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The intrauterine fluid flow due to myometrial contractions is peristaltic type motion and the myometrial contractions may occur
in both symmetric and asymmetric directions. The channel asymmetry is produced by choosing the peristaltic wave train on the
walls to have different amplitude, and phase due to the variation of channel width, wave amplitudes and phase differences. In
this paper, we study the effects of heat and mass transfer on the peristaltic transport of magnetohydrodynamic couple stress fluid
through homogeneous porous medium in a vertical asymmetric channel. The flow is investigated in the wave frame of reference
moving with constant velocity with the wave. The governing equations of couple stress fluid have been simplified under the long
wave length approximation. The exact solutions of the resultant governing equations have been derived for the stream function,
temperature, concentration, pressure gradient, and heat transfer coefficients.Thepressure difference and frictional forces at both the
walls are calculated using numerical integration. The influence of diverse flow parameters on the fluid velocity, pressure gradient,
temperature, concentration, pressure difference, frictional forces, heat transfer coefficients, and trapping has been discussed. The
graphical results are also discussed for four different wave shapes. It is noticed that increasing of couple stresses and heat generation
parameter increases the size of the trapped bolus.The heat generation parameter increases the peristaltic pumping and temperature.

1. Introduction

In recent years, the flow of non-Newtonian fluids has received
much attention due to the increasing industrial, medical,
and technological applications. Various researchers have
attempted diverse flow problems related to several non-
Newtonian fluids and couple stress fluid is one of them. The
theory of couple stress fluids originated by Stokes [1] has
many biomedical, industrial, and scientific applications and
was used to model synthetic fluids, polymer thickened oils,
liquid crystals, animal blood, and synovial fluid. Some earlier
developments in couple stress fluid theory with some basic
flows can be found in the book by Stokes [2]. Recently, few
researchers have studied some couple stress fluid flows for
different flow geometries [3–8].

Nowadays, peristaltic flows have gained much attention
because of their applications in physiology and industry.

Peristaltic transport is a form of fluid transport induced by
a progressive wave of area contraction or expansion along
the length of a distensible tube/channel and transporting
the fluid in the direction of the wave propagation. This
phenomenon is known as peristalsis. In physiology this plays
an important role in various situations such as the food
movement in the digestive tract, urine transport from kidney
to bladder through ureter, movement of lymphatic fluids in
lymphatic vessels, bile flow from the gall bladder into the
duodenum, spermatozoa in the ductus efferentes of the male
reproductive tract, ovum movement in the fallopian tube,
blood circulation in the small blood vessels, the movement
of the chyme in the gastrointestinal tract, intrauterine fluid
motion, swallowing food bolus through esophagus, and
transport of cilia. Many industrial and biological instruments
such as roller pumps, finger pumps, heart-lung machines,
blood pumpmachines, and dialysis machines are engineered
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based on the peristaltic mechanism [9]. The intrauterine
fluid flow due to myometrial contractions is peristaltic in
nature and these myometrial contractions occur in both
symmetric and asymmetric directions and also when embryo
enters the uterus for implantation there start the asymmetric
contractions.The contractions inside the nonpregnant uterus
are very complicated because they are composed of variable
amplitudes and different wave lengths [10]. In view of this,
Pandey and Chaube [11] have investigated the peristaltic
transport of a couple stress fluid in a symmetrical channel
using perturbationmethod in terms of small amplitude ratio.
Ali and Hayat [12] have studied the peristaltic motion of
micropolar fluid in an asymmetric channel. Naga Rani and
Sarojamma [13] have analyzed the peristaltic transport of a
Casson fluid in an asymmetric channel. Hayat et al. [14] have
discussed the peristaltic flow of a Johnson-Segalman fluid in
an asymmetric channel. Hayat and Javed [15] have studied
the peristaltic transport of power-law fluid in asymmetric
channel.

The porous medium plays an important role in the
study of transport process in biofluid mechanics, indus-
trial mechanics, and engineering fields. The fluid transport
through porous medium is widely applicable in the vascular
beds, lungs, kidneys, tumorous vessels, bile duct, gall bladder
with stones, and small blood vessels. In the pathological situ-
ations, the distribution of fatty cholesterol, artery clogging,
blood clots in the lumen of coronary artery, transport of
drugs and nutrients to brain cells, and functions of organs
are modeled as porous medium [16]. Recently, Tripathi [17]
studied the peristaltic hemodynamic flow of couple stress
fluids through a porous medium. Tripathi and Bég [18] have
investigated the peristaltic flow of generalized Maxwell fluid
through a porous medium using homotopy perturbation
method. Abd elmaboud and Mekheimer [19] have discussed
peristaltic transport of a second-order fluid through a porous
medium using regular perturbation method. The magneto-
hydrodynamic flows also gained much attention due to the
widespread applications in biofluid mechanics and industry.
It is the fact that many fluids like blood are conductive in
nature and gave a new direction for research. The indispens-
able role of biomagnetic fluid dynamics in medical science
has been very helpful with many problems of physiology.
It has wide range of applications, such as magnetic wound
or cancer tumour treatment, bleeding reduction during
surgeries, provocation of occlusion of feeding vessels of
cancer tumor, cell separation, transport of drugs, blood pump
machines, and magnetic resonance imaging to diagnose the
disease and the influence of magnetic field which may be
utilized as a blood pump in carrying out cardiac operations
for the blood flow in arteries with arterial disease like arterial
stenosis or arteriosclerosis. Specifically, the magnetohydro-
dynamic flows of non-Newtonian fluids are of great interest
in magnetotherapy. The noninvasive radiological tests use
the magnetic field to evaluate organs in abdomen [20].
Hayat et al. [21] have studied the peristaltic transport of
magnetohydrodynamic Johnson-Segalman fluid for the case
of a planar channel. Wang et al. [22] have investigated the
peristaltic motion of a magnetohydrodynamic generalized
second-order fluid in an asymmetric channel. Nadeem and

Akram [23, 24] have discussed the peristaltic transport of a
couple stress fluid and Williamson fluid in an asymmetric
channel with the effect of the magnetic field.

Heat transfer plays a significant role in the cooling pro-
cesses of industrial and medical applications. Such consider-
ation is very important since heat transfer in the human body
is currently considered as an important area of research. In
view of the thermotherapy and the human thermoregulation
system, the model of bioheat transfer in tissues has been
attracted by the biomedical engineers. In fact the heat transfer
in human tissues involves complicated processes such as
heat conduction in tissues, heat transfer due to perfusion of
the arterial-venous blood through the pores of the tissue,
metabolic heat generation, and external interactions such
as electromagnetic radiation emitted from cell phones [25].
Heat transfer also involves many complicated processes
such as evaluating skin burns, destruction of undesirable
cancer tissues, dilution technique in examining blood flow,
paper making, food processing, vasodilation, and radiation
between surface and its environment [26]. Mustafa et al.
[27] have studied the peristaltic transport of nanofluid in a
channel. The heat transfer characteristics of a couple stress
fluid in an asymmetric channel have been analyzed by Abd
elmaboud et al. [28]. Nadeem and Akbar [29] have discussed
the influence of heat transfer andmagnetic field on peristaltic
flow of a Johnson-Segalman fluid in a vertical symmetric
channel. Some more works regarding peristaltic flows with
the effect of heat transfer and magnetic field can be seen
in [30–33]. Srinivas et al. [34] have studied the effects of
both wall slip conditions and heat transfer on peristaltic
flow of MHD Newtonian fluid in a porous channel with
elastic wall properties. Mass transfer is another important
phenomenon in physiology and industry. This phenomenon
has great applications such as nutrients’ diffusion out from the
blood to neighboring tissues, membrane separation process,
reverse osmosis, distillation process, combustion process, and
diffusion of chemical impurities [35]. Recently, Noreen [36]
studied the problem of mixed convection peristaltic flow of
third-order nanofluidwith an inducedmagnetic field. Saleem
and Haider [37] have discussed the peristaltic transport of
Maxwell fluid with heat and mass transfer in an asymmetric
channel. Some more relevant works on the peristaltic trans-
port with heat and mass transfer can be seen in [38–42].

