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The main purpose of this paper is to establish a common fixed point theorem for set valued mappings in 2-metric spaces by
generalizing a theorem of Abd EL-Monsef et al. (2009) and Murthy and Tas (2009) by using (¢, y)-weak contraction in view of

Gregus type condition for set valued mappings using R-weakly commuting maps.

1. Introduction and Preliminaries

The weak contraction condition in Hilbert Space was intro-
duced by Alber and Guerre-Delabriere [1]. Later, Rhoades [2]
has noticed that the results of Alber and Guerre-Delabriere
[1] in Hilbert Spaces are also true in a complete metric space.

Rhoades [2] established a fixed point theorem in a
complete metric space by using the following contraction
condition.

LetT : X — X which satisfies the following condition:

d(Tx,Ty) <d(x,y) -¢(d(x,y)), 0))

where x, y € X and ¢ : [0,00) — [0, 00) is a continuous ad
nondecreasing function such that ¢(t) = 0 ifand only ift = 0.

Remark 1. In this above result, if ¢(t) = (1 — k)t, where k €
(0, 1), then we obtain condition (1) of Banach.

In the recent years, Dutta and Choudhury [3], Zhang and
Song [4], and Pori¢ [5] have given the results in (¢, y)-weak
contractive mapping.

The concept of 2-metric space is a natural generalization
of the metric space. The concept of 2-metric spaces has been
investigated initially in a series of papers (see Gahler [6-
8]) and has been developed extensively by Gahler and many
others. Gahler defined a 2-metric space as follows.

Definition 2 (see [6]). A 2-metric space on aset X with atleast
three points is nonnegative real-valued mapping d : X x X x
X — R satisfying the following conditions:

(1) For two distinct points x, y € X, there exists a point
z € X such that d(x, y,z) # 0.

(2) d(x, y,z) = 0 if at least two of x, y, and z are equal.
() d(x, y,2) =d(x,2,y) =d(y, x,2).

(4) d(x, y,z) <d(x, y,u) +d(x,u,z) +d(u, y, z) for all x,
y,z,and uin X.

The function d is called a 2-metric for the space X and the
pair (X, d) is then called a 2-metric space.

Geometrically, the value of a 2-metric d(x, y, z) repre-
sents the area of a triangle with vertices x, y, and c.



After this, a number of fixed point theorems have been
proved for 2-metric spaces by introducing compatible map-
pings, commuting and weakly commuting mappings. There
were some generalizations of metric such as a 2-metric, a
D-metric, a G-metric, a cone metric, and a complex-valued
metric. Note that a 2-metric is not a continuous function of
its variables, whereas an ordinary metric is. This led Dhage
to introduce the notion of a D-metric in [9]. But, in 2003,
Mustafa and Sims [10] demonstrated that most of the claims
concerning the fundamental topological properties of D-
metric spaces are incorrect. After that, in 2006, Mustafa and
Sims [11] introduced the notion of G-metric spaces. Only
a 2-metric space has not been known to be topologically
equivalent to an ordinary metric. Then, there was no easy
relationship between results obtained in 2-metric spaces and
metric spaces. In particular, the fixed point theorems on 2-
metric spaces and metric spaces may be unrelated easily.
For more fixed point theorems on 2-metric spaces, the
researchers may refer to [12-15].

Throughout this paper, (X, d) is for a 2-metric space and
B(X) is the class of all nonempty bounded subsets of X.

Definition 3 (see [15]). A sequence {x,} in (X, d) is said to be
convergent to a point x € X, denoted by lim x, = x,if

n—o0"'n

lim d(x,,x,c) = 0 for all ¢ € X. The point x is called the

n— 00
limit of the sequence {x,} in X.

Definition 4 (see [15]). A sequence {x,} in (X, d) is said to be
Cauchy sequence if lim d(x,,, x,,¢c) =0, forall c € X.

m,n — 00

Definition 5 (see [15]). The space (X, d) is said to be complete
if every Cauchy sequence in X converges to a point of X.

