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A graph 𝐺 is said to be even if all vertices of 𝐺 have even degree. Given a 𝑘-edge-coloring of a graph 𝐺, for each color 𝑖 ∈ Z𝑘 =

{0, 1, . . . , 𝑘 − 1} let 𝐺(𝑖) denote the spanning subgraph of 𝐺 in which the edge-set contains precisely the edges colored 𝑖. A 𝑘-edge-
coloring of 𝐺 is said to be an 𝑒𝑣𝑒𝑛 𝑘-edge-coloring if for each color 𝑖 ∈ Z𝑘, 𝐺(𝑖) is an even graph. A 𝑘-edge-coloring of 𝐺 is said to
be evenly-equitable if for each color 𝑖 ∈ Z𝑘, 𝐺(𝑖) is an even graph, and for each vertex V ∈ 𝑉(𝐺) and for any pair of colors 𝑖, 𝑗 ∈ Z𝑘,
|deg
𝐺(𝑖)

(V) − deg
𝐺(𝑗)

(V)| ∈ {0, 2}. For any pair of vertices {V, 𝑤} let 𝑚𝐺({V, 𝑤}) be the number of edges between V and 𝑤 in 𝐺 (we
allow V = 𝑤, where {V, V} denotes a loop incident with V). A 𝑘-edge-coloring of 𝐺 is said to be balanced if for all pairs of colors 𝑖 and
𝑗 and all pairs of vertices V and 𝑤 (possibly V = 𝑤), |𝑚𝐺(𝑖)({V, 𝑤}) − 𝑚𝐺(𝑗)({V, 𝑤})| ≤ 1. Hilton proved that each even graph has an
evenly-equitable 𝑘-edge-coloring for each 𝑘 ∈ N. In this paper we extend this result by finding a characterization for graphs that
have an evenly-equitable, balanced 𝑘-edge-coloring for each 𝑘 ∈ N. Correspondingly we find a characterization for even graphs
to have an evenly-equitable, balanced 2-edge-coloring. Then we give an instance of how evenly-equitable, balanced edge-colorings
can be used to determine if a certain fairness property of factorizations of some regular graphs is satisfied. Finally we indicate how
different fairness notions on edge-colorings interact with each other.

1. Introduction

When considering edge-colorings of graphs it is usually
desired to have some fairness properties imposed on the
number of edges colored by each color. Belowwe define some
important such notions and then explore the existence of
edge-colorings satisfying combinations of these conditions.

In what follows, a graph 𝐺 is called even if all vertices
of 𝐺 have even degree. Given a 𝑘-edge-coloring of a graph
𝐺, for each color 𝑖 ∈ Z𝑘 = {0, 1, . . . , 𝑘 − 1} let 𝐺(𝑖) denote
the spanning subgraph of 𝐺 in which the edge-set contains
precisely the edges colored 𝑖. Then a 𝑘-edge-coloring of 𝐺 is
called an even 𝑘-edge-coloring if for each color 𝑖 ∈ Z𝑘, 𝐺(𝑖) is
an even graph. A 𝑘-edge-coloring of𝐺 is said to be equitable if
for each vertex V ∈ 𝑉(𝐺) and for each pair of colors 𝑖, 𝑗 ∈ Z𝑘,
|deg
𝐺(𝑖)

(V) − deg
𝐺(𝑗)

(V)| ∈ {0, 1}. Moreover, a 𝑘-edge-coloring
of 𝐺 is said to be evenly-equitable if

(i) for each color 𝑖 ∈ Z𝑘, 𝐺(𝑖) is an even graph,

(ii) for each vertex V ∈ 𝑉(𝐺) and for any pair of colors
𝑖, 𝑗 ∈ Z𝑘, |deg

𝐺(𝑖)
(V) − deg

𝐺(𝑗)
(V)| ∈ {0, 2}.