The aim of the present study is to investigate the influence
of heat and mass transfer on the peristaltic flow of magne-
tohydrodynamic couple stress fluid through homogeneous
porous medium in a vertical asymmetric channel. This paper
is arranged as follows. Section 2 presents the mathematical
formulation for the problem. The solution of the problem
is obtained in Section 3. The four different wave forms are
presented in Section 4 while the computational results are
discussed in Section 5. The last section, Section 6, presents
the conclusions of the present study.

2. Formulation of the Problem

Let us consider magnetohydrodynamic couple stress fluid in
a vertical asymmetric channel through the porous medium



Journal of Fluids 3

B0

g

Y

X

T0

𝜆a1

H1
C1 C0

c

H2

T1

a2

𝜙

d1

d2

o

Figure 1: Physical model of the problem.

with the width of 𝑑
1
+ 𝑑
2
. The surfaces 𝐻

1
and 𝐻

2
of the

asymmetric channel are maintained at constant temperatures
𝑇
0
and 𝑇

1
and the constant concentrations 𝐶

0
and 𝐶

1
,

respectively (see Figure 1).The porous medium is assumed to
be homogeneous. The motion is induced by sinusoidal wave
trains propagating with constant speed 𝑐 along the channel
walls as defined by the following:

𝐻
1
= 𝑑
1
+ 𝑎
1
cos(2𝜋

𝜆
(𝑋 − 𝑐𝑡)) (right side wall) ,

𝐻
2
= −𝑑
2
− 𝑎
2
cos(2𝜋

𝜆
(𝑋 − 𝑐𝑡) + 𝜙) (left side wall) ,

(1)

where 𝑎
1
and 𝑎
2
are the wave amplitudes, 𝜆 is the wave length,

𝑑
1
+ 𝑑
2
is the channel width, 𝑐 is the velocity of propagation,

𝑡 is the time, and𝑋 is the direction of wave propagation. The
phase difference 𝜙 varies in the range 0 ≤ 𝜙 ≤ 𝜋, in which 𝜙 =
0 corresponds to symmetric channel with waves out of phase
and 𝜙 = 𝜋 corresponds to waves in phase, and further 𝑎

1
, 𝑎
2
,

𝑑
1
,𝑑
2
, and𝜙meet the following relation 𝑎2

1
+𝑎
2

2
+2𝑎
1
𝑎
2
cos𝜙 ≤

(𝑑
1
+ 𝑑
2
)
2.

The continuity, momentum, energy, and concentration
equations for an MHD incompressible couple stress fluid, in
the absence of body couples, are [8, 16]

∇ ⋅ 𝑞 = 0,

𝜌
𝐷𝑞

𝐷𝑡
= −∇𝑝 − 𝜇∇

2
𝑞 − 𝜂∇

4
𝑞 + 𝐽 × 𝐵 + 𝑅

+ 𝜌𝑔𝛽
𝑇
(𝑇 − 𝑇

0
) + 𝜌𝑔𝛽

𝐶
(𝐶 − 𝐶

0
) ,

𝜌𝑐
𝑝

𝐷𝑇

𝐷𝑡
= 𝑘
∗
∇
2
𝑇 + 𝑄

0
,

𝐷𝐶

𝐷𝑡
= 𝐷∇

2
𝐶 +

𝐷𝐾
𝑇

𝑇
𝑚

∇
2
𝑇,

(2)

in which 𝐷/𝐷𝑡 represents the material derivative and 𝑅 is
Darcy’s resistance in the porous medium which are given by

𝐷

𝐷𝑡
=
𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
+ V

𝜕

𝜕𝑦
, 𝑅 = −

𝜇

𝑘
0

𝑞, (3)

where 𝑞 is the velocity vector, 𝜌 is the density, 𝑝 is the
pressure, 𝜇 is the viscosity, 𝜂 is material constant associated
with couple stress, 𝐽 is the electric current density, 𝐵 is
the total magnetic field, 𝑔 is the acceleration due to the
gravity, 𝛽

𝑇
is the coefficient of thermal expansion, 𝛽

𝐶
is the

coefficient of expansion with concentration, 𝑐
𝑝
is the specific

heat at constant pressure, 𝑇 is the temperature, 𝐶 is the
mass concentration, 𝑘∗ is the thermal conductivity, 𝑄

0
is the

constant heat generation parameter, 𝐷 is the coefficient of
mass diffusivity, 𝐾

𝑇
is the thermal diffusion ratio, 𝑇

𝑚
is the

mean temperature, and 𝑘
0
is the permeability parameter. The

viscous dissipation is neglected in the energy equation.
In the fixed frame, governing equations for the peristaltic

motion of an incompressible magnetohydrodynamic couple
stress fluid through homogeneous porous medium in the
two-dimensional vertical channel are

𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
= 0,

𝜌 (
𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
)

= −
𝜕𝑃

𝜕𝑋
+ 𝜇(

𝜕
2
𝑈

𝜕𝑋2
+
𝜕
2
𝑈

𝜕𝑌2
)
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− 𝜂(
𝜕
4
𝑈

𝜕𝑋4
+ 2

𝜕
4
𝑈

𝜕𝑋2𝜕𝑌2
+
𝜕
4
𝑈

𝜕𝑌4
)

− 𝜎𝐵
2

0
𝑈 −

𝜇

𝑘
0

𝑈 + 𝜌𝑔𝛽
𝑇
(𝑇 − 𝑇

0
) + 𝜌𝑔𝛽

𝐶
(𝐶 − 𝐶

0
) ,

𝜌 (
𝜕𝑉

𝜕𝑡
+ 𝑈

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
)

= −
𝜕𝑃

𝜕𝑌
+ 𝜇(

𝜕
2
𝑉

𝜕𝑋2
+
𝜕
2
𝑉

𝜕𝑌2
)

− 𝜂(
𝜕
4
𝑉

𝜕𝑋4
+ 2

𝜕
4
𝑉

𝜕𝑋2𝜕𝑌2
+
𝜕
4
𝑉

𝜕𝑌4
) −

𝜇

𝑘
0

𝑉,

𝜌𝑐
𝑝
(
𝜕𝑇

𝜕𝑡
+ 𝑈

𝜕𝑇

𝜕𝑋
+ 𝑉

𝜕𝑇

𝜕𝑌
) = 𝑘

∗
(
𝜕
2
𝑇

𝜕𝑋2
+
𝜕
2
𝑇

𝜕𝑌2
) + 𝑄

0
,

(
𝜕𝐶

𝜕𝑡
+ 𝑈

𝜕𝐶

𝜕𝑋
+ 𝑉

𝜕𝐶

𝜕𝑌
)

= 𝐷(
𝜕
2
𝐶

𝜕𝑋2
+
𝜕
2
𝐶

𝜕𝑌2
) +

𝐷𝐾
𝑇

𝑇
𝑚

(
𝜕
2
𝑇

𝜕𝑋2
+
𝜕
2
𝑇

𝜕𝑌2
) ,

(4)

in which𝑈 and𝑉 are the respective velocity components,𝑃 is
the pressure, 𝑇 is the temperature and 𝐶 is the concentration
in the reference to fixed frame system, 𝜎 is the electrical
conductivity of the fluid, and 𝐵

0
is the applied magnetic field.