Let A, B, and C be nonempty sets in B(X). Let §(A, B, C)
and D(A, B, C) be the functions defined by

6(A,B,C) =sup{d(a,b,c):acA, beB, ceC},

2)
D(A,B,C) =inf{d(a,b,c) :a€ A, beB, ceC}.

If A is a singleton set, then 6(A, B,C) = §(a, B,C). In case B
and C are also singleton sets, then

0(A,B,C)=D(A,B,C)=d(a,b,c) (3)

for every A = {a}, B = {b}, and C = {c}. From the definition
of §, we can say that

8(A,B,C)=06(A,C,B)=0(C,A,B)=8(B,C, A)

(4)
=8(C,B,A) =8(B,A,C) > 0.

Also,
0(A,B,C)<8(A,B,E)+6(AE,C)+ 8 (E,B,C), (5)

for all A, B,C, E € B(X). Let us note that §(A, B,C) = 0 if at
least two of A, B, and C are equal singleton sets.
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Definition 6 (see [15]). A sequence {A,,},, of subset of a 2-
metric space (X, d) is said to be convergent to a subset A of X
if,
(1) given a € A, there is a sequence {a,} in X such that
a,€A,forn=0,1,2,...and lim, _, . d(a,,a,c) = 0;

(2) given € > 0, there exists a positive integer 7, such that
A, C A, forn > ny, where A_ is the union of all open
spheres with centers in A and radius e.

Definition 7 (see [16]). Let G : X — Xand F : X —

B(X). Then, the pair {G, F} is said to be weakly commuting
if GF(X) € B(X) and

6 (FGx, GFx, C)

(6)
< max {6 (Gx, Fx, C), § (GFx, GFx, C)}

for every x € X, and C € B(X).

Definition 8 (see [16]). LetG: X — Xand F: X — B(X).
Then, the pair {G, F} is said to be R-weakly commuting if

6 (FGx, GFx, C)

7)
< R-max {6 (Gx, Fx,C), § (GFx, GFx, C)}

for every x € X, and C € B(X) and R > 0.

Remark 9 (see [16]). If F is a single valued function, then
Definitions 7 and 8 reduce to the following:

6 (FGx, GFx,C) = d (FGx,GFx,C) < d (Gx, Fx,C)

(8)
=8 (Gx, Fx,C),
0 (FGx, GFx,C) = d (FGx, GFx, C)
< R-d(Gx, Fx,C) 9)

=R-8(Gx, Fx,C),

respectively.

Common fixed points of Gregu$ type [17] have been
proved by Diviccaro et al. [18], Fisher and Sessa [19], Mukher-
jee and Verma [20], Murthy et al. [21], and Singh et al
[14] under weaker conditions. Later, Murthy and Tas [16]
generalized and extended the results of Singh et al. [14] and
proved a theorem for set valued mapping in 2-metric space.

In this paper, we generalize the results of Abd EL-Monsef
et al. [15] and Murthy and Tas [16] by using (¢, y)-weak
contraction with Gregus type condition in 2-metric spaces for
set valued mapping for R-weakly commuting maps.
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2. Main Results

Let Sand T'be mapping of 2-metric space (X, d) into itself and
A,B: X — B(X) are two set valued mappings satisfying the
following condition:

JAX) cT(X),
(10)
UBx) cso,
for every x, y € X, C € B(X),and p > 0,
v (87 (Ax, By, C)) < v (M (x,5,C)) |
~¢(M(x,5,0)), "
where
M (x,y,C) = ad? (Sx,Ty,C) + (1 - a)
-max {87 (Ax,Sx,C), 87 (By, Ty,C), (12)

bD? (Sx, By,C) + cD? (Ty, Ax,C)},
a€(0,1),0<b+c<1/2,¢>0,and

(1) v : [0,00) — [0, 00) is continuous monotone nonde-
creasing function with y(t) = 0 if and only if t = 0;

(2) ¢ : [0,00) — [0, 00) is lower semicontinuous, mon-
otone decreasing function with ¢(¢) = 0 if and only if
t =0and ¢(t) > 0 forall £ € (0, 00).

