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Much research has involved the consideration of graphs which have subgraphs of a particular kind, such as cliques. Known classes
of graphs which are eigen-bi-balanced, that is, they have a pair a, b of nonzero distinct eigenvalues, whose sum and product are
integral, have been investigated. In this paper we will define a new class of graphs, called q-cliqued graphs, on 𝑞2 + 1 vertices, which
contain 𝑞 cliques each of order 𝑞 connected to a central vertex, and then prove that these 𝑞-cliqued graphs are eigen-bi-balanced
with respect to a conjugate pair whose sum is −1 and product 1 − 𝑞. These graphs can be regarded as design graphs, and we use a
specific example in an entomological experiment.

1. Introduction

There is much interest in considering graphs which have
subgraphs of a particular kind, such as cliques—see Bapat
and Sivasubramanian [1], Graham et al. [2], and Liazi et al.
[3]. Known classes of graphs which are eigen-bi-balanced
are considered in Winter and Jessop [4]. These graphs have
an associated pair of (real) conjugate eigenvalues (from
the graph’s adjacency matrix) whose sum and product are
integral. It appears that the conjugate pair arises out of the
centrality of certain vertices of the graph, which are strongly
connected (edgewise) to other vertices of the graph. For
example, the wheel graph has a central vertex connected by
its spokes to the remaining vertices of the graph. Bipartite
graphs have two sets of vertices strongly connected to each
other. The vertices of the complete graph are each strongly
connected to each other. In this paper we will define a new
class of graphs, called 𝑞-cliqued graphs, on 𝑞2 + 1 vertices,
involving a central vertex connected to 𝑞 cliques each of order
𝑞, and then prove that these 𝑞-cliqued graphs are eigen-bi-
balancedwith respect to a conjugate pair whose sum is−1 and
product 1−𝑞.These graphs can be regarded as design graphs,

and we use a specific example (𝑞 = 3) in an entomological
experiment.

2. Construction of 𝑞-Cliqued Graphs

In this section we construct a 𝑞-cliqued graph, labelled 𝐺
𝐾𝑞

∗,
for 𝑞 ≥ 2, and find the associated adjacency matrix for this
graph. We take 𝑞 copies of the complete graph on 𝑞 vertices
𝐾
𝑞
, together with a single vertex V, and construct 𝐺

𝐾𝑞

∗.
Generally, we label the central vertex V and the vertices of the
𝑖th copy of (𝐾

𝑞
)
𝑖 as V𝑖
1
, V𝑖
2
, . . . , V𝑖

𝑞
, 𝑖 = 1, 2, . . . , 𝑞.

2.1. Construction of the 2-Cliqued Graph 𝐺
𝐾2

∗ and the Associ-
ated Adjacency Matrix 𝐴(𝐺

𝐾2

∗
). For 𝑞 = 2, take 2 copies of

𝐾
2
, namely, (𝐾

2
)
1 and (𝐾

2
)
2, together with a single vertex V.

Join V to V𝑖
1
, 𝑖 = 1, 2, so that V has degree 2 (Figure 1).

Join vertices V1
2
and V2

2
of (𝐾
2
)
1 and (𝐾

2
)
2 to form three

5-cycles (Figure 2).
Label the central vertex V as vertex V

1
and then for

each subclique, label the vertices V𝑖
𝑗
= V
1+(𝑖−1)𝑞+𝑗

, 1 ≤ 𝑖 ≤ 2,
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Figure 1: Construction of 𝐺
𝐾2

∗, (𝑎).
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Figure 2: Construction of 𝐺
𝐾2

∗, (𝑏).

1 ≤ 𝑗 ≤ 2, that is, V1
1
= V
2
, V1
2
= V
3
, V2
1
= V
4
, and V2

2
= V
5
.

Then the 5 × 5 adjacency matrix of 𝐺
𝐾2

∗, where the rows are
V
1
, . . . , V

5
and the columns are V

1
, . . . , V

5
, is

𝐴(𝐺
𝐾2

∗
) =

[
[
[
[
[
[
[
[

[

0 1 0 1 0

1 0 1 0 0

0 1 0 0 1

1 0 0 0 1

0 0 1 1 0

]
]
]
]
]
]
]
]

]

. (1)

By definition of det(𝜆𝐼−𝐴(𝐺
𝐾2

∗
)), the characteristic polyno-

mial of 𝐴(𝐺
𝐾2

∗
) is 𝜆5 − 5𝜆3 + 5𝜆 − 2. The eigenvalues of this

adjacency matrix are 2, (−1 + √5)/2 (twice) and (−1 − √5)/2
(twice). The conjugate eigenpair is (−1 ± √5)/2. The graph
𝐺
𝐾2

∗ does not contain a 2-lantern subgraph so it is a design
graph, namely, a 2-cliqued design graph.

2.2. Construction of the 3-Cliqued Graph 𝐺
𝐾3

∗ and the Asso-
ciated Adjacency Matrix 𝐴(𝐺

𝐾3

∗
). For 𝑞 = 3, take 3 copies

of 𝐾
3
, namely, (𝐾

3
)
1, (𝐾
3
)
2, and (𝐾

3
)
3, together with a single

central vertex V. Join V to V𝑖
1
, 𝑖 = 1, 2, 3. Join the remaining

vertices of the 3 copies of𝐾
3
to form three 5-cycles, that is, V1

3

and V2
2
, V2
3
and V3
2
, V3
3
, and V1

2
(Figure 3).

Label the central vertex V as vertex V
1
and then, for each

subclique, label the vertices V𝑖
𝑗
= V
1+(𝑖−1)𝑞+𝑗

, 1 ≤ 𝑖 ≤ 3, 1 ≤
𝑗 ≤ 3, that is, V1

1
= V
2
, V1
2
= V
3
, V1
3
= V
4
, V2
1
= V
5
, V2
2
= V
6
,

V2
3
= V
7
, V3
1
= V
8
, V3
2
= V
9
, and V3

3
= V
10
. Then the 10 × 10
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Figure 3: Construction of 𝐺
𝐾3

∗, (𝑏).

adjacency matrix of 𝐺
𝐾3

∗, where the rows are V
1
, . . . , V

10
and

the columns are V
1
, . . . , V

10
, is

𝐴(𝐺
𝐾3

∗
) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 1 0 1 1

1 0 1 1

1 0 1 1

1 1 0 1

1 0 1 1

1 1 0 1

1 1 0 1

1 0 1 1

1 1 0 1

1 1 1 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (2)

All blank elements are zero. The characteristic polynomial of
𝐴(𝐺
𝐾3

∗
) is 𝜆10 − 15𝜆8 − 6𝜆7 + 75𝜆6 + 48𝜆5 − 144𝜆4 − 114𝜆3 +

75𝜆
2
+ 68𝜆 + 12. The eigenvalues of this adjacency matrix

are 3, 1, −2 (twice), 1.879 (twice), −0.347 (twice), and −1.532
(twice). The conjugate eigenpair is (−1 ± √9)/2. The graph
𝐺
𝐾3

∗ does not contain a 3-lantern subgraph so it is a design
graph, namely, a 3-cliqued design graph.

2.3. General Construction of the 𝑞-Cliqued Graph 𝐺
𝐾𝑞

∗ and
the Associated Adjacency Matrix 𝐴(𝐺

𝐾𝑞

∗
). For the general

construction with 𝑞 ≥ 4, take 𝑞 copies of 𝐾
𝑞
, namely,

(𝐾
𝑞
)
1
, (𝐾
𝑞
)
2
, . . . , (𝐾

𝑞
)
𝑞, where the vertices of (𝐾

𝑞
)
𝑖 are

labelled V𝑖
𝑗
, 1 ≤ 𝑖 ≤ 𝑞 and 1 ≤ 𝑗 ≤ 𝑞. Then take a single central

vertex V and construct the 𝑞-cliqued graph 𝐺
𝐾𝑞

∗ as follows.

(1) Join V to V𝑖
1
, 1 ≤ 𝑖 ≤ 𝑞.

(2) Join V𝑖
𝑞
, the 𝑞th vertex of clique 𝑖, to V𝑖+1

2
, the 2nd vertex

in clique (𝑖+1), for 1 ≤ 𝑖 ≤ 𝑞−1. Join V𝑞
𝑞
, the 𝑞th vertex

of clique 𝑞, to V1
2
, the 2nd vertex in the 1st clique.

(3) If 𝑞 ≥ 5, join V𝑖
𝑗
, the 𝑗th vertex in clique 𝑖, to V𝑖+1

𝑗−1
, the

(𝑗 − 1)th vertex in clique (𝑖 + 1), for all 4 ≤ 𝑗 ≤ 𝑞 − 1,
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where 𝑗 is even, and for 1 ≤ 𝑖 ≤ 𝑞 − 1. Also join V𝑞
𝑗
,

the 𝑗th vertex in clique 𝑞, to V1
𝑗−1

, the (𝑗 − 1)th vertex
in the 1st clique, for all 4 ≤ 𝑗 ≤ 𝑞 − 1, where 𝑗 is even.

(4) If 𝑞 is even, join V𝑖
𝑞−1

, the (𝑞 − 1)th vertex of clique 𝑖,
to V𝑖+1
𝑞−1

, the (𝑞 − 1)th vertex of clique (𝑖 + 1), for all
𝑖 ≤ (𝑞 − 1), where 𝑖 is odd.