In the above, the inducedmagnetic field is neglected since the
magnetic Reynolds number is assumed to be small.

The coordinates, velocities, pressure, temperature, and
concentration in the fixed frame (𝑋, 𝑌) and wave frame (𝑥, 𝑦)
are related by the following expressions:

𝑥 = 𝑋 − 𝑐𝑡, 𝑦 = 𝑌, 𝑢 = 𝑈 − 𝑐, V = 𝑉,

𝑝 (𝑥, 𝑦) = 𝑃 (𝑋, 𝑌, 𝑡) , 𝑇 (𝑥, 𝑦) = 𝑇 (𝑋, 𝑌, 𝑡) ,

𝐶 (𝑥, 𝑦) = 𝐶 (𝑋, 𝑌, 𝑡) ,

(5)

in which 𝑢, V, 𝑝, 𝑇, and 𝐶 are velocity components, pressure,
temperature, and concentration in the wave frame, respec-
tively.

Using (5), the governing equations in the wave frame are
given as follows:

𝜕𝑢

𝜕𝑥
+
𝜕V
𝜕𝑦
= 0,

𝜌 (𝑢
𝜕𝑢

𝜕𝑥
+ V
𝜕𝑢

𝜕𝑦
)

= −
𝜕𝑝

𝜕𝑥
+ 𝜇(

𝜕
2
𝑢

𝜕𝑥2
+
𝜕
2
𝑢

𝜕𝑦2
)

− 𝜂(
𝜕
4
𝑢

𝜕𝑥4
+ 2

𝜕
4
𝑢

𝜕𝑥2𝜕𝑦2
+
𝜕
4
𝑢

𝜕𝑦4
)

− 𝜎𝐵
2

0
(𝑢 + 𝑐) −

𝜇

𝑘
0

(𝑢 + 𝑐) + 𝜌𝑔𝛽
𝑇
(𝑇 − 𝑇

0
)

+ 𝜌𝑔𝛽
𝐶
(𝐶 − 𝐶

0
) ,

𝜌 (𝑢
𝜕V
𝜕𝑥
+ V
𝜕V
𝜕𝑦
)

= −
𝜕𝑝

𝜕𝑦
+ 𝜇(

𝜕
2V
𝜕𝑥2

+
𝜕
2V
𝜕𝑦2

)

− 𝜂(
𝜕
4V
𝜕𝑥4

+ 2
𝜕
4V

𝜕𝑥2𝜕𝑦2
+
𝜕
4V
𝜕𝑦4

) −
𝜇

𝑘
0

V,

𝜌𝑐
𝑝
(𝑢
𝜕𝑇

𝜕𝑥
+ V
𝜕𝑇

𝜕𝑦
) = 𝑘

∗
(
𝜕
2
𝑇

𝜕𝑥2
+
𝜕
2
𝑇

𝜕𝑦2
) + 𝑄

0
,

(𝑢
𝜕𝐶

𝜕𝑥
+ V
𝜕𝐶

𝜕𝑦
)

= 𝐷(
𝜕
2
𝐶

𝜕𝑥2
+
𝜕
2
𝐶

𝜕𝑦2
) +

𝐷𝐾
𝑇

𝑇
𝑚

(
𝜕
2
𝑇

𝜕𝑥2
+
𝜕
2
𝑇

𝜕𝑦2
) .

(6)

We introduce the following dimensionless parameters:

𝑥 =
𝑥

𝜆
, 𝑦 =

𝑦

𝑑
1

, 𝑢 =
𝑢

𝑐
, V =

V
𝑐
,

ℎ
1
=
𝐻
1

𝑎
1

, ℎ
2
=
𝐻
2

𝑑
1

, 𝑡 =
𝑐𝑡

𝜆
,

𝑝 =
𝑑
2

1

𝜆𝜇𝑐
𝑝,

𝛿 =
𝑑
1

𝜆
, 𝑑 =

𝑑
2

𝑑
1

, 𝑎 =
𝑎
1

𝑑
1

, 𝑏 =
𝑎
2

𝑑
1

,

Re =
𝜌𝑐𝑑
1

𝜇
, 𝑀 = √

𝜎

𝜇
𝐵
0
𝑑
1
, 𝐷

𝑎
=
𝑘
0

𝑑2
1

,

𝛾 = √
𝜇

𝜂
𝑑
1
, Gr =

𝜌𝑔𝑑
2

1
𝛽
𝑇
(𝑇
1
− 𝑇
0
)

𝜇𝑐
,

Gc =
𝜌𝑔𝑑
2

1
𝛽
𝐶
(𝐶
1
− 𝐶
0
)

𝜇𝑐
, 𝜓 =

𝜓

𝑐𝑑
1

, Pr =
𝜇𝑐
𝑝

𝑘∗
,

𝜃 =
𝑇 − 𝑇

0

𝑇
1
− 𝑇
0

, Φ =
𝐶 − 𝐶

0

𝐶
1
− 𝐶
0

, 𝛽 =
𝑄
0
𝑑
2

1

𝑘∗ (𝑇
1
− 𝑇
0
)
,

Sc =
𝜇

𝜌𝐷
, Sr =

𝜌𝐷𝐾
𝑇
(𝑇
1
− 𝑇
0
)

𝜇𝑇
𝑚
(𝐶
1
− 𝐶
0
)
,

(7)

where 𝛿 is the dimensionlesswave number, Re is the Reynolds
number, 𝑀 is the Hartmann number, 𝐷

𝑎
is the Darcy

number, 𝛾 is the couple stress parameter, Gr is the local
temperature Grashof number, Gc is the local concentration
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Grashof number, Pr is the Prandtl number, 𝜃 is the dimen-
sionless temperature, Φ is the dimensionless concentration,
𝛽 is the heat generation parameter, Sc is the Schmidt number,
and Sr is the Soret number.

In terms of these nondimensional variables, the govern-
ing equations (6), after dropping the bars, become

𝛿
𝜕𝑢

𝜕𝑥
+
𝜕V
𝜕𝑦
= 0, (8)

Re 𝛿(𝑢𝜕𝑢
𝜕𝑥
+
1

𝛿
V
𝜕𝑢

𝜕𝑦
)

= −
𝜕𝑝

𝜕𝑥
+ (𝛿
2 𝜕
2
𝑢

𝜕𝑥2
+
𝜕
2
𝑢

𝜕𝑦2
)

−
1

𝛾2
(𝛿
4 𝜕
4
𝑢

𝜕𝑥4
+ 2𝛿
2 𝜕
4
𝑢

𝜕𝑥2𝜕𝑦2
+
𝜕
4
𝑢

𝜕𝑦4
)

− (𝑀
2
+
1

𝐷
𝑎

) (𝑢 + 1) + Gr𝜃 + GcΦ,

(9)

Re 𝛿2 (𝑢 𝜕V
𝜕𝑥
+
1

𝛿
V
𝜕V
𝜕𝑦
)

= −
𝜕𝑝

𝜕𝑦
+ (𝛿
3 𝜕
2V
𝜕𝑥2

+ 𝛿
𝜕
2V
𝜕𝑦2

)

−
1

𝛾2
(𝛿
5 𝜕
4V
𝜕𝑥4

+ 2𝛿
3 𝜕
4V

𝜕𝑥2𝜕𝑦2
+ 𝛿

𝜕
4V
𝜕𝑦4

) −
1

𝐷
𝑎

𝛿V,

(10)

RePr𝛿(𝑢𝜕𝜃
𝜕𝑥
+ V
𝜕𝜃

𝜕𝑦
) = (𝛿

2 𝜕
2
𝜃

𝜕𝑥2
+
𝜕
2
𝜃

𝜕𝑦2
) + 𝛽, (11)

Re 𝛿(𝑢𝜕Φ
𝜕𝑥

+ V
𝜕Φ

𝜕𝑦
)

=
1

Sc
(
𝜕
2
Φ

𝜕𝑥2
+
𝜕
2
Φ

𝜕𝑦2
) + Sr(𝛿2 𝜕

2
𝜃

𝜕𝑥2
+
𝜕
2
𝜃

𝜕𝑦2
) .

