formulae for the
exact reliability have been given by Yamamoto andMiyakawa
[25] and also by Noguchi et al. [26]. The result presented

herein is distinct from their work, in that we give a closed-
form formula for the exact reliability as a polynomial in 𝑞, for
a general system, of arbitrary dimension. The 3-dimensional
case is treated in [27], where exact formulae for the reliability
are given in special cases analogous to those studied in [23].

In the present paper we derive general closed-form
exact formulae for𝑅(𝑠1, . . . , 𝑠𝑑, 𝑛1, . . . , 𝑛𝑑; 𝑞) and for𝑃(𝑠1, . . . ,
𝑠
𝑑
, 𝑛1, . . . , 𝑛𝑑; 𝑞), where the dimension 𝑑 ∈ N is arbitrary.

As far as the author knows, no such formulae were known
before for 𝑑 > 1, even in the case 𝑑 = 2. Indeed, in [24]
the authors write “It is very difficult (probably impossible) to
derive simple explicit formulas for the reliability of a general
2D-consecutive-𝑘-out-𝑛:F system.”

2. Results

Theorem 1 (main result). Let the terms

𝑑,

𝑠1, . . . , 𝑠𝑑,

𝑛1, . . . 𝑛𝑑,

𝑝, 𝑞,

𝑅 (𝑠1, . . . , 𝑠𝑑, 𝑛1, . . . , 𝑛𝑑; 𝑞)

𝑃 (𝑠1, . . . , 𝑠𝑑, 𝑛1, . . . , 𝑛𝑑; 𝑞)

(1)

be as in the Introduction, and let

𝐸 =

𝑑

∏

𝑟=1
{1, . . . , 𝑛

𝑟
− 𝑠
𝑟
+ 1} . (2)

Then

𝑅 (𝑠1, . . . , 𝑠𝑑, 𝑛1, . . . , 𝑛𝑑; 𝑞) = 1+ ∑

𝐽∈P(𝐸)\0

(−1)|𝐽| ∏
𝐽
󸀠
∈P(𝐽)\0

exp[(−1)|𝐽
󸀠
| ln(1

𝑞
)

𝑑

∏

𝑟=1
max(0, 𝑠

𝑟
−(max
𝑒∈𝐽
󸀠

𝑒
𝑟
−min
𝑒∈𝐽
󸀠

𝑒
𝑟
))] , (3)

𝑃 (𝑠1, . . . , 𝑠𝑑, 𝑛1, . . . , 𝑛𝑑; 𝑞) = − ∑

𝐽∈P(𝐸)\0

(−1)|𝐽| ∏
𝐽
󸀠
∈P(𝐽)\0

exp[(−1)|𝐽
󸀠
| ln(1

𝑞
)

𝑑

∏

𝑟=1
max(0, 𝑠

𝑟
−(max
𝑒∈𝐽
󸀠

𝑒
𝑟
−min
𝑒∈𝐽
󸀠

𝑒
𝑟
))] , (4)

where P(𝐴) denotes the power set of the set 𝐴, that is, the set
of subsets of 𝐴, and 0 denotes the empty set.

Theorem 1 implies the following combinatorial result.

Corollary 2. With all terms as in Theorem 1, the number
𝑎(𝑠1, . . . , 𝑠𝑑, 𝑛1, . . . , 𝑛𝑑) of failed systems among the 2∏

𝑑

𝑟=1𝑛𝑟

possible systems is

𝑎 (𝑠1, . . . , 𝑠𝑑, 𝑛1, . . . , 𝑛𝑑) = − 2
∏
𝑑

𝑟=1𝑛𝑟 ∑

𝐽∈P(𝐸)\0

(−1)|𝐽| ∏
𝐽
󸀠
∈P(𝐽)\0

exp[(−1)|𝐽
󸀠
| ln (2)

𝑑

∏

𝑟=1
max(0, 𝑠

𝑟
− (max
𝑒∈𝐽
󸀠

𝑒
𝑟
−min
𝑒∈𝐽
󸀠

𝑒
𝑟
))] . (5)