Label the central vertex V as vertex V
1
, and then for each

subclique, label the vertices V𝑖
𝑗
= V
1+(𝑖−1)𝑞+𝑗

, 1 ≤ 𝑖 ≤ 𝑞, 1 ≤ 𝑗 ≤
𝑞. Then, the (1 + 𝑞2) × (1 + 𝑞

2
) adjacency matrix 𝐴(𝐺

𝐾𝑞

∗
) of

𝐺
𝐾𝑞

∗, with rows V
1
, V
2
, . . . , V

1+𝑞
2 and columns V

1
, V
2
, . . . , V

1+𝑞
2 ,

has entries as follows.
(1) The diagonal entries of𝐴(𝐺

𝐾𝑞

∗
) are zero; that is, 𝑎

𝑖,𝑖
=

0, 1 ≤ 𝑖 ≤ (1 + 𝑞2).
(2) The 𝑞 subcliques yield

𝑎
1+(𝑖−1)𝑞+𝑘,1+(𝑖−1)𝑞+𝑙

= 0, 1 ≤ 𝑖 ≤ 𝑞,

1 ≤ 𝑘 ≤ 𝑞, 1 ≤ 𝑙 ≤ 𝑞, 𝑘 = 𝑙,

𝑎
1+(𝑖−1)𝑞+𝑘,1+(𝑖−1)𝑞+𝑙

= 1, 1 ≤ 𝑖 ≤ 𝑞,

1 ≤ 𝑘 ≤ 𝑞, 1 ≤ 𝑙 ≤ 𝑞, 𝑘 ̸= 𝑙.

(3)

(3) Step (1) in the construction (join V to V𝑖
1
) yields

𝑎
1,1+(𝑖−1)𝑞+1

= 1, 1 ≤ 𝑖 ≤ 𝑞,

𝑎
1+(𝑖−1)𝑞+1,1

= 1, 1 ≤ 𝑖 ≤ 𝑞.

(4)

(4) Step (2) in the construction (join V𝑖
𝑞
to V𝑖+1
2

) yields

𝑎
1+(𝑖−1)𝑞+𝑞,1+(𝑖+1−1)𝑞+2

= 𝑎
1+𝑖𝑞,3+𝑖𝑞

= 1, 1 ≤ 𝑖 ≤ 𝑞,

𝑎
1+(𝑖+1−1)𝑞+2,1+(𝑖−1)𝑞+𝑞

= 𝑎
3+𝑖𝑞,1+𝑖𝑞

= 1, 1 ≤ 𝑖 ≤ 𝑞.

(5)

(5) If 𝑞 ≥ 5, step (3) in the construction (join V𝑖
𝑗
to V𝑖+1
𝑗−1

)
yields
𝑎
1+(𝑖−1)𝑞+𝑗,𝑘

= 1, where 𝑘 = 1 + (𝑖 + 1 − 1)𝑞 + (𝑗 − 1) =
𝑖𝑞 + 𝑗, 1 ≤ 𝑖 ≤ 𝑞, 4 ≤ 𝑗 ≤ 𝑞 − 1, and 𝑗 is even.
If 𝑘 > 1+𝑞2, then𝑚 = 𝑘−(1+𝑞

2
) and 𝑎

1+(𝑖−1)𝑞+𝑗,𝑚
= 1.

𝑎
𝑘,1+(𝑖−1)𝑞+𝑗

= 1, where 𝑘 = 1 + (𝑖 + 1 − 1)𝑞 + (𝑗 − 1) =
𝑖𝑞 + 𝑗, 1 ≤ 𝑖 ≤ 𝑞, 4 ≤ 𝑗 ≤ 𝑞 − 1, and 𝑗 is even.
If 𝑘 > 1+𝑞2, then𝑚 = 𝑘−(1+𝑞

2
) and 𝑎

𝑚,1+(𝑖−1)𝑞+𝑗
= 1.

(6) If 𝑞 is even, step (4) in the construction (join V𝑖
𝑞−1

to
V𝑖+1
𝑞−1

) yields
𝑎
1+(𝑖−1)𝑞+(𝑞−1),𝑙

= 𝑎
𝑖𝑞,𝑙
= 1, where 𝑙 = 1 + (𝑖 + 1 − 1)𝑞 +

(𝑞 − 1) = (𝑖 + 1)𝑞, 1 ≤ 𝑖 ≤ 𝑞, and 𝑖 is odd.
If 𝑙 > 1 + 𝑞2, then 𝑛 = 𝑙 − (1 + 𝑞2) and 𝑎

𝑖𝑞,𝑛
= 1.

𝑎
𝑙,1+(𝑖−1)𝑞+(𝑞−1)

= 𝑎
𝑙,𝑖𝑞
= 1, where 𝑙 = 1 + (𝑖 − 1 + 1)𝑞 +

(𝑞 − 1) = (𝑖 + 1)𝑞, 1 ≤ 𝑖 ≤ 𝑞, and 𝑖 is odd.
If 𝑙 > 1 + 𝑞2, then 𝑛 = 𝑙 − (1 + 𝑞2) and 𝑎

𝑛,𝑖𝑞
= 1.

(7) For all other entries in 𝐴(𝐺
𝐾𝑞

∗
), 𝑎
𝑖,𝑗
= 0, 1 ≤ 𝑖 ≤

(1 + 𝑞
2
) and 1 ≤ 𝑗 ≤ (1 + 𝑞2).

3. Eigenvalues of 𝑞-Cliqued Graphs

In this section, we focus on the 𝑞-cliqued graphs as con-
structed in Section 2. We show that the 𝑞-cliqued graphs
have eigenvalue 𝑞 and conjugate eigenpair 𝜆 = (−1 ±

√1 + 4(𝑞 − 1))/2. The determination of the conjugate eigen-
pair is equivalent to showing that the cubic

𝜆
3
− 𝜆
2
(𝑞 − 1) − 𝜆𝑞 − 𝜆 (𝑞 − 1) + 𝑞 (𝑞 − 1)

= (𝜆 − 𝑞) (𝜆
2
+ 𝜆 − (𝑞 − 1))

(6)

is a factor of the characteristic equation determined by
𝐴(𝐺
𝑞

∗
)𝑥 = 𝜆𝑥, where 𝐴(𝐺

𝑞

∗
) is the adjacency matrix of the

𝑞-cliqued graph 𝐺
𝑞

∗.
The proof requires a number of specific definitions of ver-

tices within the 𝑞-clique graph, and we use the connectivity
between the first clique, the second to last clique, and the
last clique in the proof of the conjugate eigenpair. The central
vertex also plays a key role in this proof, as each subclique𝐾

𝑞

is connected to the central vertex. The proof of determining
the conjugate eigenpair is determined explicitly for the cases
𝑞 = 4 and 𝑞 = 5, and then it is generalized for the 𝑞-cliqued
graph.

Once we have found the conjugate eigenpair of the 𝑞-
cliqued graph, we then determine the eigen-bi-balanced
properties of the class of 𝑞-cliqued graphs associated with
this eigenpair in Section 4.The values of all the newly defined
eigen-bi-balanced properties, as defined inWinter and Jessop
[4], are easily determined for this class of graphs.

Theorem 1. The 𝑞-cliqued graphs, as constructed in Section 1,
have eigenvalues 𝜆 = 𝑞 (and the 𝑞-cliqued graph is 𝑞-regular)
and conjugate eigenpair 𝜆 = (−1 ± √1 + 4(𝑞 − 1))/2. The con-
jugate eigenpair arises out of the “tightness” of the connection
between the central vertex and the cliques and between two
adjacent cliques—for convention we chose the second last and
last clique.

3.1. Proof of Theorem 1. We will show Theorem 1, for 𝑞 = 4

and 𝑞 = 5, and then give the general proof for all 𝑞 ≥ 6.
Illustration of cases 𝑞 = 2 and 𝑞 = 3 can be found in Jessop
[5]. First, we need the following definitions.

3.1.1. Notation Convention

(1) Let 𝐴(𝐺
𝐾𝑞

∗
) be the adjacency matrix of the 𝑞-cliqued

graph 𝐺
𝐾𝑞

∗. Let 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑞
2
+1
)
𝑇 be an eigen-

vector of𝐴(𝐺
𝐾𝑞

∗
), corresponding to the eigenvalue 𝜆.

Then 𝐴(𝐺
𝐾𝑞

∗
)𝑥 = 𝜆𝑥.

(2) If 𝑥
𝑖
is the 𝑖th entry in 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑞
2
+1
), then we

say that 𝑥
𝑖
corresponds to the 𝑖th vertex V

𝑖
in𝐺
𝐾𝑞

∗ and
vice versa.
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(3) The first entry in 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑞
2
+1
)
𝑇 is 𝑥

1
, the

second entry is 𝑥
2
, and the third entry is 𝑥

3
.

(4) The set of vertices in the first clique (𝐾
𝑞
)
1 is {V

2
, V
3
,

. . . , V
𝑞
, V
𝑞+1
} and the corresponding set of entries in 𝑥

is {𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑞
, 𝑥
𝑞+1
}.

(5) The anchor vertex of each clique is the vertex in each
cliquewhich is joined to the first vertex V

1
.The anchor

vertex of the last clique is V
𝑎
= V
2+𝑞(𝑞−1)

, and the
anchor vertex of the second to last clique is V

𝑎−𝑞
=

V
2+𝑞(𝑞−2)

.

(6) The switching pair of entries in 𝑥 is 𝑥
𝑞
2
−1
= 𝑥
𝑙−2

(third
last entry in 𝑥) and 𝑥

𝑞
2 = 𝑥
𝑙−1

(second last entry in 𝑥).