(12)

The dimensionless velocity components (𝑢, V) in terms of
stream function 𝜓 are related by the following relations:

𝑢 =
𝜕𝜓

𝜕𝑦
, V = −𝛿

𝜕𝜓

𝜕𝑥
. (13)

Using (13), the governing equations (9)–(12) reduced to

Re 𝛿 [(
𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
−
𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
)
𝜕𝜓

𝜕𝑦
]

= −
𝜕𝑝

𝜕𝑥
+ (𝛿
2 𝜕
3
𝜓

𝜕𝑥2𝜕𝑦
+
𝜕
3
𝜓

𝜕𝑦3
)

−
1

𝛾2
(𝛿
4 𝜕
5
𝜓

𝜕𝑥4𝜕𝑦
+ 2𝛿
2 𝜕
5
𝜓

𝜕𝑥2𝜕𝑦3
+
𝜕
5
𝜓

𝜕𝑦5
)

− (𝑀
2
+
1

𝐷
𝑎

)(
𝜕𝜓

𝜕𝑦
+ 1) + Gr𝜃 + GcΦ,

− Re 𝛿3 [(
𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
−
𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
)
𝜕𝜓

𝜕𝑥
]

= −
𝜕𝑝

𝜕𝑦
− (𝛿
4 𝜕
3
𝜓

𝜕𝑥3
+ 𝛿
2 𝜕
3
𝜓

𝜕𝑥𝜕𝑦2
)

+
1

𝛾2
(𝛿
6 𝜕
5
𝜓

𝜕𝑥5
+ 2𝛿
4 𝜕
5
𝜓

𝜕𝑥3𝜕𝑦2
+ 𝛿
2 𝜕
5
𝜓

𝜕𝑥𝜕𝑦4
)

+
1

𝐷
𝑎

𝛿
2 𝜕𝜓

𝜕𝑥
,

RePr𝛿(
𝜕𝜓

𝜕𝑦

𝜕𝜃

𝜕𝑥
−
𝜕𝜓

𝜕𝑥

𝜕𝜃

𝜕𝑦
) = (𝛿

2 𝜕
2
𝜃

𝜕𝑥2
+
𝜕
2
𝜃

𝜕𝑦2
) + 𝛽,

Re 𝛿(
𝜕𝜓

𝜕𝑦

𝜕Φ

𝜕𝑥
−
𝜕𝜓

𝜕𝑥

𝜕Φ

𝜕𝑦
)

=
1

Sc
(𝛿
2 𝜕
2
Φ

𝜕𝑥2
+
𝜕
2
Φ

𝜕𝑦2
) + Sr(𝛿2 𝜕

2
𝜃

𝜕𝑥2
+
𝜕
2
𝜃

𝜕𝑦2
) .

(14)

The dimensionless boundary conditions can be put in the
forms

𝜓 =
𝐹

2
,

𝜕𝜓

𝜕𝑦
= −1,

𝜕
3
𝜓

𝜕𝑦3
= 0,

𝜃 = 0, Φ = 0

at 𝑦 = ℎ
1
= 1 + 𝑎 cos (2𝜋𝑥) ,

𝜓 = −
𝐹

2
,

𝜕𝜓

𝜕𝑦
= −1,

𝜕
3
𝜓

𝜕𝑦3
= 0,

𝜃 = 1, Φ = 1

at 𝑦 = ℎ
2
= −𝑑 − 𝑏 cos (2𝜋𝑥 + 𝜙) .

(15)

The dimensionless mean flow rate Θ in fixed frame is related
to the nondimensional mean flow rate 𝐹 in wave frame by

Θ = 𝐹 + 1 + 𝑑, (16)

in which

𝐹 = ∫

ℎ
1

ℎ
2

𝜕𝜓

𝜕𝑦
𝑑𝑦 = 𝜓 (ℎ

1
(𝑥)) − 𝜓 (ℎ

2
(𝑥)) . (17)

We note that ℎ
1
and ℎ

2
represent the dimensionless forms of

the peristaltic walls

ℎ
1
(𝑥) = 1 + 𝑎 cos (2𝜋𝑥) ,

ℎ
2
(𝑥) = −𝑑 − 𝑏 cos (2𝜋𝑥 + 𝜙) ,

(18)

where 𝑎, 𝑏, 𝑑, and 𝜙 satisfy the relation 𝑎2 + 𝑏2 + 2𝑎𝑏 cos𝜙 ≤
(1 + 𝑑)

2.

3. Solution of the Problem

Assuming that the wave length of the peristaltic wave is very
large compared to the width of the channel, the wave number
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𝛿 becomes very small.This assumption is known as longwave
length approximation. Since 𝛿 is very small, all the higher
powers of 𝛿 are also very small. Therefore, neglecting terms
containing 𝛿 and its higher powers from (14), we get

𝜕𝑝

𝜕𝑥
=
𝜕
3
𝜓

𝜕𝑦3
−
1

𝛾2

𝜕
5
𝜓

𝜕𝑦5

− (𝑀
2
+
1

𝐷
𝑎

)(
𝜕𝜓

𝜕𝑦
+ 1) + Gr𝜃 + GcΦ,

(19)

𝜕𝑝

𝜕𝑦
= 0, (20)

𝜕
2
𝜃

𝜕𝑦2
+ 𝛽 = 0, (21)

1

Sc
𝜕
2
Φ

𝜕𝑦2
+ Sr𝜕

2
𝜃

𝜕𝑦2
= 0. (22)

Elimination of pressure form from (19) and (20) yields

𝜕
4
𝜓

𝜕𝑦4
−
1

𝛾2

𝜕
6
𝜓

𝜕𝑦6
− (𝑀

2
+
1

𝐷
𝑎

)
𝜕
2
𝜓

𝜕𝑦2
+ Gr𝜕𝜃

𝜕𝑦
+ Gc𝜕Φ

𝜕𝑦
= 0.

(23)

Solving (21) and (22) with the boundary conditions (15), the
temperature and concentration are obtained as

𝜃 = −𝛽
𝑦
2

2
+ 𝐴
1
𝑦 + 𝐴

2
,

Φ = SrSc𝛽
𝑦
2

2
+ 𝐵
1
𝑦 + 𝐵
2
,

(24)

where

𝐴
1
=
𝛽 (ℎ
2

1
− ℎ
2

2
) − 2

2 (ℎ
1
− ℎ
2
)
; 𝐴

2
=
𝛽ℎ
2

1
− 2𝐴
1
ℎ
1

2
;

𝐵
1
= −

ScSr𝛽 (ℎ2
1
− ℎ
2

2
) + 2

2 (ℎ
1
− ℎ
2
)

; 𝐵
2
= −

ScSr𝛽ℎ2
1
+ 2𝐵
1
ℎ
1

2
.

