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Based on a spectral problem raised by Barŕıa and Halmos, a new class of Hardy-Hilbert space operators, containing the classical
Toeplitz operators, is introduced, and some of their Toeplitz-like algebraic and operator-theoretic properties are studied and
explored.

1. Introduction

All of the work I am about to describe takes place in
the Hardy-Hilbert space of the unit circle 𝜕U, denoted
by 𝐻

2
(𝜕U)(= 𝐻

2
), and consists of all square-integrable

(with respect to the normalized arc-length measure 𝑑𝜃/2𝜋)
functions, on 𝜕U, whose negative Fourier coefficients all
vanish; that is,

𝐻
2
= {𝑓 ∈ 𝐿

2
(𝜕U) |

𝑓 (𝑛) :=
1

2𝜋
∫

2𝜋

0

𝑓 (𝑒
𝚤𝜃
) 𝑒
−𝚤𝑛𝜃

𝑑𝜃 = 0, 𝑛 ∈ Z
+
}.

(1)

For more details and basic properties of Hardy spaces, the
reader is referred to [1, Chapters 1 and 2] or [2, Chapter 17].

Two of the most intensely studied classes of bounded
operators on 𝐻

2 are Toeplitz and Hankel operators. Orig-
inally, an infinite matrix is called Toeplitz (resp., Hankel)
if its entries depend just on the difference (resp., the sum)
of their indices. Hence, Toeplitz matrices are the ones with
constant diagonals, and Hankel matrices are those with
constant skew-diagonals. They both play a decisive role in
a very wide circle of problems in operator theory, 𝐶

∗-
algebras,moment problems, interpolation by holomorphic or
meromorphic functions, inverse spectral problems, orthogo-
nal polynomials, prediction theory, Wiener-Hopf equations,
boundary problems of function theory, the extension theory
of symmetric operators, singular integral equations, models

of statistical physics, andmany others. Also, there exists a vast
literature on the theory of Toeplitz andHankel operators; see,
for example, [3–8].

Maybe a näıve reason also for their importance is the
fact that Toeplitz and Hankel operators are compressions
of (bounded) multiplication operators and their flipped,
respectively, to𝐻

2. Indeed, any essentially bounded function
𝜙 on 𝜕U induces, in a natural way, three bounded operators,
one on 𝐿

2
(𝜕U) and the two others on𝐻

2, as follows.

(i) TheMultiplication operator𝑀
𝜙
is given by𝑀

𝜙
𝑓 = 𝜙𝑓,

for 𝑓 ∈ 𝐿
2
(𝜕U).

(ii) The Toeplitz operator 𝑇
𝜙
is defined, in terms of the

orthogonal projection 𝑃 from 𝐿
2
(𝜕U) onto 𝐻

2
(𝜕U),

as the compression of 𝑀
𝜙
to 𝐻
2; 𝑇
𝜙
𝑓 = 𝑃𝑀

𝜙
𝑓, for

𝑓 ∈ 𝐻
2
(𝜕U).

(iii) TheHankel operator𝐻
𝜙
is defined as the compression

of the “flipped”𝑀
𝜙
onto𝐻

2
(𝜕U);𝐻

𝜙
𝑓 = 𝑃𝐽𝑀

𝜙
𝑓, for

𝑓 ∈ 𝐻
2
(𝜕U), where 𝐽 is the unitary self-adjoint oper-

ator on 𝐿
2
(𝜕U) (the so-called flip operator) defined by

(𝐽𝑓)(𝜁) := 𝜁𝑓(𝜁), for 𝜁 ∈ 𝜕U, mapping𝐻
2 onto (𝐻

2
)
⊥

(the orthogonal complement of 𝐻2) and (𝐻
2
)
⊥ onto

𝐻
2.

In each case, 𝜙 is called the symbol of the operator.
These classes of operators can also be considered as solu-

tions to some linear operator-equations involving theToeplitz
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operator 𝑇
𝑒
𝚤𝜃 , known as the unilateral forward shift, and its

Hilbert-adjoint 𝑇
𝑒
−𝚤𝜃 , usually called the unilateral backward

shift. Indeed, it is well known that an operator 𝐻 is Hankel
if and only if 𝑇

𝑒
−𝚤𝜃𝐻 = 𝐻𝑇

𝑒
𝚤𝜃 (Hankel equation) and that an

operator 𝑇 is Toeplitz if and only if 𝑇
𝑒
−𝚤𝜃𝑇𝑇
𝑒
𝚤𝜃 = 𝑇 (Toeplitz

equation).
Generalizations of such operator-equations have been

studied and explored for some time. For instance, in [9] the
operator-equation 𝑆

∗
𝑋𝑇 = 𝑋, for arbitrary contractions 𝑆

and 𝑇 acting on different Hilbert spaces, has been studied.
Pták in [10] studied the solutions to the operator-equation
𝑆
∗
𝑋 = 𝑋𝑇, where 𝑆 and 𝑇 are contractions.
Here we study an operator-equation, on B(𝐻

2
), which

is a slight modification to the Toeplitz equation; namely,
𝑇
𝑒
−𝚤𝜃𝑋𝑇
𝑒
𝚤𝜃 = 𝜆𝑋, for an arbitrary complex number 𝜆.

This operator-equation appeared in [11] and it was asked
what its operator-solutions could be, what algebraic and
operator-theoretic properties those solutions had, and how
these operator-solutions relate to the case 𝜆 = 1 (Toeplitz
operators). Fortunately, this problem is a spectral one; that is,
its solutions are the eigen-operators of a bounded operator-
valued linear transformation on B(𝐻

2
), which have been

found and characterized by Sun in [12].
In this paper we study and develop some algebraic

and operator-theoretic properties of 𝜆-Toeplitz operators
as the bounded operator-solutions to the operator-equation
𝑇
𝑒
−𝚤𝜃𝑋𝑇
𝑒
𝚤𝜃 = 𝜆𝑋, for an arbitrary complex number 𝜆. In most

cases, it is shown that 𝜆-Toeplitz operators behave the same
as the classical Toeplitz operators, on 𝐻

2. We also introduce
the classes of analytic and coanalytic 𝜆-Toeplitz operators
(Definition 9), which generalize the most commonly con-
sidered classes of Toeplitz operators, and apply them to
study the multiplicative properties of 𝜆-Toeplitz operators.
In Theorem 14, we show that a product of two 𝜆-Toeplitz
operators is again one precisely when each operator is either
analytic or coanalytic, which generalizes [13, Theorem 8].
We then give an example (Example 16) to show that, unlike
the Toeplitz case, two analytic (resp., coanalytic) 𝜆-Toeplitz
operators need not commute, (which violates [13, Theorem
9] in the 𝜆-Toeplitz operators’ context). Though, we can still
obtain some necessary and sufficient conditions for pairs of
(co-)analytic 𝜆-Toeplitz operators to commute (Theorem 17).
We also obtain an interesting result (Corollary 18) on the
problem of invertibility for 𝜆-Toeplitz operators and its
connection with our notions of analyticity and coanalyticity,
which generalizes [13, Corollary 2]. Finally, we study the
relation between analytic/coanalytic 𝜆-Toeplitz operators
and the classical Hankel operators (Theorem 19). This work
justifies Barŕıa andHalmos’ suggestion, in [11], that the notion
of 𝜆-Toeplitzness may be worthy of study.

Finally, it should bementioned that this work has its roots
in [13] and been inspired by [12, 14].