(7) The last entry in 𝑥 is 𝑥
𝑙
= 𝑥
𝑞
2
+1
.

3.1.2. The Generating Set. Let 𝑇 = {V
1
, V
2
} and let 𝑈

be the set of vertices of the second last clique which are
adjacent to vertices in the last clique, that is, 𝑈 = {V

𝑢1
, V
𝑢2
,

. . . , V
𝑢𝑡
}, where 𝑡 = (𝑞 − 1)/2, when 𝑞 is odd, or 𝑡 = 𝑞/2,

when 𝑞 is even. Let 𝑆 = 𝑇 ∪ 𝑈 be the generating set
of vertices. Then, if 𝑆 = {V

1
, V
2
, V
𝑢1
, V
𝑢2
, . . . , V

𝑢𝑡
}, we define

∑𝑆 = 𝑥
1
+ 𝑥
2
+ (𝑥
𝑢1
+ 𝑥
𝑢2
+ ⋅ ⋅ ⋅ + 𝑥

𝑢𝑡
) where {𝑥

1
, 𝑥
2
, 𝑥
𝑢1
, 𝑥
𝑢2
,

. . . , 𝑥
𝑢𝑡
} are the entries in 𝑥 which correspond to the vertices

in 𝑆.

3.1.3. The Two Main Equations That Generate the Conjugate
Eigenpairs. We will use the relationship 𝐴(𝐺

𝐾𝑞

∗
)𝑥 = 𝜆𝑥 to

determine the twomain equations that generate the conjugate
eigenpairs as follows:

∑𝑆 = 𝜆
2
𝑥
𝑙
− 𝑞𝑥
𝑙
, (7)

𝜆∑𝑆 = (𝑞 − 1)∑𝑆 + (𝑞 − 1) 𝑥
𝑙

󳨐⇒ ∑𝑆 =
(𝑞 − 1) 𝑥

𝑙

(𝜆 − (𝑞 − 1))
.

(8)

Substitute (8) into (7) to get (𝑞−1)𝜆𝑥
𝑙
/(𝜆−(𝑞−1)) = 𝜆

2
𝑥
𝑙
−𝑞𝑥
𝑙
,

𝜆 ̸= 𝑞 − 1, so that

(𝑞 − 1) 𝜆 = 𝜆
2
(𝜆 − (𝑞 − 1)) − 𝑞 (𝜆 − (𝑞 − 1))

󳨐⇒ 𝜆
3
− 𝜆
2
(𝑞 − 1) − 𝑞𝜆 + 𝑞 (𝑞 − 1) − 𝜆 (𝑞 − 1)

= 0

󳨐⇒ (𝜆 − 𝑞) (𝜆
2
+ 𝜆 − (𝑞 − 1)) = 0.

(9)

This gives us three eigenvalues, namely, 𝜆 = 𝑞 and the con-
jugate eigenpair 𝜆 = (−1 ± √1 + 4(𝑞 − 1))/2.

3.1.4. The Case 𝑞 = 4

Step 1. Let 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

17
)
𝑇 be an eigenvector of 𝐺

𝐾4

∗.
Then 𝐴(𝐺

𝐾4

∗
)𝑥 = 𝜆𝑥 gives

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑥
2
+ 𝑥
6
+ 𝑥
10
+ 𝑥
14

𝑥
3
+ 𝑥
4
+ 𝑥
5
+ 𝑥
1

𝑥
2
+ 𝑥
4
+ 𝑥
5
+ 𝑥
17

𝑥
3
+ 𝑥
5
+ 𝑥
2
+ 𝑥
8

𝑥
2
+ 𝑥
3
+ 𝑥
4
+ 𝑥
7

𝑥
1
+ 𝑥
7
+ 𝑥
8
+ 𝑥
9

𝑥
5
+ 𝑥
6
+ 𝑥
8
+ 𝑥
9

𝑥
4
+ 𝑥
6
+ 𝑥
7
+ 𝑥
9

𝑥
6
+ 𝑥
7
+ 𝑥
8
+ 𝑥
11

𝑥
1
+ 𝑥
11
+ 𝑥
12
+ 𝑥
13

𝑥
9
+ 𝑥
10
+ 𝑥
12
+ 𝑥
13

𝑥
10
+ 𝑥
11
+ 𝑥
13
+ 𝑥
16

𝑥
10
+ 𝑥
11
+ 𝑥
12
+ 𝑥
15

𝑥
1
+ 𝑥
15
+ 𝑥
16
+ 𝑥
17

𝑥
13
+ 𝑥
14
+ 𝑥
16
+ 𝑥
17

𝑥
12
+ 𝑥
14
+ 𝑥
15
+ 𝑥
17

𝑥
3
+ 𝑥
14
+ 𝑥
15
+ 𝑥
16

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

= 𝜆

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑥
6

𝑥
7

𝑥
8

𝑥
9

𝑥
10

𝑥
11

𝑥
12

𝑥
13

𝑥
14

𝑥
15

𝑥
16

𝑥
17

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (10)

Taking the last equation, we get

𝑥
3
+ 𝑥
14
+ 𝑥
15
+ 𝑥
16

= 𝜆𝑥
17

󳨐⇒ 𝜆 (𝑥
3
+ 𝑥
14
+ 𝑥
15
+ 𝑥
16
) = 𝜆 (𝜆𝑥

17
)

󳨐⇒ 𝜆𝑥
3
+ 𝜆𝑥
14
+ 𝜆𝑥
15
+ 𝜆𝑥
16
= 𝜆
2
𝑥
17
.

(11)

Expand the left hand side, using the equations correspond-
ing to the neighbours of V

3
, V
14
, V
15
, and V

16
to get

(𝑥
2
+ 𝑥
4
+ 𝑥
5
+ 𝑥
17
) + (𝑥

1
+ 𝑥
15
+ 𝑥
16
+ 𝑥
17
)

+ (𝑥
13
+ 𝑥
14
+ 𝑥
16
+ 𝑥
17
) + (𝑥

12
+ 𝑥
14
+ 𝑥
15
+ 𝑥
17
)

= 𝜆
2
𝑥
17

󳨐⇒ 𝑥
1
+ 𝑥
2
+ 𝑥
4
+ 𝑥
5
+ 2 (𝑥

14
+ 𝑥
15
+ 𝑥
16
)

+ 𝑥
12
+ 𝑥
13
+ 4𝑥
17
= 𝜆
2
𝑥
17
.

(12)

Step 2. Put 𝑥
16
= −𝑥

15
(second and third to last entries of

𝑥 have opposite signs and are called the switching pair).
Then we have

𝑥
1
+ 𝑥
2
+ 𝑥
4
+ 𝑥
5
+ 2 (𝑥

14
) + 𝑥
12
+ 𝑥
13
+ 4𝑥
17
= 𝜆
2
𝑥
17
.

(13)



International Journal of Combinatorics 5

Let 𝑇 = {V
1
, V
2
} and let 𝑈 be the set of all vertices that belong

to the second last clique, which are neighbours of the last
clique; that is, 𝑈 = {V

12
, V
13
}. Then the generating set 𝑆 =

𝑇 ∪ 𝑈 = {V
1
, V
2
} ∪ {V
12
, V
13
} = {V

1
, V
2
, V
12
, V
13
}.

Step 3. Set 𝑥
4
= 𝑥
5
= 𝑥
14
= 0; then

𝑥
1
+ 𝑥
2
+ 𝑥
12
+ 𝑥
13
+ 4𝑥
17

= 𝜆
2
𝑥
17

󳨐⇒ 𝑥
1
+ 𝑥
2
+ 𝑥
12
+ 𝑥
13
= 𝜆
2
𝑥
17
− 4𝑥
17

󳨐⇒ ∑𝑆 = 𝜆
2
𝑥
17
− 4𝑥
17
.

(14)

This verifies (7) of Section 3.1.2 for the case 𝑞 = 4.

Step 4. Take the neighbours of the vertices in 𝑆 = {V
1
, V
2
,

V
12
, V
13
} to get

(𝑥
2
+ 𝑥
6
+ 𝑥
10
+ 𝑥
14
) + (𝑥

1
+ 𝑥
3
+ 𝑥
4
+ 𝑥
5
)

+ (𝑥
10
+ 𝑥
11
+ 𝑥
13
+ 𝑥
16
) + (𝑥

10
+ 𝑥
11
+ 𝑥
12
+ 𝑥
15
)

= 𝜆 (𝑥
1
+ 𝑥
2
+ 𝑥
12
+ 𝑥
13
) .

(15)

From above, 𝑥
4
= 𝑥
5
= 𝑥
14
= 0, and 𝑥

16
= −𝑥
15
, so that

𝑥
2
+ 𝑥
6
+ 𝑥
10
+ 𝑥
1
+ 𝑥
3
+ 𝑥
10
+ 𝑥
11
+ 𝑥
13

+ 𝑥
10
+ 𝑥
11
+ 𝑥
12

= 𝜆 (𝑥
1
+ 𝑥
2
+ 𝑥
12
+ 𝑥
13
)

󳨐⇒ 𝑥
1
+ 𝑥
2
+ 𝑥
3
+ 𝑥
6
+ 3𝑥
10

+ 2𝑥
11
+ 𝑥
12
+ 𝑥
13
= 𝜆 (𝑥

1
+ 𝑥
2
+ 𝑥
12
+ 𝑥
13
) .