(25)

Inserting (24) in (23), with the help of boundary conditions
(15), we obtain the stream function as

𝜓 = 𝐷
1
𝑦
3
+ 𝐷
2
𝑦
2
+ 𝐶
3
𝑦 + 𝐶

4
+ 𝐶
5
cosh (𝑛

1
𝑦)

+ 𝐶
6
sinh (𝑛

1
𝑦) + 𝐶

7
cosh (𝑛

2
𝑦) + 𝐶

8
sinh (𝑛

2
𝑦) .

(26)

in which

𝑚
1
= √𝑀2 +

1

𝐷
𝑎

; 𝑛
1
=
√
𝛾
2
+ 𝛾√𝛾2 − 4𝑚2

1

2
;

𝑛
2
=
√
𝛾
2
− 𝛾√𝛾2 − 4𝑚2

1

2
;

𝐶
1
= 𝛽𝛾
2
(GcScSr − Gr) ; 𝐶

2
= 𝛾
2
(Gr𝐴

1
+ Gc𝐵

1
) ;

𝐶
3
= 𝐷
19
+ 𝐶
8
𝐷
20
;

𝐶
4
=
𝐹

2
− 𝐷
1
ℎ
3

1
− 𝐷
2
ℎ
2

1
− 𝐶
3
ℎ
1
− 𝐶
5
cosh (𝑛

1
ℎ
1
)

− 𝐶
6
sinh (𝑛

1
ℎ
1
) − 𝐶
7
cosh (𝑛

2
ℎ
1
) − 𝐶
8
sinh (𝑛

2
ℎ
1
) ;

𝐶
5
= 𝐷
13
+ 𝐶
8
𝐷
14
; 𝐶

6
= 𝐷
15
+ 𝐶
8
𝐷
16
;

𝐶
7
= 𝐷
17
+ 𝐶
8
𝐷
18
; 𝐶

8
=
𝐷
21

𝐷
22

;

𝐷
1
=

𝐶
1

6𝑚2
1
𝛾2
; 𝐷

2
=

𝐶
2

2𝑚2
1
𝛾2
;

𝐷
3
= sinh (𝑛

1
ℎ
1
) − sinh (𝑛

1
ℎ
2
) ;

𝐷
4
= cosh (𝑛

1
ℎ
1
) − cosh (𝑛

1
ℎ
2
) ;

𝐷
5
= sinh (𝑛

2
ℎ
1
) − sinh (𝑛

2
ℎ
2
) ;

𝐷
6
= cosh (𝑛

2
ℎ
1
) − cosh (𝑛

2
ℎ
2
) ;

𝐷
7
= 𝑛
3

1
(sinh (𝑛

1
ℎ
1
) −

𝐷
3
sinh (𝑛

2
ℎ
1
)

𝐷
5

) ;

𝐷
8
= 𝑛
3

1
(− cosh (𝑛

1
ℎ
1
) +

𝐷
4
sinh (𝑛

2
ℎ
1
)

𝐷
5

) ;

𝐷
9
= 𝑛
3

2
(cosh (𝑛

2
ℎ
1
) +

𝐷
6
sinh (𝑛

2
ℎ
1
)

𝐷
5

) ;

𝐷
10
= 3𝐷
1
(ℎ
2

2
− ℎ
2

1
) + 2𝐷

2
(ℎ
2
− ℎ
1
)

−
6𝑛
1
𝐷
1
𝐷
4

𝐷
8

+
6𝑛
3

1
𝐷
1
𝐷
4

𝑛2
2
𝐷
8

;

𝐷
11
= 𝑛
1
𝐷
3
+
𝑛
1
𝐷
4
𝐷
7

𝐷
8

−
𝑛
3

1
𝐷
3

𝑛2
2

−
𝑛
3

1
𝐷
4
𝐷
7

𝑛2
2
𝐷
8

;

𝐷
12
=
𝑛
1
𝐷
4
𝐷
9

𝐷
8

−
𝑛
3

1
𝐷
4
𝐷
9

𝑛2
2
𝐷
8

;

𝐷
13
=
𝐷
10

𝐷
11

; 𝐷
14
=
𝐷
12

𝐷
11

;

𝐷
15
=
𝐷
7
𝐷
13
+ 6𝐷
1

𝐷
8

; 𝐷
16
=
𝐷
7
𝐷
14
− 𝐷
9

𝐷
8

;

𝐷
17
= −

𝑛
3

1
(𝐷
3
𝐷
13
+ 𝐷
4
𝐷
15
)

𝑛3
2
𝐷
5

;

𝐷
18
= −

𝑛
3

1
(𝐷
3
𝐷
14
+ 𝐷
4
𝐷
16
) + 𝑛
3

2
𝐷
6

𝑛3
2
𝐷
5

;

𝐷
19
= − 1 − 3𝐷

1
ℎ
2

1
− 2𝐷
2
ℎ
1
− 𝑛
1
𝐷
13
sinh (𝑛

1
ℎ
1
)

− 𝑛
1
𝐷
15
cosh (𝑛

1
ℎ
1
) − 𝑛
2
𝐷
17
sinh (𝑛

2
ℎ
1
) ;

𝐷
20
= − 𝑛

1
𝐷
14
sinh (𝑛

1
ℎ
1
) − 𝑛
1
𝐷
16
cosh (𝑛

1
ℎ
1
)

− 𝑛
2
𝐷
18
sinh (𝑛

2
ℎ
1
) − 𝑛
2
cosh (𝑛

2
ℎ
1
) ;

𝐷
21
= 𝐹 − 𝐷

1
(ℎ
3

1
− ℎ
3

2
) − 𝐷
2
(ℎ
2

1
− ℎ
2

2
) − 𝐷
19
(ℎ
1
− ℎ
2
)

− 𝐷
4
𝐷
13
− 𝐷
3
𝐷
15
− 𝐷
6
𝐷
17
;

𝐷
22
= 𝐷
20
(ℎ
1
− ℎ
2
) + 𝐷
4
𝐷
14
+ 𝐷
3
𝐷
16
+ 𝐷
6
𝐷
18
+ 𝐷
5
.

(27)
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Figure 2: Velocity profile for (a) 𝑥 = 1, 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1, 𝐷
𝑎
= 0.5, 𝛾 = 5, 𝜙 = 𝜋/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = 2, and

𝛽 = 0.2; (b) 𝑥 = 1, 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1,𝑀 = 1,𝐷
𝑎
= 0.5, 𝛾 = 5, 𝜙 = 𝜋/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Θ = 2, and 𝛽 = 7; (c) 𝑥 = 1, 𝑎 = 0.7,

𝑏 = 0.5, 𝑑 = 1,𝑀 = 1,𝐷
𝑎
= 0.5, 𝜙 = 𝜋/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4,Θ = 2, and 𝛽 = 0.2; (d) 𝑥 = 1, 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1,𝑀 = 1,

𝛾 = 5, 𝜙 = 𝜋/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = 2, and 𝛽 = 0.2; (e) 𝑥 = 1, 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1,𝑀 = 1,𝐷
𝑎
= 0.5, 𝛾 = 5, 𝜙 = 𝜋/3,

Gr = 0.5, Gc = 0.5, Sr = 0.8, Sc = 0.8, and Θ = 2; (f) 𝑥 = 1, 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1,𝑀 = 1, 𝐷
𝑎
= 0.5, 𝛾 = 5, 𝜙 = 𝜋/3, Gc = 0.5, Sr = 0.4,

Sc = 0.4, Θ = 2, and 𝛽 = 0.2.