For any pair of vertices {V, 𝑤}, let 𝑚𝐺({V, 𝑤}) be the
number of edges between V and𝑤 in𝐺 (we allow V = 𝑤, where
{V, V} denotes a loop incident with V). A 𝑘-edge-coloring of 𝐺

is said to be balanced if for all pairs of colors 𝑖 and 𝑗 and all
pairs of vertices V and 𝑤 (possibly V = 𝑤), |𝑚𝐺(𝑖)({V, 𝑤}) −

𝑚𝐺(𝑗)({V, 𝑤})| ≤ 1. A 𝑘-edge-coloring of 𝐺 is said to be
equalized if ||𝐸(𝐺(𝑖))| − |𝐸(𝐺(𝑗))|| ≤ 1 for each pair of colors
𝑖, 𝑗 ∈ Z𝑘.

Due to de Werra’s work in [1–4] it has been known since
the 1970s that for each 𝑘 ∈ N every bipartite graph has
a 𝑘-edge-coloring that is balanced, equitable, and equalized
at the same time. One important result for more general
graphs is by Hilton, who proved in [5] that each even graph
has an evenly-equitable 𝑘-edge-coloring for each 𝑘 ∈ N,
thereby completely settling this problem (see Theorem 9).
The existence of equitable 𝑘-edge-colorings is much more
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problematic and very unlikely to be completely solved, since,
for example, settling the existence of equitable Δ-edge-
colorings is equivalent to classifying Class 1 graphs (see [6, 7]
for some results on this topic). One general result on equitable
𝑘-edge-colorings was found by Hilton and de Werra [8] who
proved that if 𝑘 ≥ 2 and 𝐺 is a simple graph such that no
vertex in 𝐺 has degree equal to a multiple of 𝑘, then 𝐺 has
an equitable 𝑘-edge-coloring. More recently, Zhang and Liu
[9] extended this result by proving that for each 𝑘 ≥ 2, if
the subgraph of 𝐺 induced by the vertices which have degree
equal to a multiple of 𝑘 is a forest, then 𝐺 has an equitable 𝑘-
edge-coloring, thereby verifying a conjecture made by Hilton
in [10].

In Section 2 we extend Hilton’s result [5] by finding a
characterization for graphs that have an evenly-equitable,
balanced 𝑘-edge-coloring for each 𝑘 ∈ N (seeTheorem 1).We
then use this result to find a different kind of characterization
for even graphs to have an evenly-equitable, balanced 2-edge-
coloring (see Theorem 2).

In Section 3 we prove Theorems 5 and 6, the latter of
which uses results from the previous section. The proof of
Theorem 6 provides an instance of how evenly-equitable,
balanced edge-colorings can be used to ensure that a certain
fairness property of factorizations of some regular graphs
is satisfied. This particular notion of fairness is defined as
follows. A 𝑘-factorization of a graph in which the vertices
have been partitioned into parts is said to be fair if for
each two parts (possibly they are the same) the number of
edges between these two parts in each factor differs from the
number in each other factor by at most one.

For completeness, in Section 4we address the existence of
all other combinations of the three edge-coloring properties
(namely, evenly-equitable, balanced, and equalized), finding
weakest subsets of conditions that will guarantee (if possible)
that a graph 𝐺 has a 𝑘-edge-coloring which has the follow-
ing properties in turn: (𝑃1) evenly-equitable, balanced, and
equalized, (𝑃2) evenly-equitable and equalized, (𝑃3) balanced
and equalized, (𝑃4) evenly-equitable, (𝑃5) balanced, and (𝑃6)
equalized.

For each proper subset 𝑆 of the vertex set of a graph 𝐺,
define the edge-cut 𝐸(𝑆, 𝑆) = {𝑒 = {𝑥, 𝑦} | 𝑒 ∈ 𝐸(𝐺), 𝑥 ∈ 𝑆,

𝑦 ∈ 𝑉(𝐺)\𝑆}. Let 𝑟𝐺,𝑘({V, 𝑤}) ∈ Z𝑘 be such that 𝑟𝐺,𝑘({V, 𝑤}) ≡

𝑚𝐺({V, 𝑤}) (modulo 𝑘). Let 𝐺
(𝑘) be the spanning subgraph of

𝐺 in which for each pair of vertices V and 𝑤 the number of
edges between V and 𝑤 is 𝑟𝐺,𝑘({V, 𝑤}). Then clearly deg