Proof. In case 𝑝 = 𝑞 = 1/2, all possible systems occur with
equal probability, so the probability measure on the power

set of the set of all systems becomes the counting measure,
divided by a factor of 2∏

𝑑

𝑟=1𝑛𝑟 .
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Setting 𝑑 = 1, 𝑛1 = 𝑛, and 𝑠1 = 2, 3, and 4 in Corollary 2
yields the sequences [28], [29], and [30], respectively. Setting
𝑑 = 2, 𝑛1 = 𝑛2 = 𝑛, and 𝑠1 = 𝑠2 = 2 in Corollary 2 yields the
sequence [31], whose complementary sequence is [32].

Proof of Theorem 1. Call a system 𝑒 an “elementary failure
case” if and only if it includes a contiguous 𝑠1×⋅ ⋅ ⋅×𝑠𝑑 subarray
of 1s, and its other elements are all 0. We identify the set of all
elementary failure cases 𝑒with the set𝐸, according to the rule

𝑒 ←→ (𝑒1, . . . , 𝑒𝑑) (6)

if and only if the (𝑖1, . . . , 𝑖𝑑)th element of 𝑒 is 1 precisely when,
for all 𝑟 ∈ {1, . . . , 𝑑},

𝑒
𝑟
≤ 𝑖
𝑟
≤ 𝑒
𝑟
+ 𝑠
𝑟
− 1. (7)

For example, in the two-dimensional case, we identify an
elementary failure case with the indices (𝑒1, 𝑒2) of the top
left corner of its contiguous subrectangle of 1s. Denote by 𝐺
the simple acyclic directed graph whose vertices are all the
possible systems and in which system 𝑏 is a direct successor
of system 𝑎 if and only if 𝑏 is obtained from 𝑎 by changing
a single 0 element to 1. Then the failed systems 𝑓 in 𝐺 are
precisely those vertices having some elementary failure case
𝑒 ∈ 𝐸 as an ancestor (including the possibility that 𝑓 = 𝑒).
Therefore if 𝐹 denotes the set of all failed systems 𝑓 (in terms
of probability, 𝐹 is the event that the system fails), then

𝐹 = ⋃

𝑒∈𝐸

the set of descendents of 𝑒, (8)

where by “𝑏 is a descendent of 𝑎” we mean to include the
possibility that 𝑏 = 𝑎. Then

𝑃 (𝑠1, . . . , 𝑠𝑑, 𝑛1, . . . , 𝑛𝑑; 𝑞) = 𝑃 (𝐹)

= 𝑃(⋃

𝑒∈𝐸

the set of descendents of 𝑒)

= ∑

𝐽∈P(𝐸)\0

(−1)|𝐽|+1

⋅ 𝑃(⋂

𝑒∈𝐽

the set of descendents of 𝑒) ,

(9)

by the Inclusion-Exclusion Principle for the probability mea-
sure on the power set of the set of all possible systems. But

⋂

𝑒∈𝐽

the set of descendents of 𝑒

= the set of descendents of hcd (𝐽) ,
(10)

where by hcd(𝐾) we mean the highest common descendent
of any given set𝐾 of vertices in𝐺. That is, in the partial order
on the vertices of 𝐺 defined by 𝑎 ≲ 𝑏 precisely when 𝑎 is an
ancestor of 𝑏, hcd(𝐾) is the least upper bound of𝐾.Moreover,

hcd (𝐽) = ⋃
𝑒∈𝐽

𝑒, (11)

where by the union of several 𝑛1 × ⋅ ⋅ ⋅ × 𝑛𝑑 systems we mean
the system whose generic element is 1 if and only if the
corresponding element in at least one of those systems is also
1. Thus

𝑃 (𝑠1, . . . , 𝑠𝑑, 𝑛1, . . . , 𝑛𝑑; 𝑞) = ∑

𝐽∈P(𝐸)\0

(−1)|𝐽|+1

⋅ 𝑃(⋂

𝑒∈𝐽

the set of descendents of 𝑒)

= ∑

𝐽∈P(𝐸)\0

(−1)|𝐽|+1

⋅ 𝑃(the set of descendents of ⋃
𝑒∈𝐽

𝑒) .