We close this section by setting up the notations required
for what is to follow.

1.1. Notations

(i) B(𝐻
2
) is the 𝐶∗-algebra of all bounded linear opera-

tors on𝐻
2.

(ii) K stands for the two-sided ideal of all compact
operators inB(𝐻

2
).

(iii) For 𝑇 ∈ B(𝐻
2
),

𝜎(𝑇) denotes the spectrum of 𝑇;
𝜎
𝑝
(𝑇) denotes the set of eigenvalues for 𝑇.

(iv) The standard tensor notation will be used for oper-
ators of rank one: for 𝑓 and 𝑔 vectors in 𝐻

2, the
operator 𝑓 ⊗ 𝑔 is defined by (𝑓 ⊗ 𝑔)ℎ = ⟨ℎ, 𝑔⟩

𝐻
2𝑓.

(v) The standard orthonormal basis (𝑒
𝑛
)
+∞

𝑛=0
for𝐻2, where

𝑒
𝑛
s are functions in 𝐻

2 defined as 𝑒
𝑛
(𝜁) = 𝜁

𝑛, for 𝜁 ∈

𝜕U.

(vi) For 𝑓 ∈ 𝐻
2 and 𝑛 = 0, 1, 2, . . ., 𝑓(𝑛) stands for the

𝑛th-Fourier coefficient of 𝑓; that is, 𝑓(𝑛) = ⟨𝑓, 𝑒
𝑛
⟩.

(vii) 𝐻
∞
(𝜕U) consists of all boundary functions of bound-

ed holomorphic functions on U.

2. 𝜆-Toeplitzness

Here we give two approaches for defining the concept of
“𝜆-Toeplitzness”: matricial and operator-theoretic approach-
es.

Definition 1. One calls a singly infinite matrix a 𝜆-Toeplitz
matrix if, on each diagonal (parallel to the main diagonal),
the entries are in continued proportion; that is, the matrix
(𝑎
𝑚𝑛

)
∞

𝑚,𝑛=0
is a 𝜆-Toeplitz matrix if there exists a 𝜆 ∈ C such

that 𝑎
𝑚+1,𝑛+1

= 𝜆𝑎
𝑚,𝑛

, for𝑚, 𝑛 = 0, 1, 2, . . ..

For a fixed complex number 𝜆, a typical example of a
singly infinite 𝜆-Toeplitz matrix is

[
[
[
[
[
[

[

𝑎
0

𝑎
−1

𝑎
−2

𝑎
−3

. . .

𝑎
1

𝜆𝑎
0

𝜆𝑎
−1

𝜆𝑎
−2

d
𝑎
2

𝜆𝑎
1

𝜆
2
𝑎
0

𝜆
2
𝑎
−1

d
𝑎
3

𝜆𝑎
2

𝜆
2
𝑎
1

𝜆
3
𝑎
0

d
.
.
. d d d d

]
]
]
]
]
]

]

. (2)

In [13], it is shown that Toeplitz operators, on 𝐻
2, are the

solutions of the operator-equation𝑇
𝑒
−𝚤𝜃𝑋𝑇
𝑒
𝚤𝜃 = 𝑋, onB(𝐻

2
).

Equivalently, this means that they are the eigen-operators of
the following operator-valued linear transformation (let us
call it Toeplitz mapping onB(𝐻

2
)):

Γ : B (𝐻
2
) 󳨀→ B (𝐻

2
)

𝑋 󳨃󳨀→ 𝑇
𝑒
−𝚤𝜃𝑋𝑇
𝑒
𝚤𝜃 ,

(3)

corresponding to the eigenvalue 1. This suggests a general
context in which Toeplitz operators can be embedded.

Definition 2. One calls an operator, in B(𝐻
2
), a 𝜆-Toeplitz

operator if it is an eigen-operator of the Toeplitz mapping Γ

corresponding to one of its eigenvalues.
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More precisely, for 𝜆 ∈ 𝜎
𝑝
(Γ), the set T

𝜆
:= ker(𝜆𝐼 −

Γ) consists of 𝜆-Toeplitz operators corresponding to 𝜆, or,
equivalently,

T
𝜆
= {𝑋 ∈ B(𝐻

2
) | Γ(𝑋)(= 𝑇

𝑒
−𝚤𝜃𝑋𝑇
𝑒
𝚤𝜃) = 𝜆𝑋}. (4)

It can be easily checked that the Toeplitz mapping is a
contraction; moreover, since 𝑇

𝑒
−𝚤𝜃𝑇
𝑒
𝚤𝜃 = 𝐼, we should have

‖Γ‖ = 1. Thus, there is no 𝜆-Toeplitz operator for |𝜆| > 1;
that is, 𝜎(Γ) ⊆ U. But every diagonal operator with diagonal
(𝜆
𝑛
)
∞

𝑛=0
, for 𝜆 ∈ U, is a solution for [𝜆𝐼 − Γ](𝑋) = 0. Thus,

U ⊆ 𝜎
𝑝
(Γ)(⊆ 𝜎(Γ)). Therefore, 𝜎

𝑝
(Γ) = 𝜎(Γ) = U; that is, the

only eigen-operators for Γ are the ones corresponding to the
eigenvalues living in U.

Observation 1. Bounded operator-solutions to 𝑇
𝑒
−𝚤𝜃𝑋𝑇
𝑒
𝚤𝜃 =

𝜆𝑋, on B(𝐻
2
), exist if and only if 𝜆 ∈ U. For more details

on the form of a 𝜆-Toeplitz operator, see [12].

Theorem 3 (Sun [12]). Let 𝜆 ∈ C. The operator-equation
𝑇
𝑒
−𝚤𝜃𝑋𝑇
𝑒
𝚤𝜃 = 𝜆𝑋 has bounded solutions if and only if 𝜆 ≤ 1.

One then has the following.

(i) If |𝜆| = 1, all solutions are of the form 𝐷
𝜆
𝑇, where 𝑇

is a Toeplitz operator and 𝐷
𝜆
is the diagonal unitary

operator defined as𝐷
𝜆
𝑒
𝑛
= 𝜆
𝑛
𝑒
𝑛
for all 𝑛.

(ii) If |𝜆| < 1, all solutions are compact operators of the
form

∞

∑

𝑛=0

𝜆
𝑛
((𝑇
𝑒
𝚤𝑛𝜃𝑓) ⊗ 𝑒

𝑛
+ 𝑒
𝑛
⊗ (𝑇
𝑒
𝚤𝑛𝜃𝑔)) (5)

for some 𝑓 and 𝑔 ∈ 𝐻
2.

For convenience, let us divide 𝜆-Toeplitz operators into
two main classes: unimodular 𝜆-Toeplitz operators and nonu-
nimodular 𝜆-Toeplitz operators, which are the ones corre-
sponding to the eigenvalues of the Toeplitz mapping Γ on the
unit circle and the unit disk, respectively.

Remark 4. Some immediate consequences of Sun’s Theorem
are that the nonunimodular 𝜆-Toeplitz operators are compact
(so are not invertible) and unimodular 𝜆-Toeplitz operators
are not. Indeed, in the latter case, the only compact unimod-
ular 𝜆-Toeplitz operator is the zero operator.