𝐺
(V) ≡

deg
𝐺(𝑘)

(V) (modulo 𝑘) for all V ∈ 𝑉(𝐺). For the purposes of
this paper, a vertex V ∈ 𝑉(𝐺

(𝑘)
) is said to be odd (even) if

(deg
𝐺

(V) − deg
𝐺(𝑘)

(V))/𝑘 is an odd (even) integer.

2. Coloring Results

The following characterization can be used to find evenly-
equitable, balanced 𝑘-edge-colorings.Theproof has the flavor
of Hilton’s proof in [5] of the case where the additional
property of being balanced was not required but is modified
to deal with extra complications that arise in this new setting.

Theorem 1. For each positive integer 𝑘, a graph 𝐺 (possibly
with loops) has an evenly-equitable, balanced 𝑘-edge-coloring
if and only if it has an even, balanced 𝑘-edge-coloring.

Proof. Proving the “only if ” result is trivial. To show the “if ”
result, we first prove the assertion for the case when 𝐺 is
connected and loopless. Let 𝑓 be an even, balanced 𝑘-edge-
coloring of 𝐺. Among all pairs of colors 𝑖, 𝑗 ∈ Z𝑘 and all
vertices V ∈ 𝑉(𝐺) suppose that |deg

𝐺(𝑖)
(V) − deg

𝐺(𝑗)
(V)| = 2𝑥

is as large as possible (where 𝑥 ∈ N). If 𝑥 ∈ {0, 1}, then this
edge-coloring is evenly-equitable, so assume 𝑥 ≥ 2. Let 𝐺

󸀠 be
the spanning subgraph of 𝐺 induced by the edges colored 𝑖

and 𝑗. From 𝐺
󸀠 form a new graph 𝐺

󸀠󸀠 by adding an uncolored
loop at each vertex V satisfying deg

𝐺󸀠
(V) ≡ 2 (mod 4). Then

deg
𝐺󸀠󸀠

(V) ≡ 0 (mod 4) for each vertex V ∈ 𝑉 (𝐺
󸀠󸀠

) . (1)

For each pair of vertices {V, 𝑤} with V, 𝑤 ∈ Z𝑛 and for any
color ℎ ∈ Z𝑘, let 𝑚𝐺(𝑖,𝑗)({V, 𝑤}) = min{𝑚𝐺(𝑖)({V, 𝑤}),

𝑚𝐺(𝑗)({V, 𝑤})}, and let 𝑆𝑖,𝑗({V, 𝑤}) be a set of size
2𝑚𝐺(𝑖,𝑗)({V, 𝑤}) containing precisely 𝑚𝐺(𝑖,𝑗)({V, 𝑤}) edges
of each of the colors 𝑖 and 𝑗 joining vertices V and 𝑤. So
|𝑆𝑖,𝑗({V, 𝑤})| is even. Let 𝑆𝑖,𝑗(V) = ⋃

𝑤∈𝑉(𝐺)\{V} 𝑆𝑖,𝑗({V, 𝑤})

and 𝑆𝑖,𝑗 = ⋃
0≤V<𝑤<𝑛 𝑆𝑖,𝑗({V, 𝑤}). Define 𝐺

󸀠󸀠󸀠
= 𝐺
󸀠󸀠

− 𝑆𝑖,𝑗.
Since |𝑆𝑖,𝑗(V)| is even for each V ∈ 𝑉(𝐺), and since the
original edge-coloring is even, each component of 𝐺

󸀠󸀠󸀠 is an
eulerian graph and has no multiple edges since 𝑓 is balanced
(possibly it has an uncolored loop at some of the vertices).
The following argument establishes property (4); namely,
each component of 𝐺

󸀠󸀠󸀠 has an even number of edges. First
note that by the assumption of this theorem for all ℎ ∈ Z𝑘
each component of 𝐺(ℎ) is eulerian, so

the size of each edge-cut in𝐺 (ℎ) is even

(so it is also even in 𝐺
󸀠󸀠

(ℎ)) .