Using (24) and (26) in (19), the pressure gradient is given by

𝜕𝑝

𝜕𝑥
= 𝐸
1
𝑦
2
+ 𝐸
2
𝑦 + 𝐸
3
+ 𝐸
4
cosh (𝑛

1
𝑦) + 𝐸

5
sinh (𝑛

1
𝑦)

+ 𝐸
6
cosh (𝑛

2
𝑦) + 𝐸

7
sinh (𝑛

2
𝑦) ,

(28)

where

𝐸
1
=
GcScSr𝛽 − Gr𝛽 − 6𝑚2

1
𝐷
1

2
;

𝐸
2
= Gr𝐴

1
+ Gc𝐵

1
− 2𝑚
2

1
𝐷
2
;

𝐸
3
= Gr𝐴

2
+ Gc𝐵

2
+ 6𝐷
1
− 𝑚
2

1
(1 + 𝐶

3
) ;
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Figure 3: Pressure gradient for (a) 𝑦 = 0, 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1, 𝐷
𝑎
= 0.5, 𝛾 = 5, 𝜙 = 𝜋/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = −1,

and 𝛽 = 0.2; (b) 𝑦 = 0, 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1,𝑀 = 1,𝐷
𝑎
= 0.5, 𝛾 = 5, 𝜙 = 𝜋/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, and Θ = −1; (c) 𝑦 = 0,

𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1,𝑀 = 1, 𝐷
𝑎
= 0.5, 𝛾 = 5, 𝜙 = 𝜋/2, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = −1, and 𝛽 = 0.2; (d) 𝑦 = 0, 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1,

𝑀 = 1, 𝛾 = 5, 𝜙 = 𝜋/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = −1, and 𝛽 = 0.2; (e) 𝑦 = 0, 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1,𝑀 = 1,𝐷
𝑎
= 0.5, 𝛾 = 5,

𝜙 = 𝜋/2, Gr = 0.5, Gc = 0.5, Sr = 0.4, Θ = −1, and 𝛽 = 0.2; (f) 𝑦 = 0, 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1,𝑀 = 1, 𝐷
𝑎
= 0.5, 𝜙 = 𝜋/3, Gr = 0.5, Gc = 0.5,

Sr = 0.4, Sc = 0.4, Θ = −1, and 𝛽 = 0.2.
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Figure 4: Pressure gradient for various wave forms for fixed values of 𝑦 = 0, 𝑎 = 0.7, 𝑏 = 0.5, 𝐷
𝑎
= 0.5,𝑀 = 1, 𝛾 = 5, 𝜙 = 0, Gr = 0.5,

Gc = 0.5, Sr = 0.4, Sc = 0.4, and 𝛽 = 0.2.

The nondimensional expressions for the pressure difference
for one wave lengthΔ

𝑝
𝜆

, the frictional forces at both walls𝐹
𝜆
1

at 𝑦 = ℎ
1
and 𝐹

𝜆
2

at 𝑦 = ℎ
2
, and the heat transfer coefficients

𝑍
ℎ
1

and 𝑍
ℎ
2

at the right and left walls are defined as follows
[32]:

Δ𝑝
𝜆
= ∫

1

0

(
𝑑𝑝

𝑑𝑥
)𝑑𝑥, 𝐹

𝜆
1

= ∫

1

0

ℎ
2

1
(−
𝑑𝑝

𝑑𝑥
)𝑑𝑥,

𝐹
𝜆
2

= ∫

1

0

ℎ
2

2
(−
𝑑𝑝

𝑑𝑥
)𝑑𝑥,

𝑍
ℎ
1

=
𝜕ℎ
1

𝜕𝑥

𝜕𝜃

𝜕𝑦
, 𝑍

ℎ
2

=
𝜕ℎ
2

𝜕𝑥

𝜕𝜃

𝜕𝑦
.

(30)

Using (30), the heat transfer coefficients at the right and left
walls, respectively, are obtained as

𝑍
ℎ
1

= 2𝑎𝜋 (𝛽𝑦 − 𝐴
1
) sin (2𝜋𝑥) ,

𝑍
ℎ
2

= −2𝑏𝜋 (𝛽𝑦 − 𝐴
1
) sin (2𝜋𝑥 + 𝜙) .

(31)

The expressions for pressure rise Δ𝑝
𝜆
and frictional forces

at both walls 𝐹
𝜆
1

at 𝑦 = ℎ
1
and 𝐹

𝜆
2

at 𝑦 = ℎ
2
involve the

integration of 𝑑𝑝/𝑑𝑥. Due to the complexity of 𝑑𝑝/𝑑𝑥, the
analytical integration of integrals of (30) is not possible. In
view of this, a numerical integration scheme is used for the
evaluation of the integrals.

4. Expressions for Wave Shapes

The nondimensional expressions for the four considered
wave forms are given in the following.

(1) Sinusoidal wave:
ℎ
1
(𝑥) = 1 + 𝑎 sin (2𝜋𝑥) ,

ℎ
2
(𝑥) = −𝑑 − 𝑏 sin (2𝜋𝑥 + 𝜙) .

(32)

(2) Triangular wave:

ℎ
1
(𝑥) = 1 + 𝑎(

8

𝜋3

∞

∑

𝑛=1

(−1)
𝑛+1

(2𝑛 − 1)
2
sin (2𝜋 (2𝑛 − 1) 𝑥)) ,

ℎ
2
(𝑥) = −𝑑 − 𝑏(

8
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∞

∑

𝑛=1

(−1)
𝑛+1

(2𝑛 − 1)
2
sin (2𝜋 (2𝑛 − 1) 𝑥 + 𝜙)) .

(33)

(3) Square wave:

ℎ
1
(𝑥) = 1 + 𝑎(

4

𝜋

∞

∑

𝑛=1

(−1)
𝑛+1

2𝑛 − 1
cos (2𝜋 (2𝑛 − 1) 𝑥)) ,

ℎ
2
(𝑥) = −𝑑 − 𝑏(

4

𝜋

∞

∑

𝑛=1

(−1)
𝑛+1

2𝑛 − 1
cos (2𝜋 (2𝑛 − 1) 𝑥 + 𝜙)) .

(34)
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Figure 5: Pressure difference for (a) 𝑦 = 0, 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1, 𝐷
𝑎
= 0.5, 𝛾 = 5, 𝜙 = 𝜋/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = 2,

and 𝛽 = 0.2; (b) 𝑦 = 0, 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1,𝑀 = 1, 𝛾 = 5, 𝜙 = 𝜋/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = 2, and 𝛽 = 0.2; (c) 𝑦 = 0,
𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1,𝑀 = 1,𝐷

𝑎
= 0.5, 𝜙 = 𝜋/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4,Θ = 2, and 𝛽 = 0.2; (d) 𝑦 = 0, 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1,

𝑀 = 1, 𝐷
𝑎
= 0.5, 𝛾 = 5, 𝜙 = 𝜋/2, Gr = 0.5, Gc = 0.5, Sc = 0.4, Θ = 2, and 𝛽 = 0.2; (e) 𝑦 = 0, 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1,𝑀 = 1, 𝐷

𝑎
= 0.5, 𝛾 = 5,

𝜙 = 𝜋/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, and Θ = 2; (f) 𝑦 = 0, 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1,𝑀 = 1, 𝐷
𝑎
= 0.5, 𝛾 = 5, 𝜙 = 𝜋/3, Gr = 0.5,

Sr = 0.4, Sc = 0.4, Θ = 2, and 𝛽 = 0.2.