Remark 5. By Definition 2, if 𝑋 ∈ T
𝜆
, for some 𝜆 ∈ U, then

𝑇
𝑒
−𝚤𝜃𝑋𝑇
𝑒
𝚤𝜃 = 𝜆𝑋. Hence, the entries of its matrix representa-

tion (𝑎
𝑚,𝑛

)
∞

𝑚,𝑛=0
, with respect to the monomial basis for 𝐻

2,
satisfy

𝑎
𝑚+1,𝑛+1

= ⟨𝑋𝑒
𝑛+1

, 𝑒
𝑚+1

⟩
𝐻
2 = ⟨𝑋𝑇

𝑒
𝚤𝜃𝑒
𝑛
, 𝑇
𝑒
𝚤𝜃𝑒
𝑚
⟩
𝐻
2

= ⟨𝑇
𝑒
−𝚤𝜃𝑋𝑇
𝑒
𝚤𝜃𝑒
𝑛
, 𝑒
𝑚
⟩
𝐻
2 = ⟨𝜆𝑋𝑒

𝑛
, 𝑒
𝑚
⟩
𝐻
2

= 𝜆𝑎
𝑚,𝑛

, for 𝑚, 𝑛 = 0, 1, 2, . . . .

(6)

This yields

(𝑎
𝑚,𝑛

)
∞

𝑚,𝑛=0
=

[
[
[
[
[
[

[

𝑎
0,0

𝑎
0,1

𝑎
0,2

𝑎
0,3

⋅ ⋅ ⋅

𝑎
1,0

𝜆𝑎
0,0

𝜆𝑎
0,1

𝜆𝑎
0,2

d
𝑎
2,0

𝜆𝑎
1,0

𝜆
2
𝑎
0,0

𝜆
2
𝑎
0,1

d
𝑎
3,0

𝜆𝑎
2,0

𝜆
2
𝑎
1,0

𝜆
3
𝑎
0,0

d
.
.
. d d d d

]
]
]
]
]
]

]

, (7)

where

𝑋𝑒
0
=

∞

∑

𝑛=0

𝑎
𝑛,0

𝑒
𝚤𝑛𝜃

, 𝑋
∗
𝑒
0
=

∞

∑

𝑛=0

𝑎
0,𝑛

𝑒
𝚤𝑛𝜃

. (8)

3. Basic Properties of 𝜆-Toeplitz Operators

Recall that T
1
consists of all (classical) Toeplitz operators,

and it turns out, as we will see later, that other 𝜆-Toeplitz
operators behave like them. Also, notice that, for each 𝜆 ∈

U, T
𝜆
forms a complex vector subspace ofB(𝐻

2
).

Here we look at the following straightforward properties
of the 𝜆-Toeplitz operators. First, from Definition 2, we
observe that, for each𝜆 ∈ U,T

𝜆
is topologicallywell behaved.

Indeed, for 𝑋 ∈ T
𝜆
, since Γ(𝑋) = 𝑇

𝑒
−𝚤𝜃𝑋𝑇
𝑒
𝚤𝜃 is weakly

continuous in its middle factor, T
𝜆
is weakly closed, and,

therefore, a fortiori, it is strongly and uniformly closed.
The next result, inspired by [14, Theorem 4.5], states that

self-adjointness only exists among real 𝜆-Toeplitz operators;
that is, 𝜆-Toeplitz operators correspond to real eigenvalues
for Γ.

Proposition 6. For 𝜆 ∈ U and𝑋 ∈ T
𝜆
, one has the following.

(i) 𝑋
∗
∈ T
𝜆
.

(ii) If 𝑋 ̸= 0 and 𝑋 = 𝑋
∗, then 𝜆 ∈ R.

Proof. (i) Since 𝑋 ∈ T
𝜆
, we have 𝑇

𝑒
−𝚤𝜃𝑋𝑇
𝑒
𝚤𝜃 = 𝜆𝑋, from

which, by taking adjoints, we get 𝑇
𝑒
−𝚤𝜃𝑋
∗
𝑇
𝑒
𝚤𝜃 = 𝜆𝑋

∗. So
𝑋
∗
∈ T
𝜆
.

(ii) If𝑋 is a nonzero self-adjoint element ofT
𝜆
, then𝑋 ∈

T
𝜆
∩T
𝜆
. But this means that

𝜆𝑋 = 𝑇
𝑒
−𝚤𝜃𝑋𝑇
𝑒
𝚤𝜃 = 𝑇
𝑒
−𝚤𝜃𝑋
∗
𝑇
𝑒
𝚤𝜃 = 𝜆𝑋

∗
= 𝜆𝑋, (9)

which implies 𝜆 = 𝜆, or, equivalently, 𝜆 ∈ R.

Remark 7. As a consequence of Sun’sTheorem, every nonuni-
modular 𝜆-Toeplitz operator is compact. This, in turn, states
that they are not only noninvertible, but also nonessentially
invertible. But the situation is different for unimodular
ones. Indeed, the only compact unimodular one is the zero
operator: for 𝜆 ∈ 𝜕U, letting 𝑋 ∈ T

𝜆
, 𝑛 and 𝑛 + 𝑘 be

nonnegative integers, we have

⟨𝑋𝑒
𝑛
, 𝑒
𝑛+𝑘

⟩
𝐻
2
(𝜕U)

= 𝜆
𝑛
⟨𝑋𝑒
0
, 𝑒
𝑘
⟩
𝐻
2
(𝜕U)

. (10)

Now, if 𝑋 is a compact operator, then ‖𝑋𝑒
𝑛
‖
𝐻
2
(𝜕U) → 0, as

𝑛 → ∞; it follows that ⟨𝑋𝑒
0
, 𝑒
𝑘
⟩
𝐻
2
(𝜕U) = 0, for all nonnega-

tive 𝑘.
And, if we apply the same procedure for 𝑋

∗, we obtain
⟨𝑋
∗
𝑒
0
, 𝑒
𝑘
⟩
𝐻
2
(𝜕U) = 0, for all nonnegative 𝑘. Therefore,𝑋 = 0.
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4. Analyticity and Coanalyticity of
𝜆-Toeplitz Operators

In [13, p. 96], analyticity and coanalyticity of a (classical)
Toeplitz operator are defined and characterized in terms of its
commutativity with 𝑇

𝑒
𝚤𝜃 and 𝑇

𝑒
−𝚤𝜃 , respectively [13, Theorem

7]. Here, we define and give an analogous characterization
of these two properties in the 𝜆-Toeplitz operators’ setting.
But let us first assign them a “symbol” (similar to one in the
classical case) as a generating function.

Definition 8. For 𝜆 ∈ U, let 𝑋 ∈ T
𝜆
. The symbol of 𝑋 is

defined to be

𝑋𝑒
0
+ 𝑋∗𝑒

0
− ⟨𝑋𝑒

0
, 𝑒
0
⟩
𝐻
2

(11)

and is denoted by sym(𝑋), in which𝑋𝑒
0
is called the analytic

symbol and𝑋∗𝑒
0
is called the coanalytic symbol of𝑋.

Observation 2. For a 𝜆-Toeplitz operator 𝑋, sym(𝑋) is the
function whose nonnegative Fourier coefficients are the
terms of the 0th-column of its matrix representation, with
respect to the monomial basis for𝐻2, and whose nonpositive
Fourier coefficients are the terms of the 0th-row of that
matrix.

Definition 8 determines two 𝐻
2-functions, namely, 𝑋𝑒

0

and 𝑋
∗
𝑒
0
, by which we may characterize the properties of

analyticity and coanalyticity, for such operators, as follows.