(16)

Now set 𝑥
3
= 2𝑥
1
, 𝑥
6
= 2𝑥
13
, 𝑥
10
= 𝜆𝑥
17
, 𝑥
11
= 𝑥
2
, and

𝑥
12
= 0. Then

𝑥
1
+ 𝑥
2
+ 𝑥
3
+ 𝑥
6
+ 3𝑥
10

+ 2𝑥
11
+ 𝑥
12
+ 𝑥
13

= 𝜆 (𝑥
1
+ 𝑥
2
+ 𝑥
12
+ 𝑥
13
)

󳨐⇒ 𝑥
1
+ 𝑥
2
+ 2𝑥
1
+ 2𝑥
13
+ 3𝜆𝑥

17
+ 2𝑥
2
+ 3𝑥
12
+ 𝑥
13

= 𝜆 (𝑥
1
+ 𝑥
2
+ 𝑥
12
+ 𝑥
13
)

󳨐⇒ 3𝑥
1
+ 3𝑥
2
+ 3𝑥
12
+ 3𝑥
13
+ 3𝜆𝑥

17

= 𝜆 (𝑥
1
+ 𝑥
2
+ 𝑥
12
+ 𝑥
13
)

󳨐⇒ 3 (𝑥
1
+ 𝑥
2
+ 𝑥
12
+ 𝑥
13
) + 3𝜆𝑥

17

= 𝜆 (𝑥
1
+ 𝑥
2
+ 𝑥
12
+ 𝑥
13
)

󳨐⇒ 𝑥
1
+ 𝑥
2
+ 𝑥
12
+ 𝑥
13
=
3𝜆𝑥
17

𝜆 − 3

󳨐⇒ ∑𝑆 =
3𝜆𝑥
17

𝜆 − 3
.

(17)

This verifies (8) of Section 3.1.2 for the case 𝑞 = 4.

Step 5. Substitute (17) into (14) to get

3𝜆𝑥
17

𝜆 − 3
= 𝜆
2
𝑥
17
− 4𝑥
17

󳨐⇒ 𝜆
2
(𝜆 − 3) 𝑥

17
− 4 (𝜆 − 3) 𝑥

17
= 3𝜆𝑥

17

󳨐⇒ 𝜆
3
𝑥
17
− 3𝜆
2
𝑥
17
− 4𝜆𝑥

26
+ 12𝑥

17
− 3𝜆𝑥

17
= 0

󳨐⇒ 𝜆
3
𝑥
17
− 3𝜆
2
𝑥
17
− 7𝜆𝑥

26
+ 12𝑥

17
= 0

󳨐⇒ (𝜆 − 4) (𝜆
2
+ 𝜆 − 3) 𝑥

17
= 0

󳨐⇒ 𝜆 = 4 or

𝜆 =
−1 ± √1 − (4) (−3)

2
=
−1 ± √13

2
.

(18)

So we have eigenvalues 𝜆 = 4 (which is the same as the degree
of the vertices in the 4-cliqued graph), and the conjugate
eigenpairs 𝜆 = (−1 ± √13)/2.

3.1.5. The Case 𝑞 = 5

Step 1. Let 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

26
)
𝑇 be an eigenvector of 𝐺

𝐾5

∗.
Then the last equation from 𝐴(𝐺

𝐾5

∗
)𝑥 = 𝜆𝑥 gives

𝑥
3
+ 𝑥
22
+ 𝑥
23
+ 𝑥
24
+ 𝑥
25

= 𝜆𝑥
26

󳨐⇒ 𝜆 (𝑥
3
+ 𝑥
22
+ 𝑥
23
+ 𝑥
24
+ 𝑥
25
) = 𝜆 (𝜆𝑥

26
)

󳨐⇒ 𝜆𝑥
3
+ 𝜆𝑥
22
+ 𝜆𝑥
23
+ 𝜆𝑥
24
+ 𝜆𝑥
25
= 𝜆
2
𝑥
26
.

(19)

Expand the left hand side, using the equations corresponding
to the neighbours of V

3
, V
22
, V
23
, V
24
, and V

25
to get

(𝑥
2
+ 𝑥
4
+ 𝑥
5
+ 𝑥
6
+ 𝑥
26
)

+ (𝑥
1
+ 𝑥
23
+ 𝑥
24
+ 𝑥
25
+ 𝑥
26
)

+ (𝑥
21
+ 𝑥
22
+ 𝑥
24
+ 𝑥
25
+ 𝑥
26
)

+ (𝑥
20
+ 𝑥
22
+ 𝑥
23
+ 𝑥
25
+ 𝑥
26
)

+ (𝑥
4
+ 𝑥
22
+ 𝑥
23
+ 𝑥
24
+ 𝑥
26
)

= 𝜆
2
𝑥
26

󳨐⇒ 𝑥
1
+ 𝑥
2
+ 2𝑥
4
+ 𝑥
5
+ 𝑥
6
+ 𝑥
20
+ 𝑥
21

+ 3𝑥
22
+ 3𝑥
23
+ 3𝑥
24
+ 3𝑥
25
+ 5𝑥
26

= 𝜆
2
𝑥
26
.

(20)

Step 2. Put 𝑥
25
= −𝑥
24

(second and third to last entries of 𝑥
have opposite signs and are called the switching pair). Set𝑇 =
{V
1
, V
2
} and𝑈 = {all vertices in 𝑆 that belong to the second last

clique, which are neighbours of the last clique} = {V
20
, V
21
}.

Then the generating set 𝑆 = 𝑇 ∪ 𝑈 = {V
1
, V
2
} ∪ {V

20
, V
21
} =

{V
1
, V
2
, V
20
, V
21
}.



6 International Journal of Combinatorics

Then we have 𝑥
1
+ 𝑥
2
+ 2𝑥
4
+ 𝑥
5
+ 𝑥
6
+ 𝑥
20
+ 𝑥
21
+ 3𝑥
22
+

3𝑥
23
+ 5𝑥
26
= 𝜆
2
𝑥
26
.

Step 3. Put 𝑥
4
= 𝑥
5
= 0, 𝑥

6
= −3𝑥

22
, and 𝑥

23
= 0, so we have

𝑥
1
+ 𝑥
2
+ 𝑥
20
+ 𝑥
21
+ 5𝑥
26

= 𝜆
2
𝑥
26

󳨐⇒ 𝑥
1
+ 𝑥
2
+ 𝑥
20
+ 𝑥
21
= 𝜆
2
𝑥
26
− 5𝑥
26

󳨐⇒ ∑𝑆 = 𝜆
2
𝑥
26
− 5𝑥
26
.

(21)

This verifies (7) of Section 3.1.2 for the case 𝑞 = 5.

Step 4. Take the neighbours of the vertices in 𝑆 =

{V
1
, V
2
, V
20
, V
21
} to get

(𝑥
2
+ 𝑥
7
+ 𝑥
12
+ 𝑥
17
+ 𝑥
22
) + (𝑥

1
+ 𝑥
3
+ 𝑥
4
+ 𝑥
5
+ 𝑥
6
)

+ (𝑥
17
+ 𝑥
18
+ 𝑥
19
+ 𝑥
21
+ 𝑥
24
)

+ (𝑥
17
+ 𝑥
18
+ 𝑥
19
+ 𝑥
20
+ 𝑥
23
)

= 𝜆 (𝑥
1
+ 𝑥
2
+ 𝑥
20
+ 𝑥
21
) .

(22)

From above, 𝑥
4
= 𝑥
5
= 0, 𝑥

6
= −3𝑥

22
, 𝑥
23
= 0, and 𝑥

25
=

−𝑥
24
so that

(𝑥
2
+ 𝑥
7
+ 𝑥
12
+ 𝑥
17
+ 𝑥
22
) + (𝑥

1
+ 𝑥
3
− 3𝑥
22
)

+ (𝑥
17
+ 𝑥
18
+ 𝑥
19
+ 𝑥
21
+ 𝑥
24
)

+ (𝑥
17
+ 𝑥
18
+ 𝑥
19
+ 𝑥
20
)

= 𝜆 (𝑥
1
+ 𝑥
2
+ 𝑥
20
+ 𝑥
21
)

󳨐⇒ 𝑥
1
+ 𝑥
2
+ 𝑥
3
+ 𝑥
7
+ 𝑥
12
+ 3𝑥
17

+ 3𝑥
18
+ 2𝑥
19
+ 𝑥
20
+ 𝑥
21
− 2𝑥
22
+ 𝑥
24

= 𝜆 (𝑥
1
+ 𝑥
2
+ 𝑥
20
+ 𝑥
21
) .

(23)

Now set 𝑥
3
= 3𝑥
2
, 𝑥
7
= 3𝑥
1
, 𝑥
12
= 4𝜆𝑥

26
, 𝑥
17
= 0, 𝑥

18
=

(3/2)𝑥
20
, 𝑥
19
= (3/2)𝑥

21
, and 𝑥

24
= 2𝑥
22
. Then

𝑥
1
+ 𝑥
2
+ 𝑥
3
+ 𝑥
7
+ 𝑥
12
+ 3𝑥
17

+ 2𝑥
18
+ 2𝑥
19
+ 𝑥
20
+ 𝑥
21
− 2𝑥
22
+ 𝑥
24

= 𝜆 (𝑥
1
+ 𝑥
2
+ 𝑥
20
+ 𝑥
21
)

󳨐⇒ 𝑥
1
+ 𝑥
2
+ 3𝑥
2
+ 3𝑥
1
+ 4𝜆𝑥

26
+ 3𝑥
20

+ 3𝑥
21
+ 𝑥
20
+ 𝑥
21
− 2𝑥
22
+ 2𝑥
22

= 𝜆 (𝑥
1
+ 𝑥
2
+ 𝑥
20
+ 𝑥
21
)

󳨐⇒ 4𝑥
1
+ 4𝑥
2
+ 4𝑥
20
+ 4𝑥
21
+ 4𝜆𝑥

26

= 𝜆 (𝑥
1
+ 𝑥
2
+ 𝑥
20
+ 𝑥
21
) .