Let x, be an arbitrary point in X. Since | J A(X) ¢ T(X), then
Japoint x; € X such that Tx; € Ax, = y,. Now again, since
UB(X) ¢ S(X), for the point x, € X. we can find a point
x, € X such that Sx; € Bx, = y, and so on. Inductively, we

can construct a sequence {x,} in X such that
Tx,,, € Ax, =y, when nis even,

(13)

Sx,,, € Bx, = y,, when nis odd.

Now we need to prove the following lemma for our main
theorem.

Lemma 10. Let (X, d) be 2-metric space. Let S and T be self-

maps of X and A,B : X — B(X) satisfying conditions (10)
and (11). Then, for every n € N, one has

lim 8p (yn’ Ynt+1> yn+2) =0. (14)

n—00

Proof. Since

8° (}’2n+2>)’2n+1’ )’2n) =oF (Ax2n+2’ Bx2n+1’y2n) > (15)

we have
¥ (8 (Vo> Vansts Y2u)) < ¥ [a8P (Sxp020 T 01>
Yan) + (1= @) max {87 (Sx3142) AxXz12 Y2u) »
P (Bxyers TXonezs Yan) > bDP (SX2120 BXoits Yan)
+cDP (Txy41, Axppizs Y2} = ¢ [a8” (Sx21
TXpne1s Yau) + (1 = )
-max {67 (Axz50 S%342 Yau)
% (Bxyers TXonezs Yan) > bDP (SX2120 BXoits Yan)
+ ¢DP (Txy41, Az Vo) < W (a8 (S50
TXpne1> Yau) + (1 - )
- max {5P (szmz’ AXopi2> )’2n) >
% (Bxyers TXonezs Yan) > b8” (SX2i20 BXoits Yan)
+ 8P (Tx 301> AxXgizs Vo)t = ¢ [a07 (Sxpins (16)
TXpne1s Yau) + (1 - @)
- max {87 (Axy120 SX2120 Yan) »
OF (Bxyers TXonezs Yan) > b8” (SX2i20 BXoits Yan)
+ 087 (Txyi1> X2 Y2)}) < ¥ (487 (Y211,
Yo Yan) + (1= @) max {8” (Vur1> Yoz Yan) »
OF (Vanst> Yanrt> Yan) »08F (Vanets> Yoner> Yan)
+ 8% (V2w Yanezs Vo)t = 8 (08" (Vaur1s Yo Yan)
+ (1 = @) max {6” (Yane1> Yansa> Yon) »
OF (Vanst> Yanrt> Yan) »08F (Vanet> Yoners Yan)
+ 8% (V2w Yanez Ya)H] < ¥ [(1 = @) 8%y
Yanez Yan)) = ¢ [(1 = @) 67 (Vaps1> Yanizs o) -
Since vy is nondecreasing function, we can write
(1= @) 8% (Y2ns1> Yanez Yan) < 8 (Vamer> Vanezs Yan)
= ¥ (1= @) 8” (Vans1> Yoz Yon)) 17)
<Y (8° (Vanrt> Yooz Yan)) -
Hence, we can write
¥ (8% (Y2ns2> Yaner> Yan)
<Y [8” (Vanst> Yones You)] (18)
= ¢ [(1=a) 8 (Yaer> Vansz Yau)]

a contradiction as ¢(t) > 0 for each t € (0, 00).



Consider

&f ()’2n+3’ Yont+2> )’2n+1) = o7 (Ax2n+3’ By )’2n+1) .