Definition 9. A 𝜆-Toeplitz operator,𝑋, is called
(i) analytic if sym(𝑋) is an analytic function (i.e.,𝑋∗𝑒

0
is

the constant function ⟨𝑒
0
, 𝑋𝑒
0
⟩
𝐻
2);

(ii) coanalytic if sym(𝑋) is a coanalytic function (i.e.,𝑋𝑒
0

is the constant function ⟨𝑋𝑒
0
, 𝑒
0
⟩
𝐻
2).

This definition makes the following remark obvious.

Remark 10. For 𝜆 ∈ U, letting𝑋 ∈ T
𝜆

(i) 𝑋 is analytic if and only if ⟨𝑋∗𝑒
0
, 𝑒
𝑛
⟩
𝐻
2 = 0, for all

𝑛 > 0 (i.e., 𝑇
𝑒
−𝚤𝜃𝑋
∗
𝑒
0
= 0),

(ii) 𝑋 is coanalytic if and only if ⟨𝑋𝑒
0
, 𝑒
𝑛
⟩
𝐻
2 = 0, for all

𝑛 > 0 (i.e., 𝑇
𝑒
−𝚤𝜃𝑋𝑒
0
= 0).

Hence,𝑋 is analytic if and only if𝑋∗ is coanalytic.

Observation 3. Notice that for, 𝜆 ∈ U and 𝜙 ∈ 𝐿
∞
(𝜕U),

𝐷
𝜆
𝑇
𝜙
∈ T
𝜆
, where𝐷

𝜆
is the diagonal operator with diagonal

(𝜆
𝑛
)
∞

𝑛=0
. Indeed,

𝑇
𝑒
−𝚤𝜃𝐷
𝜆
𝑇
𝜙
𝑇
𝑒
𝚤𝜃 = 𝑇
𝑒
−𝚤𝜃𝐷
𝜆
(𝑇
𝑒
𝚤𝜃𝑇
𝑒
−𝚤𝜃 + 𝑒

0
⊗ 𝑒
0
) 𝑇
𝜙
𝑇
𝑒
𝚤𝜃

= (𝑇
𝑒
−𝚤𝜃𝐷
𝜆
𝑇
𝑒
𝚤𝜃) (𝑇
𝑒
−𝚤𝜃𝑇
𝜙
𝑇
𝑒
𝚤𝜃)

+ 𝑇
𝑒
−𝚤𝜃𝐷
𝜆
𝑒
0
⊗ 𝑇
𝑒
−𝚤𝜃
𝜙
𝑒
0

= 𝜆𝐷
𝜆
𝑇
𝜙
+ 𝑇
𝑒
−𝚤𝜃𝑒
0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0

⊗ 𝑇
𝑒
−𝚤𝜃
𝜙
𝑒
0

= 𝜆𝐷
𝜆
𝑇
𝜙
.

(12)

This observation provides uswith two classes of typical exam-
ples of analytic and coanalytic 𝜆-Toeplitz operators.

(1) For 𝜆 ∈ U and 𝜙 ∈ 𝐻
∞
(𝜕U), 𝐷

𝜆
𝑇
𝜙
is an analytic

𝜆-Toeplitz operator. Indeed for 𝑛 = 1, 2, . . .,

⟨(𝐷
𝜆
𝑇
𝜙
)
∗

𝑒
0
, 𝑒
𝑛
⟩
𝐻
2

= ⟨𝐷
𝜆
𝑒
0
, 𝜙𝑒
𝑛
⟩

= ⟨𝑒
0
, 𝜙𝑒
𝑛
⟩ =

̂
𝜙 (𝑛) = 0.

(13)

(2) For 𝜆 ∈ U and 𝜙 ∈ 𝐻
∞
(𝜕U), 𝐷

𝜆
𝑇
𝜙
is a coanalytic

𝜆-Toeplitz operator. Indeed for 𝑛 = 1, 2, . . .,

⟨𝐷
𝜆
𝑇
𝜙
𝑒
0
, 𝑒
𝑛
⟩
𝐻
2
= ⟨𝑇
𝜙
𝑒
0
, 𝐷
𝜆
𝑒
𝑛
⟩

= ⟨𝑇
𝜙
𝑒
0
, 𝜆
𝑛

𝑒
𝑛
⟩ = 𝜆

𝑛
𝜙 (𝑛) = 0.

(14)

Note that if 𝑋 ∈ T
𝜆
is analytic, its matrix representation

with respect to the monomial basis for𝐻2 is lower triangular.
Indeed, for𝑚, 𝑛 = 0, 1, 2, . . . with𝑚 < 𝑛

⟨𝑋𝑒
𝑛
, 𝑒
𝑚
⟩
𝐻
2 = ⟨𝑋𝑇

𝑚

𝑒
𝚤𝜃𝑒𝑛−𝑚, 𝑇

𝑚

𝑒
𝚤𝜃𝑒0⟩

= ⟨𝑇
𝑚

𝑒
−𝚤𝜃𝑋𝑇
𝑚

𝑒
𝚤𝜃𝑒𝑛−𝑚, 𝑒0⟩ = ⟨𝜆

𝑚
𝑋𝑒
𝑛−𝑚

, 𝑒
0
⟩

= 𝜆
𝑚
⟨𝑒
𝑛−𝑚

, 𝑋
∗
𝑒
0
⟩ = 0.

(15)

With the same reasoning one can show that coanalytic 𝜆-Toe-
plitz operators correspond to upper triangular 𝜆-Toeplitz
matrices.

Before stating the first result of this section, we need to
introduce some terms. For a Hilbert space bounded operator
𝐴, consider the operator-equation

𝐴𝑋 = 𝜆𝑋𝐴 (16)

for some complex number 𝜆. If there is a nonzero (bounded)
operator𝑋 and a scalar 𝜆 as above that satisfy (16), according
to [15], it is said that 𝐴 𝜆-commutes with 𝑋 and that 𝜆 is an
extended eigenvalue and𝑋 is an extended eigen-operator of𝐴.

Equation (16) has been studied in [16] and, independently,
in [17]. These works provided extensions of Lomonosov’s
classic result [18].

Now, we use these terms to state our next result which
characterizes analyticity and coanalyticity of 𝜆-Toeplitz oper-
ators in terms of their 𝜆-commutativity with 𝑇

𝑒
𝚤𝜃 and 𝑇

𝑒
−𝚤𝜃 .

Theorem 11. Let 𝜆 ∈ U \ {0} and 𝑋 ∈ B(𝐻
2
).

A necessary and sufficient condition that 𝑋 is an ana-
lytic (coanalytic) 𝜆-Toeplitz operator in T

𝜆
is that it 𝜆-

commutes with 𝑇
𝑒
𝚤𝜃(𝜆
−1-commutes with 𝑇

𝑒
−𝚤𝜃); that is, 𝑋𝑇

𝑒
𝚤𝜃 =

𝜆𝑇
𝑒
𝚤𝜃𝑋 (𝑇

𝑒
−𝚤𝜃𝑋 = 𝜆𝑋𝑇

𝑒
−𝚤𝜃).

Proof. (i) Let𝑋 be an analytic 𝜆-Toeplitz operator inT
𝜆
; that

is, 𝑇
𝑒
−𝚤𝜃𝑋
∗
𝑒
0
= 0. Hence,

𝜆𝑇
𝑒
𝚤𝜃𝑋 = 𝑇

𝑒
𝚤𝜃 (𝜆𝑋) = 𝑇

𝑒
𝚤𝜃 (𝑇
𝑒
−𝚤𝜃𝑋𝑇
𝑒
𝚤𝜃)

= (𝐼 − 𝑒
0
⊗ 𝑒
0
)𝑋𝑇
𝑒
𝚤𝜃

= 𝑋𝑇
𝑒
𝚤𝜃 − (𝑒

0
⊗ 𝑇
𝑒
−𝑖𝜃𝑋
∗
𝑒
0
) = 𝑋𝑇

𝑒
𝚤𝜃 .