(12)

However, for any vertex 𝑎 of 𝐺,

𝑃 (the set of descendents of 𝑎)

= ∑

𝑏 is a descendent of 𝑎
𝑃 ({𝑏})

= ∑

𝑏 is a descendent of 𝑎
𝑝
𝑛1𝑛2⋅⋅⋅𝑛𝑑−𝑘𝑞

𝑘
,

(13)

where 𝑘 = 𝑘(𝑏) is the number of failed nodes in the system 𝑏.
Gathering like powers of 𝑞 in the above sum, we have

𝑃 (the set of descendents of 𝑎)

=

𝑛1𝑛2 ⋅⋅⋅𝑛𝑑

∑

𝑘=𝑘(𝑎)

(
𝑛1𝑛2 ⋅ ⋅ ⋅ 𝑛𝑑 − 𝑘 (𝑎)

𝑘 − 𝑘 (𝑎)
)𝑝
𝑛1𝑛2 ⋅⋅⋅𝑛𝑑−𝑘𝑞

𝑘

= 𝑞
𝑘(𝑎)

𝑛1𝑛2 ⋅⋅⋅𝑛𝑑

∑

𝑘=𝑘(𝑎)

(
𝑛1𝑛2 ⋅ ⋅ ⋅ 𝑛𝑑 − 𝑘 (𝑎)

𝑘 − 𝑘 (𝑎)
)𝑝
𝑛1𝑛2 ⋅⋅⋅𝑛𝑑−𝑘𝑞

𝑘−𝑘(𝑎)

= 𝑞
𝑘(𝑎)

𝑛1𝑛2 ⋅⋅⋅𝑛𝑑−𝑘(𝑎)

∑

𝑗=0
(
𝑛1𝑛2 ⋅ ⋅ ⋅ 𝑛𝑑 − 𝑘 (𝑎)

𝑗
)𝑝
𝑛1𝑛2 ⋅⋅⋅𝑛𝑑−𝑘(𝑎)−𝑗𝑞

𝑗

= 𝑞
𝑘(𝑎)
(𝑝 + 𝑞)

𝑛1𝑛2 ⋅⋅⋅𝑛𝑑−𝑘(𝑎)
= 𝑞
𝑘(𝑎)
.

(14)

That is, for any vertex 𝑎 of 𝐺,

𝑃 (the set of descendents of 𝑎) = 𝑞𝑘(𝑎), (15)

where 𝑘(𝑎) denotes the number of failed nodes in the system
𝑎. Therefore from (12) we obtain

𝑃 (𝑠1, . . . 𝑠𝑑, 𝑛1, . . . 𝑛𝑑; 𝑞) = ∑

𝐽∈P(𝐸)\0

(−1)|𝐽|+1

⋅ 𝑃(the set of descendents of ⋃
𝑒∈𝐽

𝑒)

= ∑

𝐽∈P(𝐸)\0

(−1)|𝐽|+1 𝑞𝑘(⋃𝑒∈𝐽 𝑒).

(16)

The next task is to compute the number 𝑘(⋃
𝑒∈𝐽
𝑒) of 1s

in the system ⋃
𝑒∈𝐽
𝑒, where 𝐽 is some nonempty subset of
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Figure 1

the set 𝐸 of elementary failure cases 𝑒. We use the Inclusion-
Exclusion Principle again, this time for the counting measure

on the power set of the set of elements of a system, to
obtain

𝑘(⋃

𝑒∈𝐽

𝑒) = ∑

𝐽
󸀠
∈P(𝐽)\0

(−1)|𝐽
󸀠
|+1
𝑘(⋂

𝑒∈𝐽
󸀠

𝑒) . (17)

Each elementary failure case consists entirely of 0s except for
a contiguous 𝑠1 × ⋅ ⋅ ⋅ × 𝑠𝑑 subarray of 1s. Therefore ⋂

𝑒∈𝐽
󸀠 𝑒

also consists entirely of 0s except for a (possibly empty)
contiguous subarray of dimensions 𝑡1 × ⋅ ⋅ ⋅ × 𝑡𝑑, where, for
each 𝑟 ∈ {1, . . . 𝑑},

𝑡
𝑟
= max(0, (min

𝑒∈𝐽
󸀠

(𝑒
𝑟
+ 𝑠
𝑟
− 1) −max

𝑒∈𝐽
󸀠

𝑒
𝑟
+ 1))

= max(0, 𝑠
𝑟
−(max
𝑒∈𝐽
󸀠

𝑒
𝑟
−min
𝑒∈𝐽
󸀠

𝑒
𝑟
)) .