We have
V(8 (Vanes> Vanszr Yane1)) < ¥ (a8 (X343, T30

Yaner) + (1= @) max {87 (Axy,,3 %543 Yous1) »
7 (Bxynezs TXone3s Yaner)
bD” (Sx213> BXniz> Yaner)
+ cDP (T340 AXziss Yame1)}] = @[30 (Sxppe30
T35 Yoner) + (1= @)
-max {87 (Axyni3, SXop430 Y2ne1) »
8% (BXai20 TXo430 Yane1) »
bD” (SX2113> BXi2> Yane1)
+DP (Tx 100 A%z Yome)}]
< Y [ad? (Sxpni3 Txapazs Yauer) + (1 - @)
-max {67 (Axyn3 SXop430 Y2ne1) »
P (Bxynizs TXopa3s Yaner)
b8” (SX 43 BXonizs Vane1)
+ 8% (Tx 100 A%z Yome1)}] = @[30 (Sxris0
TXpni2 Vo) + (1 = @)
-max {87 (Axy3, X543 Yons1) »
87 (Bxynezs TXona3s Yaner)
b8” (Sx 43 BXonizs Vane1)
+ 8% (T 3120 A%zizs Yame1)}] < W (487 (V2125
Yanet> Yane1) + (1= a)
~max {6” (Vaue2> Yones> Yaner)»
OF (Vansz» Yaneas Yane1) »08F (Vanezs Yonis Yaner)
+ 8% (Vo> Yaness Yane1)H = ¢ (307 (V20125
Yanet> Vane1) + (1= a)
~max {6” (Vane2> Yones> Yaner) »
8 (Vo> Yoz Vo) » 088 (Vamizs Yamezs Yanen)
+ 8% (Vo> Yanes Yanet)H) < [(1 = @)
8% (Vanez> Yonesr Yane1)] = @ [(1 = @) 87 (yaa2s

Yon+3 y2n+1)] .

(19)

(20)
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Since v is nondecreasing function,

(1-a)é? (y2n+1’ Yon+3» )’2n+1)
< 8% (Vanra> Yansss Yans1)
(21
= ¥ ((1 - a) 8 (Vas2> Yanss Yans1))
<Y (67 (Vansz> Yanss Yons1)) -

From the above conditions, we have

4 (6p (V243> Yans2> Yans1))
<Y [6% (Vanr2> Yaness Yans1)] (22)
- 4) [(1 - 61) 6P (y2n+2’ Yon+3 y2n+1)] >

a contradiction. Hence, we have
Jim 67 (3 Vi1 Yuiz) = 0. (23)

Now we are ready to prove a common fixed point theorem by
using the concept of R-weakly commuting maps theorem as
follows. O

Theorem 11. Let S and T be mapping of 2-metric space (X, d)
into itself and A, B : X — B(X) are two set valued mappings
satisfying conditions (10), (11), and (12) and the following:

(a) S(X) or T(X) is a complete subspace of X.
(b) The pair {A, S} and {B, T} are R-weakly commuting.
Then A, B, S, and T have unique common fixed point in X.

Proof. Let x, be an arbitrary point in X. Since [JA(X) ¢
T(X), then there exists a point x; € X such thatTx; € Ax, =
¥,- Now again, since | B(X) ¢ S(X), for the point x; € X. we
can find a point x, € X such that Sx; € Bx, = y, and so on.
Inductively, we can construct a sequence {x,} in X such that

Tx,,, € Ax, =y, ~when nis even,

(24)
Sx,.1 € Bx,, = y,, when n is odd.
Firstly, we have to prove that
lim 87 (3, ¥,1,C) = 0. (25)

n— 00

For this, assume V,, = 8(y,,, ¥,,,1,C) forn =0,1,2,...byusing
(11):

4 (sz;) =¥ (6" (Y2 Y2n41>C))
=y (8P (Axy By, C))
< 1// (M (xZn’ Xon+1> C))

- ¢ (M (x2n> Xon+1> C)) >

(26)
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where

M (%25 X341, C) = ad? (823> T 341,C) + (1 - a)
-max {87 (Ax,,, Sx,,, C) , 87 (Bxps1> TX2ps15C)
bD? (Sx,,,, Bxs,,1,C) + cDF (Txy,, 1, Ax,,, C)}
= ad” (yyu-1> Y2 C) + (1 - a)
-max {6 (¥ ¥2u-1-C) » 8 (Vaus1> Y2 €) 5
bD? (Vap-1> Yans1> C) + €D (Y2 Y2 C)}
< ad? (y2p-1> Y2 C) + (1 - a)

(27)

- max {8” (2 Y2u-1-C) > 6% (Vans1» Y2 C) »
68" (Yan-1> Yans1> C) + €8° (V2 Y2 O}
< ad” (Y315 Y2 C) + (1 - @)
- max {8” (Y2 Y2u-1-C) > 6% (Vans1» Y2 C) »
b (6% (Van-1> Yanet> o) + 6F (Van-1> Y2 C)
+ 8" (V2w Yoy O))} = aV3, + (1 - a)
~max {VE_,VE.b(VE_ +VE)}.