󳨐⇒ 𝑥
1
+ 𝑥
2
+ 𝑥
20
+ 𝑥
21
=
4𝑥
26

𝜆 − 4

󳨐⇒ ∑𝑆 =
4𝑥
26

𝜆 − 4
.

(24)

This verifies (8) of Section 3.1.2 for the case 𝑞 = 5.

Step 5. Substitute (24) into (21) to get

4𝜆𝑥
26

𝜆 − 4
= 𝜆
2
𝑥
26
− 5𝑥
26

󳨐⇒ 𝜆
2
(𝜆 − 4) 𝑥

26
− 5 (𝜆 − 4) 𝑥

26
= 4𝜆𝑥

26

󳨐⇒ 𝜆
3
𝑥
26
− 4𝜆
2
𝑥
26
− 5𝜆𝑥

26
+ 20𝑥

26
− 4𝜆𝑥

26
= 0

󳨐⇒ 𝜆
3
𝑥
26
− 4𝜆
2
𝑥
26
− 9𝜆𝑥

26
+ 20𝑥

26
= 0

󳨐⇒ (𝜆 − 5) (𝜆
2
+ 𝜆 − 4) 𝑥

26
= 0

󳨐⇒ 𝜆 = 5 or

𝜆 =
−1 ± √1 − (4) (−4)

2
=
−1 ± √17

2
.

(25)

So we have eigenvalues 𝜆 = 5 (which is the same as the
degree of the vertices in the 5-cliqued graph), and the con-
jugate eigenpairs 𝜆 = (−1 ± √17)/2.

3.1.6. Eigenvalues of General Case. Refer to Section 3.1.1 for
the vertex notation and definitions. We require the following
additional definitions to clarify the proof for the general case,
where 𝑞 ≥ 6.

(1) 𝜆𝑥
𝑙
is equal to the sum of the entries in 𝑥 whose

corresponding vertices are adjacent to V
𝑙
in𝐺
𝐾𝑞

∗; that
is, 𝜆𝑥

𝑙
= 𝑥
3
+ 𝑥
𝑎
+ 𝑥
𝑎+1

+ 𝑥
𝑎+2

+ ⋅ ⋅ ⋅ + 𝑥
𝑙−3

+

𝑥
𝑙−2

+ 𝑥
𝑙−1

as V
𝑙
is adjacent to the set of vertices

{V
3
, V
𝑎
, V
𝑎+1
, V
𝑎+2
, . . . , V

𝑙−3
, V
𝑙−21

, V
𝑙−1
} in 𝐺

𝐾𝑞

∗.
(2) Let the neighbours of V

𝑙
be𝑁(V

𝑙
) = {V

𝑙1
, V
𝑙2
, . . . , V

𝑙𝑞
} =

{V
3
, V
𝑎
, V
𝑎+1
, V
𝑎+2
, . . . , V

𝑙−3
, V
𝑙−2
, V
𝑙−1
}. Then, as per (7)

above, 𝜆𝑥
𝑙
is equal to the sum of the entries in 𝑥

whose corresponding vertices are in 𝑁(V
𝑙
); that is,

𝜆𝑥
𝑙
= 𝑥
𝑙1
+ 𝑥
𝑙2
+ ⋅ ⋅ ⋅ + 𝑥

𝑙𝑞
= 𝑥
3
+ 𝑥
𝑎
+ 𝑥
𝑎+1

+ 𝑥
𝑎+2

+

⋅ ⋅ ⋅ + 𝑥
𝑙−3
+ 𝑥
𝑙−2
+ 𝑥
𝑙−1

.
(3) Let𝑁[𝑁(V

𝑙
)] be the set of vertices which are adjacent

to the vertices in 𝑁(V
𝑙
) in 𝐺

𝐾𝑞

∗. Then 𝜆(𝜆𝑥
𝑙
) is the

sum of the entries in 𝑥 whose corresponding vertices
are in𝑁[𝑁(V

𝑙
)].

(4) Let𝑄 be the set of vertices {V
𝑎+1
, V
𝑎+2
, . . . , V

𝑙−3
} which

all belong to the last clique. Set 𝑥
𝑘
= 0 for all V

𝑘
∈ 𝑄.

Note that {V
𝑙−2
, V
𝑙−1
, V
𝑙
} ∉ 𝑄.

(5) The set of neighbours of V
𝑎

is {V
1
, V
𝑙−2
, V
𝑙−1
, V
𝑙
},

together with the set of vertices in 𝑄.

(6) Let 𝑡 = {
(𝑞−1)/2; 𝑞 odd
𝑞/2; 𝑞 even. and let 𝑅 be the set of vertices

from𝑁[𝑁(V
𝑙
)]which belong to the first clique, which

are neighbours of vertices in the last clique. Then 𝑅 =
{V
𝑟1
, V
𝑟2
, . . . , V

𝑟𝑞−2−𝑡
} = {V

4
, V
6
, V
8
, . . . , V

𝑞−1
}.
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(7) Let 𝑈 be the set of vertices from 𝑁[𝑁(V
𝑙
)] which

belong to the second last (𝑞 − 1)th clique, which are
neighbours of the vertices from the last 𝑞th clique.
Then 𝑈 = {V

𝑢1
, V
𝑢2
, . . . , V

𝑢𝑡
}.

(8) Let 𝑇 = {V
1
, V
2
}.

(9) Let 𝑆 be the generating set of vertices; then 𝑆 = 𝑇∪𝑈,
and ∑𝑆 = 𝑥

1
+ 𝑥
2
+ (𝑥
𝑢1
+ 𝑥
𝑢2
+ ⋅ ⋅ ⋅ + 𝑥

𝑢𝑡
).

(10) Let 𝑃 be the set of vertices in the second last clique,
excluding the anchor vertex, which are not neigh-
bours of the last clique and are therefore not in 𝑈 as
defined above. Then 𝑃 = {V

𝑝1
, V
𝑝2
, . . . , V

𝑝𝑞−1−𝑡
}.

(11) Let𝑊 be the subset of vertices in the last clique, whose
vertices join backwards to vertices of 𝑈. Then 𝑊 =

{V
𝑤1
, V
𝑤2
, . . . , V

𝑤𝑡
} = {V

𝑎+1
, V
𝑎+2
, V
𝑎+4
, . . . , V

𝑎+(𝑞−3)
=

V
𝑙−2
}.

Step 1. Let 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑞
2
+1
)
𝑇 be an eigenvector of 𝐺

𝐾𝑞

∗.
Then the last equation of 𝐴(𝐺

𝐾𝑞

∗
)𝑥 = 𝜆𝑥 gives

𝜆𝑥
𝑙
= 𝑥
𝑙1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑙𝑞

= 𝑥
3
+ 𝑥
𝑎
+ 𝑥
𝑎+1

+ 𝑥
𝑎+2

+ ⋅ ⋅ ⋅ + 𝑥
𝑙−3
+ 𝑥
𝑙−2
+ 𝑥
𝑙−1
.

(26)

So,

𝜆
2
𝑥
𝑙
= 𝜆 (𝜆𝑥

𝑙
)

= 𝜆 (𝑥
3
+ 𝑥
𝑎
+ 𝑥
𝑎+1

+ 𝑥
𝑎+2

+ ⋅ ⋅ ⋅ + 𝑥
𝑙−3
+ 𝑥
𝑙−2
+ 𝑥
𝑙−1
)

= 𝜆𝑥
3
+ 𝜆𝑥
𝑎
+ 𝜆𝑥
𝑎+1

+ 𝜆𝑥
𝑎+2

+ ⋅ ⋅ ⋅ + 𝜆𝑥
𝑙−3
+ 𝜆𝑥
𝑙−2

+ 𝜆𝑥
𝑙−1

= 𝑥
1
+ (𝑥
2
+ 𝑥
4
+ 𝑥
5
+ ⋅ ⋅ ⋅ + 𝑥

𝑞
+ 𝑥
𝑞+1
)

+ (𝑞 − 2) 𝑥
𝑎
+ (𝑞 − 2) 𝑥

𝑎+1
, (𝑞 − 2) 𝑥

𝑎+2

+ ⋅ ⋅ ⋅ + (𝑞 − 2) 𝑥
𝑎+𝑡

+ ⋅ ⋅ ⋅ + (𝑞 − 2) 𝑥
𝑙−3

+ (𝑞 − 2) 𝑥
𝑙−2
+ (𝑞 − 2) 𝑥

𝑙−1

+ 𝑞𝑥
𝑙
+ (𝑥
𝑢1
+ 𝑥
𝑢2
+ ⋅ ⋅ ⋅ + 𝑥

𝑢𝑡
)

+ (𝑥
𝑟1
+ 𝑥
𝑟2
+ ⋅ ⋅ ⋅ + 𝑥

𝑟𝑞−2−𝑡
) .