(17)
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Now, let 𝑋 ∈ B(𝐻
2
) be such that 𝑋𝑇

𝑒
𝚤𝜃 = 𝜆𝑇

𝑒
𝚤𝜃𝑋. Just by

multiplying both sides by 𝑇
𝑒
−𝚤𝜃 from the left, one can easily

see that 𝑋 ∈ T
𝜆
. To show it is analytic, we need to prove

⟨𝑋
∗
𝑒
0
, 𝑒
𝑛
⟩ = 0, for 𝑛 = 1, 2, . . .. So,

⟨𝑋
∗
𝑒
0
, 𝑒
𝑛
⟩
𝐻
2 = ⟨𝑒

0
, 𝑋𝑇
𝑒
𝚤𝜃𝑒
𝑛−1

⟩
𝐻
2 = ⟨𝑒

0
, 𝜆𝑇
𝑒
𝚤𝜃𝑋𝑒
𝑛−1

⟩
𝐻
2

= 𝜆⟨𝑋
∗
𝑇
𝑒
−𝚤𝜃𝑒
0
, 𝑒
𝑛−1

⟩
𝐻
2 = 0,

(18)

which means𝑋 is an analytic 𝜆-Toeplitz operator.
(ii) If𝑋 is a coanalytic 𝜆-Toeplitz operator inT

𝜆
, that is,

𝑇
𝑒
−𝑖𝜃𝑋𝑒
0
= 0, then

𝜆𝑋𝑇
𝑒
−𝚤𝜃 = (𝑇

𝑒
−𝚤𝜃𝑋𝑇
𝑒
𝚤𝜃) 𝑇
𝑒
−𝚤𝜃 = 𝑇

𝑒
−𝚤𝜃𝑋(𝐼 − 𝑒

0
⊗ 𝑒
0
)

= 𝑇
𝑒
−𝚤𝜃𝑋 − (𝑇

𝑒
−𝚤𝜃𝑋𝑒
0
⊗ 𝑒
0
) = 𝑇
𝑒
−𝚤𝜃𝑋.

(19)

Now, let𝑋 ∈ B(𝐻
2
) 𝜆
−1-commutewith𝑇

𝑒
−𝚤𝜃 ; that is,𝑇

𝑒
−𝚤𝜃𝑋 =

𝜆𝑋𝑇
𝑒
−𝚤𝜃 . Multiplying both sides by 𝑇

𝑒
𝚤𝜃 from the right shows

that 𝑋 ∈ T
𝜆
. To prove coanalyticity, we need to show

𝑇
𝑒
−𝚤𝜃𝑋𝑒
0
= 0. So, we have

(𝑇
𝑒
−𝚤𝜃𝑋) 𝑒

0
= (𝜆𝑋𝑇

𝑒
−𝚤𝜃) 𝑒
0
= 0. (20)

Remark 12. Using the terms aforementioned,Theorem 11 can
also be restated as follows.

Theorem 11󸀠

(i) Let 𝜆 ∈ U \ {0}. A necessary and sufficient condition in
which 𝑋 ∈ T

𝜆
is analytic is that 𝑇

𝑒
𝚤𝜃 is an extended

eigen-operator of 𝐴 corresponding to the extended
eigenvalue 𝜆.

(ii) Let 𝜆 ∈ U \ {0}. A necessary and sufficient condition in
which𝑋 ∈ T

𝜆
is coanalytic is that 𝑇

𝑒
−𝚤𝜃 is an extended

eigen-operator of 𝐴 corresponding to the extended
eigenvalue 𝜆−1.

Remark 13. Notice that if𝑋 ∈ T
0
, it can be represented by the

finite-rank operator [(𝑋𝑒
0
− ⟨𝑋𝑒

0
, 𝑒
0
⟩
𝐻
2𝑒
0
) ⊗ 𝑒
0
] + 𝑒
0
⊗𝑋
∗
𝑒
0
.

Thus,

(1) 𝑋 is analytic if and only if 𝑋
∗
𝑒
0
is the constant

function ⟨𝑒
0
, 𝑋𝑒
0
⟩
𝐻
2 and, in this case, 𝑋 = 𝑋𝑒

0
⊗ 𝑒
0
.

(2) And 𝑋 is coanalytic if and only if 𝑋𝑒
0
is the constant

function ⟨𝑋𝑒
0
, 𝑒
0
⟩
𝐻
2 and, in this case,𝑋 = 𝑒

0
⊗𝑋
∗
𝑒
0
.

5. Multiplicative Properties of
𝜆-Toeplitz Operators

Although, for a fixed 𝜆 ∈ U, T
𝜆
is closed under finite

summation of its elements, the corresponding result rarely
holds for products. As an application of Theorem 11, we will
see that 𝜆-Toeplitzness is preserved under multiplication, on
the right, by analytic 𝜆-Toeplitz operators and, on the left, by
coanalytic ones.

Theorem 14. For 𝜆
1
, 𝜆
2
∈ U, let 𝑋

1
∈ T
𝜆
1

and 𝑋
2
∈ T
𝜆
2

.

A necessary and sufficient condition that the product𝑋
1
𝑋
2

is a 𝜆-Toeplitz operator inT
𝜆
1
𝜆
2

is that either𝑋
1
is coanalytic

or 𝑋
2
is analytic.

Proof. Let us first assume𝑋
1
𝑋
2
∈ T
𝜆
1
𝜆
2

. Hence,

𝜆
1
𝜆
2
𝑋
1
𝑋
2
= 𝑇
𝑒
−𝚤𝜃𝑋
1
𝑋
2
𝑇
𝑒
𝚤𝜃

= 𝑇
𝑒
−𝚤𝜃𝑋
1
(𝑇
𝑒
𝚤𝜃𝑇
𝑒
−𝚤𝜃 + 𝑒

0
⊗ 𝑒
0
)𝑋
2
𝑇
𝑒
𝚤𝜃

= (𝑇
𝑒
−𝚤𝜃𝑋
1
𝑇
𝑒
𝚤𝜃) (𝑇
𝑒
−𝚤𝜃𝑋
2
𝑇
𝑒
𝚤𝜃)

+ (𝑇
𝑒
−𝚤𝜃𝑋
1
𝑒
0
⊗ 𝑇
𝑒
−𝚤𝜃𝑋
∗

2
𝑒
0
)

= 𝜆
1
𝜆
2
𝑋
1
𝑋
2
+ (𝑇
𝑒
−𝚤𝜃𝑋
1
𝑒
0
⊗ 𝑇
𝑒
−𝚤𝜃𝑋
∗

2
𝑒
0
) .