(18)

The volume of that contiguous 𝑡1 × ⋅ ⋅ ⋅ × 𝑡𝑑 subarray is equal
to 𝑘(⋂

𝑒∈𝐽
󸀠 𝑒); that is,

𝑘(⋂

𝑒∈𝐽
󸀠

𝑒) =

𝑑

∏

𝑟=1
𝑡
𝑟

=

𝑑

∏

𝑟=1
max(0, 𝑠

𝑟
−(max
𝑒∈𝐽
󸀠

𝑒
𝑟
−min
𝑒∈𝐽
󸀠

𝑒
𝑟
)) .

(19)

Considering (16), (17), and (19), we have

𝑃 (𝑠1, . . . , 𝑠𝑑, 𝑛1, . . . , 𝑛𝑑; 𝑞) = ∑

𝐽∈P(𝐸)\0

(−1)|𝐽|+1 𝑞𝑘(⋃𝑒∈𝐽 𝑒) = ∑

𝐽∈P(𝐸)\0

(−1)|𝐽|+1 exp[

[

ln (𝑞) ∑

𝐽
󸀠
∈P(𝐽)\0

(−1)|𝐽
󸀠
|+1
𝑘(⋂

𝑒∈𝐽
󸀠

𝑒)]

]

= ∑

𝐽∈P(𝐸)\0

(−1)|𝐽|+1 exp[

[

ln (𝑞) ∑

𝐽
󸀠
∈P(𝐽)\0

(−1)|𝐽
󸀠
|+1
𝑑

∏

𝑟=1
max(0, 𝑠

𝑟
−(max
𝑒∈𝐽
󸀠

𝑒
𝑟
−min
𝑒∈𝐽
󸀠

𝑒
𝑟
))]

]

= − ∑

𝐽∈P(𝐸)\0

(−1)|𝐽| ∏
𝐽
󸀠
∈P(𝐽)\0

exp[(−1)|𝐽
󸀠
| ln(1

𝑞
)

𝑑

∏

𝑟=1
max(0, 𝑠

𝑟
−(max
𝑒∈𝐽
󸀠

𝑒
𝑟
−min
𝑒∈𝐽
󸀠

𝑒
𝑟
))] ,

(20)

which proves (4). Equation (3) follows immediately.

As an example, we compute the reliabilities of 3 consecu-
tive systems, having dimensions 1, 2, and 3:

𝑅 (1, 2; 𝑞) = 1− 2𝑞 + 𝑞2,

𝑅 (1, 2, 2, 3; 𝑞) = 1− 4𝑞2 + 2𝑞3 + 4𝑞4 − 4𝑞5 + 𝑞6,

𝑅 (1, 2, 3, 2, 3, 4; 𝑞) = 1− 8𝑞6 + 4𝑞8 + 4𝑞9 + 4𝑞10

− 8𝑞11 + 18𝑞12 − 16𝑞14

− 16𝑞15 − 12𝑞16 + 40𝑞17

+ 4𝑞18 − 8𝑞19 − 8𝑞20 − 12𝑞21

+ 20𝑞22 − 8𝑞23 + 𝑞24.
(21)

See also Figure 1.

3. Conclusion

We have provided a novel formula for the reliability of
a general 𝑑-dimensional consecutive-𝑘-out-of-𝑛:F system,
as an exact polynomial in 𝑞. We believe ours to be the
first general exact closed-form formula published for the
reliability in 𝑑 dimensions. This answers an open question in
Engineering.
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