(27)

Step 2. Set 𝑥
𝑙−1

= −𝑥
𝑙−2

(switching entries).

Step 3. Set 𝑥
4
= 𝑥
5
= ⋅ ⋅ ⋅ = 𝑥

𝑞
= 0. This implies 𝑥

𝑟1
= 𝑥
𝑟2
=

⋅ ⋅ ⋅ = 𝑥
𝑟𝑞−2−𝑡

= 0. Set 𝑥
𝑘
= 0 for all V

𝑘
∈ 𝑄, and set 𝑥

𝑞+1
=

−(𝑞 − 2)𝑥
𝑎
. Then

𝜆
2
𝑥
𝑙
= 𝑥
1
+ (𝑥
2
+ 𝑥
4
+ 𝑥
5
+ ⋅ ⋅ ⋅ + 𝑥

𝑞
+ 𝑥
𝑞+1
)

+ (𝑞 − 2) 𝑥
𝑎
+ (𝑞 − 2) 𝑥

𝑎+1
, (𝑞 − 2) 𝑥

𝑎+2

+ ⋅ ⋅ ⋅ + (𝑞 − 2) 𝑥
𝑎+𝑡

+ ⋅ ⋅ ⋅ + (𝑞 − 2) 𝑥
𝑙−3

+ (𝑞 − 2) 𝑥
𝑙−2
+ (𝑞 − 2) 𝑥

𝑙−1

+ 𝑞𝑥
𝑙
+ (𝑥
𝑢1
+ 𝑥
𝑢2
+ ⋅ ⋅ ⋅ + 𝑥

𝑢𝑡
)

+ (𝑥
𝑟1
+ 𝑥
𝑟2
+ ⋅ ⋅ ⋅ + 𝑥

𝑟𝑞−2−𝑡
)

= 𝑥
1
+ [𝑥
2
+ 0 + 0 + ⋅ ⋅ ⋅ + 0 − (𝑞 − 2) 𝑥

𝑎
]

+ (𝑞 − 2) 𝑥
𝑎
+ 0 + 0 + ⋅ ⋅ ⋅ + 0 + 0

+ (𝑞 − 2) 𝑥
𝑙−2
− (𝑞 − 2) 𝑥

𝑙−2
+ 𝑞𝑥
𝑙

+ (𝑥
𝑢1
+ 𝑥
𝑢2
+ ⋅ ⋅ ⋅ + 𝑥

𝑢𝑡
) + (0 + 0 + ⋅ ⋅ ⋅ + 0)

󳨐⇒ 𝜆
2
𝑥
𝑙
= 𝑥
1
+ 𝑥
2
+ 𝑞𝑥
𝑙
+ (𝑥
𝑢1
+ 𝑥
𝑢2
+ ⋅ ⋅ ⋅ + 𝑥

𝑢𝑡
)

󳨐⇒ 𝜆
2
𝑥
𝑙
− 𝑞𝑥
𝑙
= 𝑥
1
+ 𝑥
2
+ (𝑥
𝑢1
+ 𝑥
𝑢2
+ ⋅ ⋅ ⋅ + 𝑥

𝑢𝑡
)

󳨐⇒ 𝜆
2
𝑥
𝑙
− 𝑞𝑥
𝑙
= ∑𝑆

󳨐⇒ ∑𝑆 = 𝜆
2
𝑥
𝑙
− 𝑞𝑥
𝑙
.

(28)

This verifies (7) of Section 3.1.2 for the general case 𝑞.

Step 4. Now take the neighbours of the generating set 𝑆, where

𝑆 = 𝑇 ∪ 𝑈 = {V
1
, V
2
} ∪ {V

𝑢1
, V
𝑢2
, . . . , V

𝑢𝑡
} , (29)

where 𝑡 = (𝑞 − 1)/2, if 𝑞 is odd, and 𝑡 = 𝑞/2, if 𝑞 is even.
The neighbours of V

1
are 𝑁(V

1
) = {V

2
, V
2+𝑞
, V
2+2𝑞

, . . . ,

V
2+𝑞(𝑞−1)

}. The set of neighbours of V
2

are 𝑁(V
2
) =

{V
1
, V
3
, V
4
, . . . , V

𝑞+1
}. The sum of the entries in 𝑥 correspond-

ing to the neighbours of the vertices in 𝑈 is ∑𝑁(V
𝑢1
, V
𝑢2
,

. . . , V
𝑢𝑞−1−𝑡

) = (𝑡 − 1)∑𝑈 + 𝑡𝑥
𝑎−𝑞

+ 𝑡∑𝑃 + ∑𝑊.
Then the sum of the entries in 𝑥 corresponding to the

neighbours of the vertices in 𝑆 is

𝜆∑𝑆 = ∑𝑁(𝑆)

= ∑𝑁(V
1
) +∑𝑁(V

1
) +∑𝑁(V

𝑢1
, V
𝑢1
, . . . , V

𝑢𝑞−1−𝑡
)

= (𝑥
2
+ 𝑥
2+𝑞

+ 𝑥
2+2𝑞

+ ⋅ ⋅ ⋅ + 𝑥
2+𝑞(𝑞−1)

)

+ (𝑥
1
+ 𝑥
3
+ 𝑥
4
+ ⋅ ⋅ ⋅ + 𝑥

𝑞
+ 𝑥
𝑞+1
)

+ (𝑡 − 1)∑𝑈 + 𝑡𝑥
𝑎−𝑞

+ 𝑡∑𝑃 +∑𝑊.

(30)

As before, set 𝑥
𝑙−1

= −𝑥
𝑙−2

and set 𝑥
4
= 𝑥
5
= ⋅ ⋅ ⋅ = 𝑥

𝑞
= 0.

This implies 𝑥
𝑟1
= 𝑥
𝑟2
= ⋅ ⋅ ⋅ = 𝑥

𝑟𝑞−2−𝑡
= 0.

Set 𝑥
𝑘
= 0 for all V

𝑘
∈ 𝑄, and set 𝑥

𝑞+1
= −(𝑞 − 2)𝑥

𝑎
. Then,

𝜆∑𝑆 = (𝑥
2
+ 𝑥
2+𝑞

+ 𝑥
2+2𝑞

+ ⋅ ⋅ ⋅ + 𝑥
2+𝑞(𝑞−1)

)

+ (𝑥
1
+ 𝑥
3
+ 0 + ⋅ ⋅ ⋅ + 0 − (𝑞 − 2) 𝑥

𝑎
)

+ (𝑡 − 1)∑𝑈 + 𝑡𝑥
𝑎−𝑞
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+ 𝑡∑𝑃 + (0 + 0 + ⋅ ⋅ ⋅ + 0 + 𝑥
𝑙−2
)

= 𝑥
1
+ 𝑥
2
+ 𝑥
3
− (𝑞 − 2) 𝑥

𝑎

+ (𝑥
2+𝑞

+ 𝑥
2+2𝑞

+ ⋅ ⋅ ⋅ + 𝑥
2+𝑞(𝑞−1)

)

+ (𝑡 − 1)∑𝑈 + 𝑡𝑥
𝑎−𝑞

+ 𝑡∑𝑃 + 𝑥
𝑙−2
.

(31)

Now set 𝑥
3
= (𝑞 − 2)𝑥

2
, 𝑥
2+𝑞

= (𝑞 − 2)𝑥
1
, 𝑥
2+2𝑞

= (𝑞 − 1)𝜆𝑥
𝑙
,

𝑥
2+3𝑞

= 𝑥
2+4𝑞

= ⋅ ⋅ ⋅ = 𝑥
2+(𝑞−2)𝑞

= 0, 𝑥
2+(𝑞−1)𝑞

= 𝑥
𝑎
, 𝑥
𝑎−𝑞

=

𝑥
2+𝑞(𝑞−2)

= 0, and 𝑥
𝑙−2

= (𝑞 − 3)𝑥
𝑎
= −𝑥
𝑙−1

. Then

𝜆∑𝑆 = 𝑥
1
+ 𝑥
2
+ (𝑞 − 2) 𝑥

2
− (𝑞 − 2) 𝑥

𝑎

+ [(𝑞 − 2) 𝑥
1
+ (𝑞 − 1) 𝜆𝑥

𝑙
+ 0 + ⋅ ⋅ ⋅ + 0 + 𝑥

𝑎
]

+ (𝑡 − 1)∑𝑈 + 𝑡 (0) + 𝑡∑𝑃 + (𝑞 − 3) 𝑥
𝑎

= (𝑞 − 1) 𝑥
1
+ (𝑞 − 1) 𝑥

2
+ (𝑞 − 1) 𝜆𝑥

𝑙

+ (𝑡 − 1)∑𝑈 + 𝑡∑𝑃.