(21)

So, for holding the equality, we should have either𝑇
𝑒
−𝚤𝜃𝑋
1
𝑒
0
=

0 or 𝑇
𝑒
−𝚤𝜃𝑋
∗

2
𝑒
0

= 0; that is, either 𝑋
1
is coanalytic or 𝑋

2
is

analytic.
Let us suppose, for now, 𝑋

1
is a coanalytic 𝜆-Toeplitz

operator inT
𝜆
1

and𝑋
2
∈ T
𝜆
2

. To show that𝑋
1
𝑋
2
∈ T
𝜆
1
𝜆
2

,
we apply Theorem 11 to write

𝑇
𝑒
−𝚤𝜃𝑋
1
𝑋
2
𝑇
𝑒
𝚤𝜃 = 𝜆

1
𝑋
1
𝑇
𝑒
−𝚤𝜃𝑋
2
𝑇
𝑒
𝚤𝜃

= (𝜆
1
𝑋
1
) (𝜆
2
𝑋
2
) = 𝜆
1
𝜆
2
𝑋
1
𝑋
2
,

(22)

which proves𝑋
1
𝑋
2
is a 𝜆-Toeplitz operator inT

𝜆
1
𝜆
2

.
And if 𝑋

2
is an analytic 𝜆-Toeplitz operator in T

𝜆
2

and
𝑋
1
∈ T
𝜆
1

, again usingTheorem 11 results in

𝑇
𝑒
−𝚤𝜃𝑋
1
𝑋
2
𝑇
𝑒
𝚤𝜃 = 𝑇
𝑒
−𝚤𝜃𝑋
1
(𝜆
2
𝑇
𝑒
𝚤𝜃𝑋
2
)

= 𝜆
2
(𝑇
𝑒
−𝚤𝜃𝑋
1
𝑇
𝑒
𝚤𝜃)𝑋
2
= 𝜆
1
𝜆
2
𝑋
1
𝑋
2
,

(23)

which proves the same thing.

From the proof of Theorem 14, along with considering
Remark 7, one may deduce the following property for uni-
modular 𝜆-Toeplitz operators.

Proposition 15. For 𝜆
1
, 𝜆
2

∈ 𝜕U, let 𝑋
1

∈ T
𝜆
1

and 𝑋
2

∈

T
𝜆
2

. If 𝑋
1
𝑋
2
∈ T
𝜇
\ {0} for some 𝜇 ∈ 𝜕U, then 𝜇 = 𝜆

1
𝜆
2
.

Moreover, either𝑋
1
is coanalytic or 𝑋

2
is analytic.

Proof. Considering the assumptions, we have

𝜇𝑋
1
𝑋
2
= 𝑇
𝑒
−𝚤𝜃𝑋
1
𝑋
2
𝑇
𝑒
𝚤𝜃

= 𝑇
𝑒
−𝚤𝜃𝑋
1
(𝑇
𝑒
𝚤𝜃𝑇
𝑒
−𝚤𝜃 + 𝑒

0
⊗ 𝑒
0
)𝑋
2
𝑇
𝑒
𝚤𝜃

= (𝑇
𝑒
−𝚤𝜃𝑋
1
𝑇
𝑒
𝚤𝜃) (𝑇
𝑒
−𝚤𝜃𝑋
2
𝑇
𝑒
𝚤𝜃)

+ (𝑇
𝑒
−𝚤𝜃𝑋
1
𝑒
0
⊗ 𝑇
𝑒
−𝚤𝜃𝑋
∗

2
𝑒
0
)

= 𝜆
1
𝜆
2
𝑋
1
𝑋
2
+ (𝑇
𝑒
−𝚤𝜃𝑋
1
𝑒
0
⊗ 𝑇
𝑒
−𝚤𝜃𝑋
∗

2
𝑒
0
) ,

(24)

which implies

(𝜇 − 𝜆
1
𝜆
2
)𝑋
1
𝑋
2
= 𝑇
𝑒
−𝚤𝜃𝑋
1
𝑒
0
⊗ 𝑇
𝑒
−𝚤𝜃𝑋
∗

2
𝑒
0
. (25)

Since 𝜇 ̸= 0 and 𝑋
1
𝑋
2
is a nonzero 𝜆-Toeplitz operator in

T
𝜇
, 𝑋
1
𝑋
2
cannot be of finite rank (see Remark 7). Hence,

both sides in (25) should be zero. Therefore, 𝜇 = 𝜆
1
𝜆
2
, and

this in turn implies that either𝑋
1
should be coanalytic or𝑋

2

is analytic.
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Recall that if the symbols of two (classical) Toeplitz
operators are either analytic or coanalytic, they necessarily
commute [13, Theorem 9]. But, surprisingly, this is not
the case among 𝜆-Toeplitz operators; for, let us look at an
example.

Example 16. For some 𝜆 ∈ U \ {1},

(1) let 𝑋
1
, 𝑋
2
∈ T
𝜆
be analytic such that 𝑋

2
is arbitrary

and𝑋
1
is given by

⟨𝑋
1
𝑒
𝑗
, 𝑒
𝑖
⟩
𝐻
2
= 𝜆
𝑗
𝛿
𝑖,𝑗+1

𝑖, 𝑗 = 0, 1, 2, . . . , (26)

where 𝛿
𝑖,𝑗+1

is the Kronecker delta. Note that 𝑋
2
can

also be represented as

⟨𝑋
2
𝑒
𝑗
, 𝑒
𝑖
⟩
𝐻
2
= {

0 if 𝑖 < 𝑗

𝜆
𝑗
⟨𝑋
2
𝑒
0
, 𝑒
𝑖−𝑗

⟩
𝐻
2

if 𝑖 ≥ 𝑗.
(27)

Hence, we have

⟨𝑋
1
𝑋
2
𝑒
𝑗
, 𝑒
𝑖
⟩
𝐻
2
= {

0 if 𝑖 ≤ 𝑗

𝜆
𝑖+𝑗−1

⟨𝑋
2
𝑒
0
, 𝑒
𝑖−𝑗−1

⟩
𝐻
2

if 𝑖 > 𝑗,

⟨𝑋
2
𝑋
1
𝑒
𝑗
, 𝑒
𝑖
⟩
𝐻
2
= {

0 if 𝑖 ≤ 𝑗

𝜆
2𝑗+1

⟨𝑋
2
𝑒
0
, 𝑒
𝑖−𝑗−1

⟩
𝐻
2

if 𝑖 > 𝑗.

(28)

Therefore, as analytic 𝜆-Toeplitz operators,𝑋
1
and𝑋

2

do not commute.
(2) In the other direction, consider two coanalytic 𝜆-Toe-

plitz operators𝑋
3
, 𝑋
4
∈ T
𝜆
, such that𝑋

4
is arbitrary

and 𝑋
3
= 𝑋
∗

1
, the Hilbert space adjoint of 𝑋

1
in the

previous case; that is,

⟨𝑋
3
𝑒
𝑗
, 𝑒
𝑖
⟩
𝐻
2
= 𝜆
𝑖

𝛿
𝑗,𝑖+1

𝑖, 𝑗 = 0, 1, 2, . . . . (29)

Again, note that𝑋
4
can also be represented as

⟨𝑋
4
𝑒
𝑗
, 𝑒
𝑖
⟩
𝐻
2
= {

0 if 𝑖 > 𝑗

𝜆
𝑖
⟨𝑋
4
𝑒
𝑗−𝑖

, 𝑒
0
⟩
𝐻
2

if 𝑖 ≤ 𝑗.
(30)

Hence, we have

⟨𝑋
3
𝑋
4
𝑒
𝑗
, 𝑒
𝑖
⟩
𝐻
2
= {

0 if 𝑗 ≤ 𝑖

|𝜆|
2𝑖
𝜆⟨𝑋
4
𝑒
𝑗−𝑖−1

, 𝑒
0
⟩
𝐻
2

if 𝑗 > 𝑖,

⟨𝑋
4
𝑋
3
𝑒
𝑗
, 𝑒
𝑖
⟩
𝐻
2
= {

0 if 𝑗 ≤ 𝑖

𝜆
𝑗−1

𝜆
𝑖
⟨𝑋
4
𝑒
𝑗−𝑖−1

, 𝑒
0
⟩
𝐻
2

if 𝑗 > 𝑖.