By (26), we get

y(VE) <y (avi,_,

+ (1 — a) max {Vz};_l,Vzpn,b (Vzp_l + Vzpn)})

n

(28)
-¢ (aVZI;H

+ (1 - a) max {VZI;,szlipb (VzI;H + Vzpn)}) :

If we take V,,_, < V,,, in the above equation by using the
property of ¢ and y function, we can write

y(VE)<y(avl_ +(1-a) Vi)

(29)
~¢(aVf_ +(1-a)VE).
The above implies that
v(Vi) <v (Vi) - ¢ (Vi) (30)
a contradiction. So we obtain
Vo1 2 Ve (31)

By using (28) and (31) and employing the properties of ¢ and
y function, we may write

v(vE)

<ylav],+ 0 amax V.20

—¢lavh_ +(Q-a)ymax{V_,20VE }]  (32)
<y [aVZI:H +(1-a) VZ}:H]

—¢lavi  +(1-a)VE],

v (Vi) sy (Vi) -0 (Vi) (33)
Again, (31) implies that

V2n < V2n71 = 5‘0 (yZn’ y2n+1’C)
(34)
< 6F (Yan-1> Yo C) -

Therefore, V,,, = 8% (y5,_1> ¥5,» C) is a monotone decreasing
sequence of nonnegative real number. There exists a nonneg-
ative real number r > 0 such that

nhj%oép (V2n-1> Y2 C) = 1. (35)
Letting limitn — oo in (33), we get
y(r)<y(r)-¢(r), (36)

a contradiction with the property of ¢ and v function. This
implies that r = 0. Thus, we have

lim 67 (3, 1> Yo C) = 0. (37)

n— 00

Now, repeating the above process by putting x = x,,,; and
Y = X,,,,, We obtain

Jim 67 (330 ¥ai1,C) = 0. (38)
Hence, for all n > 0, we can write
Jim 8% (¥, Y41, C) = 0. (39)

Next, we will show that {y,} is a Cauchy sequence. If,
otherwise, there exists € > 0 and sequence of natural numbers
{m(k)} and {n(k)} such that, for every natural number k,

n(k) >m(k) >k, (40)

8% (Ym(ry> Yuity» C) 2 € (41)

corresponding to m(k), we can choose n(k) to be the smallest
integer such that (41) is satisfied. Then, we have

87 (Ym(i» uii-1-C) < €. (42)
Putting x = x,, and y = Vi) iN (11), we get
v (67 (yn(k)’ym(k)’c)) =y (67 (Axn(k)’me(k)> C))
< Y (M (X0k)> Xn(r)» C)) (43)

= ¢ (M (Xt Xmrys C)) »



where

M (X000 Xy ©) = a6 (SX,y01» TXpy» C) + (1 — @)
- max {67 (Ax,)» SX,y1), C) »
8% (B> TX (s> C) » bDP (S 39> B 1y C)
+ D (TX,p 0 AX s C)} < a6 (Sx,00> T iy
C) + (1 — a) max {8 (Ax,4)» SX,4, C) »
8 (BX,iiy> T pii» C) » bOF (S%,539> BX (i C)
+ 087 (T (ay» Axpay» C)} < @87 (Yitor-1> Ymiior-1>
C) + (1 = @) max {8” (¥ Yugo-1-C)
o7 (ym(k)’ Ym(k)-1> C) ,bo? (yn(k)—l’ Ym(k) C)

+cof (ym(k)—l’ Yn(k) O)}.