(32)

Set 𝑥
𝑝1
= ((𝑞 − 𝑡)/𝑡)𝑥

𝑢1
, 𝑥
𝑝2
= ((𝑞 − 𝑡)/𝑡)𝑥, . . . , 𝑥

𝑝𝑡
= ((𝑞 −

𝑡)/𝑡)𝑥
𝑢𝑡
, and 𝑥

𝑝(𝑡+1)
= 0 if 𝑞 is even, as 𝑃 has one more vertex

than 𝑈 when 𝑞 is even. Then,

𝜆∑𝑆 = (𝑞 − 1) 𝑥
1
+ (𝑞 − 1) 𝑥

2
+ (𝑞 − 1) 𝜆𝑥

𝑙

+ (𝑡 − 1)∑𝑈 + 𝑡∑𝑃

= (𝑞 − 1) 𝑥
1
+ (𝑞 − 1) 𝑥

2
+ (𝑞 − 1) 𝜆𝑥

𝑙

+ (𝑡 − 1) (𝑥
𝑘1
+ 𝑥
𝑘2+
+ ⋅ ⋅ ⋅ + 𝑥

𝑘𝑡
)

+ 𝑡 [
𝑞 − 𝑡

𝑡
(𝑥
𝑘1
+ 𝑥
𝑘2
+ ⋅ ⋅ ⋅ + 𝑥

𝑘𝑡
)]

= (𝑞 − 1) 𝑥
1
+ (𝑞 − 1) 𝑥

2
+ (𝑞 − 1) 𝜆𝑥

𝑙

+ (𝑞 − 1) (𝑥
𝑘1
+ 𝑥
𝑘2+
+ ⋅ ⋅ ⋅ + 𝑥

𝑘𝑡
)

= (𝑞 − 1) (𝑥
1
+ 𝑥
2
+ 𝑥
𝑘1
+ 𝑥
𝑘2
+ ⋅ ⋅ ⋅ + 𝑥

𝑘𝑡
)

+ (𝑞 − 1) 𝜆𝑥
𝑙

= (𝑞 − 1)∑𝑆 + (𝑞 − 1) 𝜆𝑥
𝑙

󳨐⇒ (𝜆 − (𝑞 − 1))∑𝑆 = (𝑞 − 1) 𝜆𝑥
𝑙

󳨐⇒ ∑𝑆 =
(𝑞 − 1) 𝜆𝑥

𝑙

𝜆 − (𝑞 − 1)
.

(33)

Substituting (33) into (28), we get

(𝑞 − 1) 𝜆𝑥
𝑙

𝜆 − (𝑞 − 1)

= 𝜆
2
𝑥
𝑙
− 𝑞𝑥
𝑙

󳨐⇒ 𝜆
2
(𝜆 − (𝑞 − 1)) 𝑥

𝑙
− 𝑞 (𝜆 − (𝑞 − 1)) 𝑥

𝑙

= (𝑞 − 1) 𝜆𝑥
𝑙

󳨐⇒ 𝜆
3
𝑥
𝑙
− (𝑞 − 1) 𝜆

2
𝑥
𝑙
− 𝑞𝜆𝑥

𝑙

+ 𝑞 (𝑞 − 1) 𝑥
𝑙
− (𝑞 − 1) 𝜆𝑥

𝑙
= 0

󳨐⇒ 𝜆
3
𝑥
𝑙
− (𝑞 − 1) 𝜆

2
𝑥
𝑙
− (2𝑞 − 1) 𝜆𝑥

𝑙

+ 𝑞 (𝑞 − 1) 𝑥
𝑙
= 0

󳨐⇒ (𝜆 − 𝑞) (𝜆
2
+ 𝜆 − (𝑞 − 1)) 𝑥

𝑙
= 0

󳨐⇒ 𝜆 = 𝑞 or

𝜆 =

−1 ± √1 − (−4 (𝑞 − 1))

2
=

−1 ± √1 + 4 (𝑞 − 1)

2
.

(34)

So we have eigenvalues 𝜆 = 𝑞 (which is the same as the degree
of the vertices in the 𝑞-cliqued graph), and the conjugate
eigenpairs 𝜆 = (−1 ± √1 + 4(𝑞 − 1))/2. This completes the
proof of Theorem 1.

This concludes the proof of the conjugate eigenpair of
the adjacency matrix associated with the 𝑞-cliqued graphs,
as constructed in Section 2. It is interesting to note that the
conjugate eigenpair is a function of the clique number of the
graph. It can also be proved that 𝑞-cliqued graphs are design
graphs—see Jessop [5].

In the next section, we determine the eigen-bi-balanced
properties of 𝑞-cliqued graphs associated with the conjugate
eigenpair 𝜆 = (−1 ± √1 + 4(𝑞 − 1))/2.

4. Eigen-Bi-Balanced Properties of
𝑞-Cliqued Graphs

Now that we have determined the conjugate eigenpair for
the class of 𝑞-cliqued graphs, we can determine the eigen-bi-
balanced properties, as defined in Winter and Jessop [4], for
this newly defined class of graphs. We recall from Section 3
that the conjugate eigenpair is (𝑎, 𝑏) = (−1±√1 + 4(𝑞 − 1))/2
for all 𝑞-cliqued graphs as defined in Section 2. We will
determine the eigen-bi-balanced properties of the class of 𝑞-
cliqued graphs, associated with this conjugate eigenpair. We
note the importance of the central vertex, which is connected
to the anchor vertex of each of the 𝑞 subcliques in the 𝑞-
cliqued graphs. The proof of the following results can easily
be verified.

Theorem2. For the class of q-cliqued graphs and the conjugate
eigenpair (𝑎, 𝑏) = (−1 ± √1 + 4(𝑞 − 1))/2, one has the
following.

(1) Theclass of 𝑞-cliqued graphs is sum∗(−1)∗eigenpair bal-
anced with respect to the conjugate eigenpair (𝑎, 𝑏) =
(−1 ± √1 + 4(𝑞 − 1))/2.

(2) The class of 𝑞-cliqued graphs is product∗(1 − 𝑞)∗eigen-
pair balanced with respect to the conjugate eigenpair
(𝑎, 𝑏) = (−1 ± √1 + 4(𝑞 − 1))/2.
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(3) The class of 𝑞-cliqued graphs has eigen-bi-balanced
ratio

𝑟(

−1 + √1 + 4 (𝑞 − 1)

2
𝐺
𝐾𝑞

∗
−1 − √1 + 4 (𝑞 − 1)

2
)

=
1

(𝑞 − 1)
,

(35)

with eigen-bi-balanced ratio asymptote

𝑟 (
−1 + √1 + 4(𝑞 − 1)

2
𝐺
𝐾𝑞

∗−1 − √1 + 4(𝑞 − 1)

2
)

∞

= 0,

(36)

and density

Ω
𝑟
(𝐺
𝐾𝑞

∗
)

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎𝑠𝑦𝑚𝑝(𝑟(

−1 + √1 + 4 (𝑞 − 1)

2

⋅ 𝐺
𝐾𝑞

∗
−1 − √1 + 4 (𝑞 − 1)

2
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0.

(37)

(4) The class of 𝑞-cliqued graphs has eigen-bi-balanced
ratio area

𝐴𝑟 (𝐺
𝐾𝑞

∗
)
(−1+√1+4(𝑞−1))/2,(−1−√1+4(𝑞−1))/2

= √𝑛 − 1 (4√𝑛 − 1 + 4 ln 󵄨󵄨󵄨󵄨󵄨√𝑛 − 1 − 1
󵄨󵄨󵄨󵄨󵄨
) .

(38)

(5) The class of 𝑞-cliqued graphs has |𝑎 + 𝑏| + |𝑎𝑏| = 𝑞

with respect to the conjugate eigenpair (𝑎, 𝑏) = (−1 ±

√1 + 4(𝑞 − 1))/2.

Proof. (1) The sum of the conjugate eigenpair (𝑎, 𝑏) is

sum(

−1 + √1 + 4 (𝑞 − 1)

2
,

−1 − √1 + 4 (𝑞 − 1)

2
)

=

−1 + √1 + 4 (𝑞 − 1)

2
+

−1 − √1 + 4 (𝑞 − 1)

2
= −1.

(39)

Therefore, the class of 𝑞-cliqued graphs is exact
sum∗(−1)∗eigenpair balanced. It is interesting that it
is the conjugate pair of eigenvalues that satisfy the
sum∗(−1)∗eigenpair balanced criteria.

(2) The product of the conjugate eigenpair (𝑎, 𝑏) is

product(
−1 + √1 + 4 (𝑞 − 1)

2
,

−1 − √1 + 4 (𝑞 − 1)

2
)

=
(−1)
2
− (1 + 4 (𝑞 − 1))

4
= − (𝑞 − 1) .

(40)

We have shown that the product of the conjugate
eigenpair is an integral function of 𝑞; that is, 𝑓(𝑞) =
−(𝑞 − 1), where 𝑞 − 1 is also the degree of the vertices
in a complete graph of order 𝑞. These eigenvalues are
therefore nonexact product∗(1 − 𝑞)

∗eigenpair bal-
anced.

(3) The eigen-bi-balanced ratio is

𝑟(

−1 + √1 + 4 (𝑞 − 1)

2
𝐺
𝐾𝑞

∗
−1 − √1 + 4 (𝑞 − 1)

2
)

=
−1

− (𝑞 − 1)
=

1

(𝑞 − 1)
.

(41)

Note that the eigen-bi-balanced ratio is equal to
the negative of the reciprocal of the product of the
conjugate pairs.The asymptote of this ratio is 0, as the
value of 𝑞 increases. So

𝑟 (
−1 + √1 + 4(𝑞 − 1)

2
𝐺
𝐾𝑞

∗−1 − √1 + 4(𝑞 − 1)

2
)

∞

= 0,

Ω
𝑟
(𝐺
𝐾𝑞

∗
)

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

asymp(𝑟(

−1 + √1 + 4 (𝑞 − 1)

2

⋅ 𝐺
𝐾𝑞

∗
−1 − √1 + 4 (𝑞 − 1)

2
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0.