(31)

Therefore, as coanalytic 𝜆-Toeplitz operators, 𝑋
3
and

𝑋
4
do not commute.

Though, we can still obtain some necessary and sufficient
conditions for pairs of (co-)analytic 𝜆-Toeplitz operators to
commute.

Theorem 17. For 𝜆
1
, 𝜆
2
∈ U, let𝑋

1
∈ T
𝜆
1

and 𝑋
2
∈ T
𝜆
2

.

(i) If both 𝑋
1
and 𝑋

2
are analytic, then 𝑋

1
𝑋
2

=

𝑋
2
𝑋
1
if and only if (𝑋

2
𝑒
0
)(𝜆
1
𝜁)(𝑋
1
𝑒
0
)(𝜁) = (𝑋

1
𝑒
0
)

(𝜆
2
𝜁)(𝑋
2
𝑒
0
)(𝜁), for almost all 𝜁 ∈ 𝜕U.

(ii) If both 𝑋
1
and 𝑋

2
are coanalytic, then 𝑋

1
𝑋
2

=

𝑋
2
𝑋
1
if and only if (𝑋∗

2
𝑒
0
)(𝜆
1
𝜁)(𝑋
∗

1
𝑒
0
)(𝜁) = (𝑋

∗

1
𝑒
0
)

(𝜆
2
𝜁)(𝑋
∗

2
𝑒
0
)(𝜁), for almost all 𝜁 ∈ 𝜕U.

Proof. (i) Assume that 𝑋
1

∈ T
𝜆
1

and 𝑋
2

∈ T
𝜆
2

are both
analytic 𝜆-Toeplitz operators such that 𝑋

2
𝑒
0
(𝜆
1
𝜁)𝑋
1
𝑒
0
(𝜁) =

𝑋
1
𝑒
0
(𝜆
2
𝜁)𝑋
2
𝑒
0
(𝜁), for almost all 𝜁 ∈ 𝜕U. So, by Theorem 14,

𝑋
1
𝑋
2
, 𝑋
2
𝑋
1
∈ T
𝜆
1
𝜆
2

. Also, analyticity of 𝑋
1
and 𝑋

2
reveals

that

⟨𝑋
1
𝑒
𝑗
, 𝑒
𝑖
⟩
𝐻
2
= {

0 𝑖 < 𝑗

𝜆
𝑗

1
⟨𝑋
1
𝑒
0
, 𝑒
𝑖−𝑗

⟩
𝐻
2

𝑖 ≥ 𝑗,

⟨𝑋
2
𝑒
𝑗
, 𝑒
𝑖
⟩
𝐻
2
= {

0 𝑖 < 𝑗

𝜆
𝑗

2
⟨𝑋
2
𝑒
0
, 𝑒
𝑖−𝑗

⟩
𝐻
2

𝑖 ≥ 𝑗,

(32)

which in turn implies

⟨𝑋
1
𝑋
2
𝑒
𝑗
, 𝑒
𝑖
⟩ =

{{

{{

{

0 𝑖 < 𝑗

𝑖

∑

𝑘=𝑗

𝜆
𝑘

1
𝜆
𝑗

2
⟨𝑋
1
𝑒
0
, 𝑒
𝑖−𝑘

⟩⟨𝑋
2
𝑒
0
, 𝑒
𝑘−𝑗

⟩ 𝑖 ≥ 𝑗.

(33)

But since 𝑋
1
𝑋
2
is an analytic 𝜆-Toeplitz operator, we just

need to consider the Fourier coefficients of 𝑋
1
𝑋
2
𝑒
0
, which

can be obtained from the finite sum in (33) by letting 𝑗 = 0,
which gives us the 𝑖th-Fourier coefficient of𝑋

1
𝑋
2
𝑒
0
; that is,

𝑖

∑

𝑘=0

𝜆
𝑘

1
⟨𝑋
2
𝑒
0
, 𝑒
𝑘
⟩
𝐻
2⟨𝑋1𝑒0, 𝑒𝑖−𝑘⟩𝐻2 , (34)

which is nothing but the 𝑖th-Fourier coefficient of (𝑋
2
𝑒
0
)

(𝜆
1
𝜁)(𝑋
1
𝑒
0
)(𝜁), for almost all 𝜁 ∈ 𝜕U, since

(𝑋
2
𝑒
0
) (𝜆
1
𝜁) (𝑋
1
𝑒
0
) (𝜁)

= (

∞

∑

𝑖=0

𝑋
2
𝑒
0
(𝑖)𝜆
𝑖

1
𝜁
𝑖
)(

∞

∑

𝑖=0

𝑋
1
𝑒
0
(𝑖)𝜁
𝑖
)

=

∞

∑

𝑖=0

(

𝑖

∑

𝑘=0

𝜆
𝑘

1
𝑋
2
𝑒
0
(𝑘)𝑋
1
𝑒
0
(𝑖 − 𝑘))𝜁

𝑖
,

(35)

where𝑋
𝑗
𝑒
0
(𝑖) = ⟨𝑋

𝑗
𝑒
0
, 𝑒
𝑖
⟩
𝐻
2 , for 𝑗 = 1, 2 and 𝑖 = 0, 1, 2, . . ..

By the assumption (𝑋
2
𝑒
0
)(𝜆
1
𝜁)(𝑋
1
𝑒
0
)(𝜁) = (𝑋

1
𝑒
0
)(𝜆
2
𝜁)

(𝑋
2
𝑒
0
)(𝜁), hence the finite sum in (34) is also equal to the 𝑖th-

Fourier coefficient of (𝑋
1
𝑒
0
)(𝜆
2
𝜁)(𝑋
2
𝑒
0
)(𝜁); that is,

𝑖

∑

𝑘=0

𝜆
𝑘

2
⟨𝑋
1
𝑒
0
, 𝑒
𝑘
⟩
𝐻
2⟨𝑋2𝑒0, 𝑒𝑖−𝑘⟩𝐻2 , (36)

which is the 𝑖th-Fourier coefficient of 𝑋
2
𝑋
1
𝑒
0
. What

we already showed is that the 𝑖th-Fourier coefficients of
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sym(𝑋
1
𝑋
2
) and sym(𝑋

2
𝑋
1
) are equal. Therefore, 𝑋

1
𝑋
2

=

𝑋
2
𝑋
1
. This proves the sufficiency condition in (37).

Let us assume that𝑋
1
𝑋
2
= 𝑋
2
𝑋
1
.This assumption, along

with analyticity of𝑋
1
and𝑋

2
, implies

𝑖

∑

𝑘=𝑗

𝜆
𝑘

1
𝜆
𝑗

2
⟨𝑋
1
𝑒
0
, 𝑒
𝑖−𝑘

⟩⟨𝑋
2
𝑒
0
, 𝑒
𝑘−𝑗

⟩

=

𝑖

∑

𝑘=𝑗

𝜆
𝑘

2
𝜆
𝑗

1
⟨𝑋
2
𝑒
0
, 𝑒
𝑖−𝑘

⟩⟨𝑋
2
𝑒
0
, 𝑒
𝑘−𝑗

⟩,

(37)

for 𝑖, 𝑗 = 0, 1, 2, . . ., such that 𝑖 ≥ 𝑗. Now, letting 𝑗 = 0 in (37),
we obtain

(𝑋
2
𝑒
0
) (𝜆
1
𝜁) (𝑋
1
𝑒
0
) (𝜁) = (𝑋

1
𝑒
0
) (𝜆
2
𝜁) (𝑋
2
𝑒
0
) (𝜁) (38)

for almost all 𝜁 ∈ 𝜕U. This proves the necessity condition in
(37).