Letting limit n — o0 in the above,
M (Xp(hy> Xmiy> C)
= ad? (yn(k)—l’ Ym(k)-1 C)
+ (1 — a) max {0, 0, be + c8” (¥,9-1> Yu(r)» C)} -
Now
¥ (8% (it Ymtio» C)) < ¥ [a0F (Yu-1> Y1 C)
+ (1 = a) {be + ¢8” (Yugo-1> Yuge» O)}]
= ¢ [a8” (Yuo-1> Ym-1-C)

+ (1= a) {be + 8% (Y15 Yty O -
We have to show that

&f (ym(k)’ Yn(k) C)—e
8f (ym(k)—l’ Ya(k)-1> C) — 6

&f (ym(k)fl’ ;Vn(k)>C) — €.

Now, using properties of 2-metric space, we get
O (Yt V0> C) < 87 (Yt Yy Y1)
+ 0% (Yt Yntto-1>C)

+6F (yn(k)—l’ Yk C).

Letting lim,, _, ., we get

6° ()’m(k)s Yn(k)> C) — €

By using properties of 2-metric space, we can write
167 (Yutr» Cs Y1) = 0F Wu» Co Yol
< 8% (Yunti-1> Ymtiop Yt

+6F ()’m(k)—p Ym(k)> C).

(44)

(45)

(47)

(48)

(49)

(50)
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Letting limitn — co, we have

Jim_ (67 (Yuiyr s Ymiig-1) = 0 (Vi C Yimit)) = 0
(51)

or 87 (,Vn(k>s)’m(k)—1>c) — €.

Again using properties of 2-metric space, we can write

8f ()’m(k)>)’n(k)—1>c) <of (ym(k)’ Yu(k)-1> J’n(k))
+ 08 (V> Yty C) (52)

+6F (yn(k)’ Yu(k)-1> Q).

Letting limit n — co, we have

8 (Vi uy-1>C) — € (53)
Using (46), (49), (51), and (53), we have

vy (e) < v (ae + (1 - a) (be + ce))
(54)
— ¢ (ae + (1 —a) (be + ce)) .

Since y is nondecreasing function, (a+(1—-a)(b+c))e < e =

y((a+ (1 -a)b+c)e) <yle).

Therefore,
y(€) <y (e) — ¢ (ae + (1 — a) (be + ce)), (55)

a contradiction with ¢ function; hence, {y,} is a Cauchy
sequence.

Assume T(X) is a complete subspace X. Since the
sequence {x,} is Cauchy, then its subsequence Tx,,,, is
Cauchy and converges to a point z in T'(X). Since T(X) is
complete subspace of X, for some u € X,

Tx,,.1 — z=Tu. (56)
According to the construction of sequence, we can have
8 (Sx22 Tx241, C) < 8 (Vans1> Yo C) - (57)
Letting limitn — oo,

Jim & (Sx2p42> TXop41, C) < [lim & (Vans1> Yomr ©)

(58)
=0.
The above implies that
8 (Sxap420 TXs1,C) = 0. (59)
Therefore, we get
}erlastn+2 = ing2n+1 =z (60)

Similarly,

8 (Axyni20 Bx2i1, C) < 8 (V2120 Y21 C) - (61)
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Letting limitn — oo,

Jlim 6 (AXyi20 BXg1, C) < Jim 6 (Vans2> Yane1,C)
(62)
=0.

Therefore, we get

r}i_)manzmz = Ji_{nanznﬂ =z (63)

Now we will show that u is a coincidence point of B and T.
Forn = 0,1,2,3,... and putting x = x,, and y = u in (11)
and (12), we have

y (87 (Axy,, Bu, C)) < 9 (M (x5, 4, C))

= ¢ (M (x5 1, C)),

(64)

where
M (x,,,,u,C) = ad? (Sx,,,, Tu,C) + (1 — a)
- max {8 (Ax,,,, Sx,,, C), 87 (Bu, Tu,C),
bD? (Sx,,, Bu,C) + cDF (Tu, Ax,,,C)},
M (%, u, C) = ad® (Sx,,, Tu,C) + (1 — a) (©)
- max {8 (Ax,,, Sx,,, C), 87 (Bu, Tu,C),
bS? (Sx,,, Bu, C) + 8”7 (Tu, Ax,,, C)}.