(4) Trapezoidal wave:

ℎ
1
(𝑥)

= 1 + 𝑎(
32

𝜋2

∞

∑

𝑛=1

sin ((𝜋/8) (2𝑛 − 1))
(2𝑛 − 1)

2
sin (2𝜋 (2𝑛 − 1) 𝑥)) ,

ℎ
2
(𝑥)

= −𝑑

− 𝑏(
32

𝜋2

∞

∑

𝑛=1

sin ((𝜋/8) (2𝑛 − 1))
(2𝑛 − 1)

2
sin (2𝜋 (2𝑛 − 1) 𝑥 + 𝜙)) .

(35)
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Figure 6: Frictional force at the right wall for (a) 𝑦 = 0, 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1, 𝐷
𝑎
= 0.5, 𝛾 = 5, 𝜙 = 𝜋/3, Gr = 0.5, Gc = 0.5, Sr = 0.4,

Sc = 0.4, Θ = 2, and 𝛽 = 0.2; (b) 𝑦 = 0, 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1,𝑀 = 1, 𝛾 = 5, 𝜙 = 𝜋/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = 2, and
𝛽 = 0.2; (c) 𝑦 = 0, 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1,𝑀 = 1, 𝐷

𝑎
= 0.5, 𝜙 = 𝜋/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = 2, and 𝛽 = 0.2; (d) 𝑦 = 0,

𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1,𝑀 = 1, 𝐷
𝑎
= 0.5, 𝛾 = 5, 𝜙 = 𝜋/2, Gr = 0.5, Gc = 0.5, Sc = 0.4, Θ = 2, and 𝛽 = 0.2; (e) 𝑦 = 0, 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1,

𝑀 = 1,𝐷
𝑎
= 0.5, 𝛾 = 5, 𝜙 = 𝜋/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, and Θ = 2; (f) 𝑦 = 0, 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1,𝑀 = 1,𝐷

𝑎
= 0.5, 𝛾 = 5,

𝜙 = 𝜋/3, Gr = 0.5, Sr = 0.4, Sc = 0.4, Θ = 2, and 𝛽 = 0.2.

5. Results and Discussion

This section is dedicated to discussion and analysis of the
velocity distribution, pumping characteristics, heat and mass
characteristics, and trapping phenomena for different flow
parameters.

5.1. Flow Characteristics. Figures 2(a)–2(f) illustrate the
influence of Hartmann number 𝑀, Schmidt number Sc,
couple stress parameter 𝛾, Darcy number𝐷

𝑎
, heat generation

parameter 𝛽, and Grashof number Gr on axial velocity profile
across the channel. From these figures, it is observed that
the maximum velocities are always located near the centre
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Figure 7: (a) Pressure difference, (b) frictional force at right wall, and (c) frictional force at left wall for different wave forms when 𝑦 = 0,
𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1,𝐷

𝑎
= 0.5,𝑀 = 1, 𝛾 = 5, 𝜙 = 0, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = 2, and 𝛽 = 0.2.

of the channel and the velocity profiles are nearly parabolic
in all cases. It is noted from Figure 2(a) that as Hartmann
number 𝑀 increases, the velocity decreases near the centre
of the channel and it is increased in the neighborhood of the
walls. This seems realistic because the magnetic field acts in
the transverse direction to the flow andmagnetic force resists
the flow. The similar behavior is observed in [25]. The same
behavior can be seen with increasing of Schmidt number Sc
and couple stress parameter 𝛾 (see Figures 2(b) and 2(c)). It is
observed from Figure 2(d) that increasing of Darcy number
𝐷
𝑎
increases the velocity near the centre of the channel

and decreases the velocity of the fluid near the peristaltic
walls. The same trend is followed with the increasing of heat
generation parameter 𝛽 (see Figure 2(e)). It is noticed from
Figure 2(f) that, with increasing of Grashof number Gr, the
velocity at the left wall increases while a reverse trend is seen
at the right wall.

5.2. Pumping Characteristics. Figure 3 illustrates the varia-
tion of pressure gradient over one wave length 𝑥 ∈ [0, 1].
The effects of𝑀, 𝛽, and Gr on pressure gradient are displayed
in Figures 3(a)–3(c). It can be seen from Figure 3(a) that
increasing of Hartmann number 𝑀 increases the pressure
gradient. It shows that when strong magnetic field is applied

to the flow field then higher pressure gradient is needed
to pass the flow. This result suggests that the fluid pressure
can be controlled by the application of suitable magnetic
field strength. This phenomenon is useful during surgery
and critical operation to control excessive bleeding. It is also
observed that increasing of 𝛽 and Gr increases the pressure
gradient. From Figures 3(d)–3(f), it is noted that with the
increasing of 𝐷

𝑎
, Sc, and 𝛾 the pressure gradient decreases.

It is noticed that, in the wider part of the channels 𝑥 ∈

[0, 0.2] and 𝑥 ∈ [0.7, 1], the pressure gradient is small, so
the flow can be easily passed without the imposition of large
pressure gradient. However, in the narrow part of the channel
𝑥 ∈ [0.2, 0.7] the pressure gradient is large; that is, much
larger pressure gradient is needed to maintain the same given
volume flow rate. Figure 4 is prepared to see the behaviour of
pressure gradient for different four wave forms. It is observed
from Figures 4(a)–4(d) that, in all the wave forms, increase in
𝑑 decreases pressure gradient.

The dimensionless pressure difference per unit wave
length versus time mean flow rate Θ has been plotted in
Figure 5. We split the whole region into four segments as
follows: peristaltic pumping region where Δ𝑝

𝜆
> 0 and

Θ > 0 and augmented pumping region when Δ𝑝
𝜆
< 0 and

Θ > 0. There is retrograde pumping region when Δ𝑝
𝜆
> 0
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Figure 8: (a) Temperature profile, (b) concentration profile, and (c) heat transfer coefficient at the right wall for 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1,
𝐷
𝑎
= 0.5,𝑀 = 1, 𝛾 = 5, 𝜙 = 𝜋/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, and Θ = 2.

and Θ < 0. Free pumping region corresponds to Δ𝑝
𝜆
=

0. The region where Δ𝑝
𝜆
> 0 and Θ > 0 is known as

peristaltic pumping region. In this region, the positive value
of Θ is entirely due to the peristalsis after overcoming the
pressure difference. The region where Δ𝑝

𝜆
< 0 and Θ > 0

is known as copumping or augmented pumping region. In
this region, a negative pressure difference assists the flow due
to the peristalsis of the walls. The region where Δ𝑝

𝜆
> 0

and Θ < 0 is called retrograde pumping region. In this
region, the flow is opposite to the direction of the peristaltic
motion. In the free pumping region, the flow is caused purely
by the peristalsis of the walls. It is evident from Figure 5 that
there is an inversely linear relation betweenΔ𝑝

𝜆
andΘ. From

Figure 5(a), it is clear that with the increasing of 𝑀, in the
augmented pumping and free pumping regions, the pumping
decreases, in the peristaltic pumping region, the pumping
increases up to a critical value of Θ and decreases after
the critical value, and in the retrograde pumping region the
pumping increases. It is observed from Figure 5(b) that, with
the increasing of𝐷

𝑎
, the behaviour is quite opposite with𝑀.

It is noticed from Figure 5(c) that in the augmented pumping
region the pumping increases and in the peristaltic pumping
and retrograde pumping regions the pumping decreases.
Figure 5(d) depicts that, in all the pumping regions, the

pumping decreases by increasing Sr. It is noted from Figures
5(e)-5(f) that the behaviour is quite opposite with Sr while
increasing 𝛽 and Gc.

Figure 6 describes the variation of frictional forces against
flow rate Θ for different values of 𝑀, 𝐷

𝑎
, 𝛾, Sr, 𝛽, and Gc.