(ii) Assume that 𝑋
1
∈ T
𝜆
1

and 𝑋
2
∈ T
𝜆
2

are both coan-
alytic 𝜆-Toeplitz operators such that

(𝑋
∗

2
𝑒
0
) (𝜆
1
𝜁) (𝑋
∗

1
𝑒
0
) (𝜁) = (𝑋

∗

1
𝑒
0
) (𝜆
2
𝜁) (𝑋
∗

2
𝑒
0
) (𝜁) , (39)

for almost all 𝜁 ∈ 𝜕U. Their coanalyticity implies that 𝑋∗
1

∈

T
𝜆
1

and𝑋
∗

2
∈ T
𝜆
2

are analytic, which satisfy (39).Therefore,
by the sufficiency condition in (37), they commute. This
in turn implies that 𝑋

1
and 𝑋

2
commute. This proves the

necessity condition in (37).
Now, suppose coanalytic 𝜆-Toeplitz operators𝑋

1
and𝑋

2

commute, which means analytic 𝜆-Toeplitz operators 𝑋
∗

1
∈

T
𝜆
1

and 𝑋
∗

2
∈ T

𝜆
2

commute. Hence, by the necessity
condition in (37), we should have

(𝑋
∗

2
𝑒
0
) (𝜆
1
𝜁) (𝑋
∗

1
𝑒
0
) (𝜁) = (𝑋

∗

1
𝑒
0
) (𝜆
2
𝜁) (𝑋
∗

2
𝑒
0
) (𝜁) , (40)

which proves the sufficiency condition in (37).

Another consequence of Theorem 11 characterizes the
𝜆-Toeplitz operators having 𝜆-Toeplitz operator inverses.

Corollary 18. For 𝜆 ∈ 𝜕U, let𝑋 ∈ T
𝜆
. If 𝑋 is invertible, then

a necessary and sufficient condition that 𝑋
−1 is a 𝜆-Toeplitz

operator is that 𝑋 is either analytic or coanalytic.

Proof. Suppose that 𝑋 is invertible. If 𝑋 is analytic, then, by
Theorem 11,𝑋 𝜆-commutes with 𝑇

𝑒
𝚤𝜃 ; that is,

𝑋𝑇
𝑒
𝚤𝜃 = 𝜆𝑇

𝑒
𝚤𝜃𝑋, (41)

from which follows

𝑋
−1
𝑇
𝑒
𝚤𝜃 = 𝜆𝑇

𝑒
𝚤𝜃𝑋
−1
. (42)

But, on one hand, (42) implies that 𝑋
−1 is a 𝜆-Toeplitz

operator in T
𝜆
and, on the other hand, that it is an analytic

𝜆-Toeplitz operator, usingTheorem 11.
The case for coanalyticity walks through the same steps as

the latter case.

Suppose now that 𝑋
−1 is known to be a 𝜆-Toeplitz

operator in T
𝜇
, for some 𝜇 ∈ 𝜕U. Having the following

operator-equations,

𝑇
𝑒
−𝚤𝜃𝑋𝑇
𝑒
𝚤𝜃 = 𝜆𝑋,

𝑇
𝑒
−𝚤𝜃𝑋
−1
𝑇
𝑒
𝚤𝜃 = 𝜇𝑋

−1
,

(43)

we obtain

𝑇
𝑒
−𝚤𝜃𝑋𝑒
0
⊗ 𝑇
𝑒
−𝚤𝜃(𝑋
−1
)
∗

𝑒
0
= (1 − 𝜆𝜇)𝐼,

𝑇
𝑒
−𝚤𝜃𝑋
−1
𝑒
0
⊗ 𝑇
𝑒
−𝚤𝜃𝑋
∗
𝑒
0
= (1 − 𝜆𝜇) 𝐼,

(44)

each of which implies 𝜇 = 𝜆; that is, 𝑋−1 ∈ T
𝜆
, and, in this

case, from the first equation follows either 𝑋 is coanalytic or
𝑋
−1 is analytic. And the second one also implies either𝑋−1 is

coanalytic or𝑋 is analytic.
If 𝑋 is not coanalytic, then 𝑋

−1 is analytic and not
constant; this implies that 𝑋

−1 is not coanalytic and hence
that 𝑋 is analytic. The same reasoning also works when it is
assumed that𝑋 is not analytic.

6. 𝜆-Toeplitzness versus Hankelness

One of the properties of Hankelness is that it is preserved
under multiplication, on the right, by analytic Toeplitz oper-
ators or, on the left, by coanalytic Toeplitz operators. Indeed,
if𝐻,𝑇 ∈ B(𝐻

2
) such that𝐻 is a Hankel operator and 𝑇 is an

analytic Toeplitz operator, then

𝑇
𝑒
−𝚤𝜃𝐻𝑇 = 𝐻𝑇

𝑒
𝚤𝜃𝑇 = 𝐻𝑇𝑇

𝑒
𝚤𝜃 , (45)

which states that 𝐻𝑇 satisfies the Hankel equation, so is a
Hankel operator. A similar way shows that 𝑇𝐻 is a Hankel
operator, where 𝑇 is a coanalytic Toeplitz operator.

It turns out that Hankel operators behave in a similar
manner when they meet analytic/coanalytic 𝜆-Toeplitz oper-
ators.

Theorem 19. Let 𝐻 ∈ B(𝐻
2
) be a Hankel operator and

𝜆 ∈ U. If 𝑋
1
is an analytic and 𝑋

2
is a coanalytic

𝜆-Toeplitz operator in T
𝜆
, then 𝐻𝑋

1
and 𝑋

2
𝐻 satisfy the

Hankel equation in the sense that 𝜆𝑇
𝑒
−𝚤𝜃𝐻𝑋

1
= 𝐻𝑋

1
𝑇
𝑒
𝚤𝜃 and

𝑇
𝑒
−𝚤𝜃𝑋
2
𝐻 = 𝜆𝑋𝐻𝑇

𝑒
𝚤𝜃 .

Proof. As it is well known,𝐻 is a Hankel operator if and only
if 𝑇
𝑒
−𝚤𝜃𝐻 = 𝐻𝑇

𝑒
𝚤𝜃 . Then, simply, we have

𝜆𝑇
𝑒
−𝚤𝜃𝐻𝑋

1
= 𝜆𝐻𝑇

𝑒
𝚤𝜃𝑋
1
= 𝐻 (𝜆𝑇

𝑒
𝚤𝜃𝑋
1
) = 𝐻𝑋

1
𝑇
𝑒
𝚤𝜃 ,

𝑇
𝑒
−𝚤𝜃𝑋
2
𝐻 = 𝜆𝑋

2
𝑇
𝑒
−𝚤𝜃𝐻 = 𝜆𝑋

2
𝑇
𝑒
−𝚤𝜃𝐻 = 𝜆𝑋

2
𝐻𝑇
𝑒
𝚤𝜃 ,

(46)

proving the assertion.
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