Letting limit » — o0 in the above equation, we have

lim M (x,,,1,C)
(66)
< (1 - a) max {6? (Bu, z,C),b8? (z, Bu,C)} .

Letting limit n — o0 in (64), we get

v (87 (z, Bu,C))
<y ((1 - a) max{6” (Bu,z,C),bd” (z,Bu,C)})  (67)
- ¢ ((1 - a) max {6 (Bu, z,C) ,b8” (z, Bu,C)}).
This implies that
v (87 (z, Bu,C)) < v ((1 - a) 6% (Bu, z,C))
- ¢ ((1-a)é” (Bu,z,C)). )

Since y is monotone nondecreasing function, we can write

v (8 (z,Bu,C)) < v (87 (Bu, z,C))
(69)
-¢((1-a)é? (Bu,z,C)),

a contradiction. Hence, u is the coincidence point of B and
T; that is, {z} = Bu = {Tu}. Since |J B(X) ¢ S(X), for some

v € X, we have {Sv} = Bu = {Tu}. If Av # Bu, then, from (11)
and (12), putting x = vand y = u, we get

v (67 (Av, Bu,C)) < v (67 (v,u,C))
-¢((1-a)df (v,u,0)), 70)
where
M (v,u,C) = ad®? (Sv, Tu,C) + (1 — a)
- max {67 (Av,Sv,C), 87 (Bu, Tu,C),
bD? (Sv, Bu,C) + cD? (Tu, Av,C)}, (71)
M (v,u,C) = (1 - a) max {87 (Av,Sv,C),
c8 (Tu, Av,C)}.
Since0 <b+c¢<1/2,0<a<1,andb,c > 0, we have

v (87 (Av, Bu,C)) < v ((1 - a) 6% (Av, Sv,C))
(72)
-¢((1-a)d? (Av,Sv,0)).
Since v is monotone nondecreasing function, we can write

v (87 (Av, Bu,C)) < y (87 (Av,Sv,C))
(73)
-¢((1-a)d? (Av,Sv,0)),

a contradiction. Hence, Av = Bu = {Sv} = {Tu} = z.
Since (A4, S) are R-weakly commuting maps, then

8 (ASv, SAu, C)
< R-max {8 (Av,Sv,C), d (SAv, SAv, C)}, 74
which implies that
ASv = SAv = Az = {Sz}. (75)
Again, using (11), putting x = z and y = u, we have
v (87 (Az,2,C)) = v (8 (Az, Bu,C)) < v (ad? (Sz,
Tu,C) + (1 - a) max {6 (Az,Sz,C),
8” (Bu, Tu, C) , bD” (Sz, Bu, C)
+¢cDF (Tu, Az, C)}) — ¢ (ad” (Sz, Tu,C) + (1
—a)max {87 (Az,Sz,C), 87 (Bu, Tu,C),
bD? (Sz, Bu,C) + cDF (Tu, Az,C)})
< (ad? (Az,z,C) + (1 - a) max {0,0,
bd? (Az,z,C) + c6f (Az,z,C)}) — ¢ (ad? (Az, z,
C) + (1 — a) max {0, 0,b8% (Az,z,C)
+cdf (Az,2,0)}),
v (8% (Az,2,C)) <y (a+(1-a) (b+c)8” (Az,z,
C)-¢(a+(1-a)b+c)df (Az,2,C)).



Since y is nondecreasing function, we can write
(a+(1-a)(b+c)d? (Az,2,C) < 8F (Az,z,C)
= y((@a+(-a)(b+c)éf (Az,2,C)) (77)
<y (6% (Az,2,0)).
This implies that
v (87 (Az,2,0))
<y (87 (Az,z,0)) (78)
—¢(a+(1-a)(b+c)é” (Az,2,0)),

a contradiction. Hence, we get Az = {Sz} = {z} and z is a
common fixed point of A and S.