It is observed that there is a direct linear relation between
frictional forces and Θ. The frictional forces have exactly
opposite behaviour when compared with that of pressure
difference. Figure 7(a) indicates the effects of four different
wave forms on pressure difference. It is noticed that the
trapezoidal wave has best peristaltic pumping characteristics,
while the triangular wave has poor peristaltic pumping as
compared to the other waves. Figures 7(b)-7(c) show that
the frictional forces at the walls have opposite behaviour as
compared to the pressure difference.

5.3. Heat and Mass Characteristics. Figure 8 depicts the
effects of heat transfer, concentration, and heat transfer
coefficient on the peristaltic transport for various values of
𝛽. We can observe that the temperature and concentration
profiles are almost parabolic except when𝛽 = 0. It is observed
from Figure 8(a) that the temperature increases with 𝛽. It
is clear from Figure 8(b) that the concentration profile has
quite opposite behaviour of temperature profile. It is noticed
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Figure 9: Streamlines for 𝑎 = 0.5, 𝑏 = 0.5, 𝑑 = 1,𝑀 = 1, 𝛾 = 5, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = 2, and 𝛽 = 0.2.

from Figure 8(c) that, due to the peristalsis, the heat transfer
coefficient is in oscillatory behaviour. Moreover, the absolute
value of heat transfer coefficient increases with increase of 𝛽.

5.4. Trapping Phenomenon. In the wave frame, the stream-
lines, in general, have a shape similar to the walls as the
walls are stationary. However under certain conditions some
streamlines can split to enclose a bolus of fluid particles in
closed streamlines. Hence some circulating regions occur. In
the fixed frame of reference the fluid bolus is trapped with the
wave and itmoves as awholewith thewave speed. To examine
the effects of 𝐷

𝑎
, 𝛾, and 𝜙 in the symmetric and asymmetric

channels we have plotted Figures 9–11. In Figures 9 and 10,
the left panels (a), (c), and (e) related to symmetric channel
and the right panels (b), (d), and (f) are corresponding to
asymmetric channel. It is observed from Figure 9 that when
𝐷
𝑎
increases, the size of the trapped bolus decreases near

the left wall and increases near the right wall in both panels.
However, the increase of Darcy number 𝐷

𝑎
increases the

trapped bolus near both walls when Gc = 0 and Gr = 0.
The effects of 𝛾 on the trapping phenomena are displayed
in Figure 10. It is shown that with the increasing 𝛾 decrease
the trapping phenomena for the symmetric and asymmetric
channels. Since 𝛾 = √𝜇/𝜂𝑑

1
, 𝛾 decreases as 𝜂 increases

and hence increasing of couple stresses increases the size
of trapped bolus. Figure 11 gives the trapping behaviour for
various values of 𝜙. It is evident that as 𝜙 increases, the trap-
ping bolus decreases and when it reaches to 𝜋 the trapping
disappears. Moreover, with the increase of 𝜙 the bolus moves
upward with decreasing effect. Figures 12 and 13 provide
the variations of 𝛽 on trapping for different wave shapes:
(a) sinusoidal, (b) triangular, (c) square, and (d) trapezoidal.
From these figures we observe that the size of the trapped
bolus increases with increasing 𝛽 in all the wave forms.
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Figure 10: Streamlines for 𝑎 = 0.5, 𝑏 = 0.5, 𝑑 = 1,𝑀 = 1,𝐷
𝑎
= 0.5, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = 2, and 𝛽 = 0.2.

6. Conclusions

The effects of heat and mass transfer on the peristaltic
flow of magnetohydrodynamic couple stress fluid through
porous medium in a vertical asymmetric channel have
been analyzed. The governing equations are modeled under
the assumption of long wave length approximation. The
exact solutions for the stream function, pressure gradient,
temperature, heat transfer coefficients, and concentration
are obtained. The effects of involved parameters on the
velocity characteristics, pumping characteristics, heat and
mass characteristics, and the trapping due to the peristalsis of
the walls are discussed in detail. From the analysis the main
findings can be summarized as follows:

(i) Increasing of heat generation increases the peristaltic
pumping, size of the trapped bolus, and the magni-
tude of heat transfer coefficient at the peristaltic walls.

(ii) Increasing of couple stresses increases the size of
trapped bolus.

(iii) Increasing of heat generation increases the tempera-
ture and decreases the concentration.

(iv) The trapezoidal wave has best peristaltic pumping as
compared to the other wave shapes.

(v) The frictional forces have an opposite behaviour as
compared to the pressure difference.

Symbols

𝑎
1
, 𝑎
2
: Wave amplitudes

𝜆: Wave length
𝑐: Propagation velocity
𝑡: Time
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Figure 11: Streamlines for 𝑎 = 0.5, 𝑏 = 0.5, 𝑑 = 1,𝑀 = 1,𝐷
𝑎
= 0.5, Gr = 0.5, Gc = 0.5, 𝛾 = 5, Sc = 0.4, Sr = 0.4, Θ = 2, and 𝛽 = 0.2.

𝑋,𝑌: Coordinates of fixed frame
𝑃: Pressure in the fixed frame
𝑞: Velocity vector
𝑅: Darcy’s resistance in the porous medium
𝜌: Density
𝜇: Viscosity
𝜂: Material constant associated with couple stress
𝐽: Electric current density
𝐵: Total magnetic field
𝑔: Acceleration due to the gravity
𝛽
𝑇
: Coefficient of thermal expansion

𝛽
𝐶
: Coefficient of expansion with concentration

𝑐
𝑝
: Specific heat at constant pressure

𝑇: Temperature
𝐶: Mass concentration

𝑘
∗: Thermal conductivity
𝑄
0
: Heat generation parameter

𝐷: Coefficient of mass diffusivity
𝐾
𝑇
: Thermal diffusion ratio

𝑇
𝑚
: Mean temperature

𝑘
0
: Permeability parameter

𝑈,𝑉: Velocity components in the fixed frame
𝑃: Pressure in the fixed frame
𝜎: Electrical conductivity of the fluid
𝐵
0
: Uniform applied magnetic field

𝛿: Dimensionless wave length
𝑥, 𝑦: Coordinates of wave frame
𝑝: Pressure in the wave frame
𝑢, V: Velocity components in the wave frame
Re: Reynolds number
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(d) Trapezoidal wave

Figure 12: Streamlines for various wave forms for fixed values of 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1,𝐷
𝑎
= 0.5,𝑀 = 1, 𝛾 = 5, 𝜙 = 𝜋/3, Gr = 0.5, Gc = 0.5,

Sr = 0.4, Sc = 0.4, Θ = 2, and 𝛽 = 0.
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(d) Trapezoidal wave

Figure 13: Streamlines for various wave forms for fixed values of (a) 𝑎 = 0.7, 𝑏 = 0.5, 𝑑 = 1, 𝐷
𝑎
= 0.5,𝑀 = 1, 𝛾 = 5, 𝜙 = 𝜋/3, Gr = 0.5,

Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = 2, and 𝛽 = 5.
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𝑀: Hartman number
𝐷
𝑎
: Darcy number

𝛾: Couple stress parameter
Gr: Local temperature Grashof number
Gc: Local concentration Grashof number
Pr: Prandtl number
𝜃: Dimensionless temperature
Φ: Dimensionless concentration
𝛽: Dimensionless heat generation parameter
Sc: Schmidt number
Sr: Soret number
𝜓: Stream function
Θ: Time mean flow rate in the fixed frame
𝐹: Time mean flow rate in the wave frame
𝑄: Volume flow rate in the fixed frame
𝑞: Volume flow rate in the wave frame.
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