(42)

(4) The eigen-bi-balanced ratio area is

Ar (𝐺
𝐾𝑞

∗
)
(−1+√1+4(𝑞−1))/2,(−1−√1+4(𝑞−1))/2

=
2𝑚

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑎 + 𝑏

𝑎𝑏
𝑑𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
𝑞 (𝑞
2
+ 1)

𝑞2 + 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
−1

− (𝑞 − 1)
𝑑𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 2𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

1

√𝑛 − 1 − 1
𝑑𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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= 4𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑢𝑑𝑢

𝑢 − 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 4𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑢 − 1

𝑢 − 1
+

1

𝑢 − 1
𝑑𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= √𝑛 − 1 (4√𝑛 − 1 + 4 ln 󵄨󵄨󵄨󵄨󵄨√𝑛 − 1 − 1
󵄨󵄨󵄨󵄨󵄨
) + 𝑐.

(43)

When 𝑛 = 1 we have Ar = 0 so that 𝑐 = 0.
So

Ar (𝐺
𝐾𝑞

∗
)
(−1+√1+4(𝑞−1))/2,(−1−√1+4(𝑞−1))/2

= √𝑛 − 1 (4√𝑛 − 1 + 4 ln 󵄨󵄨󵄨󵄨󵄨√𝑛 − 1 − 1
󵄨󵄨󵄨󵄨󵄨
) .

(44)

(5)

|𝑎 + 𝑏| + |𝑎𝑏|

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−1 + √1 + 4 (𝑞 − 1)

2
+

−1 − √1 + 4 (𝑞 − 1)

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−1 + √1 + 4 (𝑞 − 1)

2
∗

−1 − √1 + 4 (𝑞 − 1)

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−2

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − (1 + 4 (𝑞 − 1))

4

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 1 + (𝑞 − 1)

= 𝑞.

(45)

5. Design Graphs and
an Entomological Experiment

The study of the interaction between insects and host-
specific plants is important in biocontrol situations and is
well documented—see Janz and Nylin [6]. Many such exper-
iments use block designs (see, e.g., Coll [7]) and optimal
scheduling would be advantageous when there is the occur-
rence of large number of treatments and blocks.

5.1. Design Graphs. We can associate designs with the 𝑞-
cliqued graphs as follows: the vertices are the treatments and
the blocks are the neighbours of each vertex (see Jessop [5]).
Sincewe have a 𝑞-cliques graphwhich is a block design graph,
any application of graph theory to our graphs can be applied
to its associated design and in particular to experiments
where block designs can be used to study the interaction of
insects and plants. One of the important studies in graph
theory is vertex colourings of graphs. It can be shown that
a graph’s chromatic number is greater or equal to the order of
its largest clique, since a complete graph on 𝑛 vertices requires
𝑛 colours for a proper colouring.

Thus for our 𝑞-cliqued block graphs, their chromatic
number is greater than or equal to 𝑞. Jessop [5] showed that
𝜒(𝐺
𝐾𝑞

∗
) = 𝑞.We now apply a 3-colouring to the treatments of

the design associated with the 3-cliqued block graph relating
to an entomological experiment.

5.2. Experiment. We investigate the effect of 3 different
species of insects on 10 different types of leaves (plants). We
will have 10 cages containing the leaves and the insects, and
they will be labelled as Cage 1,. . ., Cage 10.

We have 3 sets of leaves, each containing 10 different
leaves. These leaves are to be divided (arbitrarily) into 10
cages, each cage labelledCage 1, Cage 2,. . ., Cage 10.Thus each
type of leaf must appear 3 times in the experiment so that we
need 3 sets of the 10 leaves.

The effect of three species of insects (using 10 insects per
species) on the leaves in each cage will be studied.The insects
will be labelled. The application of the 3 different insects to
the minigroups (cages) must be done in the smallest number
of time sessions, such that the following conditions hold.

(A1) Each minigroup of triple leaves must be exposed to 3
different insects.

(A2) An arbitrary minigroup of leaves will be called the
central-trial set or central cage and denoted by V

1
.

(A3) There must be 3 groups of 3-cliques 𝑃, 𝑄, and 𝑅 of
cages not containing the central trial set.

(A4) Each cage in a clique cannot receive insects at the
same time.

(A5) Exactly one member from each different clique must
receive a 3-element set of insects at the same time, as
well as not at the same time as the central cage receives
its 3-element set of insects.

(A6) Exactly onemember of each different clique, different
from the cages in (A5), must not receive a 3-element
set of insects at the same time.

(A7) The three clique groups receiving the insects must be
interchangeable (permutable) so that each clique can
be exposed to all 3 insects other than the control.

These requirements can be depicted in a 3-cliqued graph,
where its central vertex is the central-trial set. The 10 vertices
(labeled 1 to 10) represent the 10 cages each containing a set
of 3 leaves, the 3 leaves in each cage (vertex) having their
labels from the neighbour of the vertex (this is the block of
the associated design).

The edges (adjacent cages) of the 3-cliqued graph rep-
resent tubes connected to the cages (vertices) with the con-
dition that the tube cannot be open at both ends at the same
time, forcing the insect into only one cage incident with the
edge at a time.

The 3-cliqued graph has 15 edges, each vertex incident
with 3 edges so that three different insect sets of 10 insects
will be used. The proper colouring of the graph will refer to
the time sessions when the insects can be released subject to
conditions (A1)–(A7).
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Figure 4: The graph of 𝐺
𝐾3

∗.

The chromatic number 3 refers to the condition where
we require the smallest number of time sessions so that con-
ditions (A1)–(A7) hold.

The 10 blocks containing 3 different leaves from the 10
different leaves will be as follows:

1: {2, 5, 8};
2: {1, 3, 4};
3: {2, 4, 10};
4: {2, 3, 6};
5: {1, 6, 7};
6: {4, 5, 7};
7: {5, 6, 9};
8: {1, 9, 10};
9: {7, 8, 10};
10: {3, 8, 9}.

We colour the vertices of the graph in Figure 4 as follows.
Put 3 colours red, green, and blue—vertex 1 coloured

blue, vertices 2, 5, and 8 coloured green, vertices 4, 7, and 10
coloured blue, and vertices 3, 6, and 9 coloured red.

Label the insects 𝑖(1), 𝑖(2), . . . , 𝑖(30), where 𝑖(1 + 3𝑘), 𝑖(2 +
3𝑘), and 𝑖(3 + 3𝑘), 𝑘 = 0, 1, 2, . . . , 9, represent the three
different species (10 each), and allocate them as follows.

(1) The trial-set is the (arbitrary) block 1 = {2, 5, 8}—this
block contains leaves 2,5, and 8 and is coloured blue.
The other blocks which are coloured blue are block
4 = {2, 3, 6}; block 7 = {5, 6, 9}; block 10 = {3, 8, 9}.
We release insects 𝑖(1), 𝑖(2), and 𝑖(3) into cage 1, 𝑖(4),
𝑖(5), and 𝑖(6) into cage 4, 𝑖(7), 𝑖(8), and 𝑖(9) into cage 7,
and 𝑖(10), 𝑖(11), and 𝑖(12) into cage 10 (we only open
the side incident with these vertices).

(2) For the vertices 2 = {1, 4, 3}; 5 = {1, 6, 7}; 8 = {1, 9, 10}
coloured green we release the next 9 insects (3 per
vertex): 𝑖(13) to 𝑖(21).

(3) For the remaining 3 vertices 3 = {2, 4, 10}; 6 =

{4, 5, 7}; 9 = {7, 8, 10} coloured red, we release the
remaining 9 insects (3 for each vertex): 𝑖(22) to 𝑖(30).

With this assignment of colours in 𝐺
𝐾3

∗, we will now show
that the 7 conditions are satisfied.

We have now released all the insects in the least number
of time sessions of 3, each cage being exposed to 3 different
insects, satisfying (A1).

The central cage receives insects at a different time from
a block from each clique, and these respective blocks receive
insects at the same time, satisfying (A5).

The 3 cliques 𝑃, 𝑄, and 𝑅 each do not have their 3 blocks
receiving insects at the same time (all blocks are adjacent in
each clique) and do not contain the central cage, satisfying
conditions (A3) and (A4).

The edges between the cliques allow condition (A6) to be
satisfied.

Three 5-cycles through the central cage are each coloured
with 3 colours representing the central cage not receiving
insects at the same time as a cage from each block required
in (A5). 2 cages from 2 separate cliques do receive insects at
the same time and 2 cages from the same separate cliques do
not.

Once we have applied the insects with 3 different time
sessions, we keep the central vertices fixed and rotate the
vertices (cages) of each clique once keeping the edges (tubes)
fixed releasing 27 (fresh insects other than those released into
vertex 1). For example, the block represented by vertex 2 with
colour green has edges (insects) 𝑖(13), 𝑖(14), and 𝑖(15). These
insects remain connected to the tubes when we rotate, but
vertex 4 will replace vertex 2 or vertex 3 will replace vertex 2.
This rotation allows each block of the clique to receive each
of the 3 (edges of the triangle) of the clique. Keeping the
edges fixed of each clique and rotating the vertices of each
clique (not the colours of the vertices) and doing this for two
sessions on 3-time intervals, each block of each clique will
then have been exposed to the 9 insects connected to each
clique.

After the first two time sessions, we fix the edges (tubes)
and we move the whole cliques (as vertices) around without
changing the vertex colouring, so that conditions (A1), (A2)
still hold, and each block other than the trial block is exposed
to all 27 insects involved in the 3 cliques.Thus condition (A7)
holds without violating any other condition.
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