Similarly, we can show that {z} is common fixed point of
Band T by assuming {B, T} is a pair of R-weakly commuting
maps. Hence, Az = Bz = {Sz} = {Tz} = {z}.

For the uniqueness of common fixed point z, let z* be
another fixed point of A, B, S, and T'. By using (11), we have

y (8 (Az,Bz",C)) =y (6" (2.2, C))
<y (adf (Sz,Tz",C) + (1 - a)
-max {8% (Az,Sz,C), 87 (Bz",Tz",C),
bD? (Sz,Bz",C) + cD?f (Tz", Az,C)})
- ¢ (ad? (Sz,Tz",C) + (1 - a)
-max {8” (Az,Sz,C), 87 (Bz*,Tz",C),
bD? (Sz,Bz",C) + cDf (Tz", Az,C)})
<y (ad? (Sz,Tz",C) + (1 - a)
-max {8” (Az,Sz,C), 8% (Bz",Tz",C), (79)
bd? (Sz, Bz",C) + c8f (Tz", Az,C)})
- ¢ (ad? (Sz,Tz",C) + (1 - a)
-max {67 (Az, Sz,C), 87 (Bz",Tz",C),
bd? (Sz, Bz",C) + c8f (Tz", Az,C)}),
v (67 (2,2",C)) <y (ad? (z,z",C) + (1 —a)
-max {0,0,b8? (z,z",C) + c8? (z*, 2,C)})
- ¢ (ad? (z,z",C) + (1 — a) max {0, 0,
b8? (z,2",C) +c8? (z%,2,C)}).
Since y is nondecreasing function, we can write
(@a+(1-a)(b+c¢) 6 (z,2",C) <67 (2,27,C)
=y ((a+(1-a)(b+c)d6”(z2",C)) (80)
<y (87 (z,2z%,Q)).
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This implies that
(8 (22", C))
<y (67 (z,2",0)) (81)
—¢(a+(1-a)(b+c)df (z,27,C)),

a contradiction. Hence, we have z = z*; that is, that z is
unique common fixed point of A, B, S, and T in X. O

As an immediate consequence of the above theorem, we
have the following corollaries.

Corollary 12. Let S and T be mapping of 2-metric space
(X, d) into itself and A,B : X — B(X) are two set valued
mappings satisfying conditions (a) and (b) of Theorem 11 and
the following conditions:

JAX) cT(X),

UB) s,
foreveryx,y € X, C € B(X), and p > 0,
8% (Ax,By,C) < M (x,y,C) = (M (x, y,2)),  (83)

(82)

where

M (x, y,z) = ad? (Sx,Ty,C) + (1 - a)
-max {87 (Ax,Sx,C), 87 (By, Ty,C), (84)
bD? (Sx, By,C) + cD* (Ty, Ax,C)},

ac(0,1,0<b+c<1/2,¢20,and¢:[0,00) — [0,00)

is lower semicontinuous, monotone decreasing function with

¢(t) = 0ifand only ift = 0 and ¢(t) > 0 for all t € (0, 00).
Then A, B, S, and T have unique common fixed point in X.

Proof. The proof follows from Theorem 11 by taking y/(t) =
t. O

Corollary 13. Let S and T be mapping of 2-metric space
(X, d) into itself and A,B : X — B(X) are two set valued
mappings satisfying conditions (a) and (b) of Theorem 11 and
the following conditions:

JAX) cT(X),
(85)

UBx) cs0,

foreveryx,y € X, C € B(X), and p > 0,
87 (Ax,By,C) < k(M (x, y,2)), (86)

where
M (x, y,z) = ad? (Sx,Ty,C) + (1 - a)

-max {87 (Ax,Sx,C), 87 (By, Ty,C), (87)

bD? (Sx, By,C) + cD* (Ty, Ax,C)},

a€(0,1),0<b+c<1/2,¢>0,andk € (0,1). Then, A, B, S,
and T have unique common fixed point in X.
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Proof. The proof follows from Corollary 12 by taking ¢(t) =
(1 - k)t, where k € (0,1). O
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