(2)

Let 𝐶 be any component of 𝐺
󸀠󸀠󸀠 and let 𝐻 = 𝐺[𝑆𝑖,𝑗]. Let 𝐸1 =

𝐸(𝐻[𝑉(𝐶)]); so |𝐸1| is even (since there are an even number
of edges in 𝑆𝑖,𝑗 between each pair of vertices). Let 𝐸2 be the
edge-cut 𝐻[𝑉(𝐶), 𝑉(𝐻) \ 𝑉(𝐶)], which by the definition of
𝑆𝑖,𝑗 satisfies 𝐻[𝑉(𝐶), 𝑉(𝐺) \ 𝑉(𝐶)] = 𝐺

󸀠󸀠
[𝑉(𝐶), 𝑉(𝐺) \ 𝑉(𝐶)].

So, |𝐸2 ∩ 𝐸(𝐻(𝑖))| = |𝐸2 ∩ 𝐸(𝐻(𝑗))|. Furthermore, since for
each color ℎ ∈ {𝑖, 𝑗} 𝐸2 ∩ 𝐸(𝐻(𝑖)) and 𝐸2 ∩ 𝐸(𝐻(𝑗)) are edge-
cuts in 𝐻(𝑖) and 𝐻(𝑗), respectively, by (2) |𝐸2 ∩ 𝐸(𝐻(𝑖))| and
|𝐸2 ∩ 𝐸(𝐻(𝑗))| are even. Hence |𝐸2| = |𝐸2 ∩ 𝐸(𝐻(𝑖))| + |𝐸2 ∩

𝐸(𝐻(𝑗))| = 2|𝐸2 ∩ 𝐸(𝐻(𝑖))| ≡ 0 (mod 4). Then,

∑

V∈𝑉(𝐶)
deg
𝐺󸀠󸀠󸀠

(V) = ∑

V∈𝑉(𝐶)
deg
𝐺󸀠󸀠

(V) − 2
󵄨󵄨󵄨󵄨𝐸1

󵄨󵄨󵄨󵄨 −
󵄨󵄨󵄨󵄨𝐸2

󵄨󵄨󵄨󵄨

≡ ∑

V∈𝑉(𝐶)
deg
𝐺󸀠󸀠

(V) (mod 4)

≡ 0 (mod 4) by (1) .

(3)

So,

|𝐸 (𝐶)| =

(∑V∈𝑉(𝐶) deg𝐺󸀠󸀠󸀠 (V))
2

≡ 0 (mod 2) . (4)
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Let 𝑓
󸀠 be a new 2-edge-coloring of 𝐺

󸀠 formed as follows.
For each component 𝐶 of 𝐺

󸀠󸀠󸀠, alternately color the edges of
an eulerian circuit of 𝐶 with 𝑖 and 𝑗. This yields a balanced
2-edge-coloring of 𝐺

󸀠󸀠󸀠 (𝐺󸀠󸀠󸀠 is simple) where by (4), for each
vertex V ∈ 𝑉(𝐺),

deg
𝐺󸀠󸀠󸀠(𝑖)

(V) = deg
𝐺󸀠󸀠󸀠(𝑗)

(V) . (5)

Now add the edges in 𝑆𝑖,𝑗 with their original colors to
𝐺
󸀠󸀠󸀠 and remove the uncolored loops that were added when

forming 𝐺
󸀠󸀠. Then clearly the resulting graph is 𝐺

󸀠 and this
new 2-edge-coloring 𝑓

󸀠 satisfies |deg
𝐺󸀠(𝑖)

(V) − deg
𝐺󸀠(𝑗)

(V)| ∈

{0, 2} for each V ∈ 𝑉(𝐺
󸀠
). To show that 𝑓

󸀠 is also even,
consider the following cases (in which deg

𝐺󸀠󸀠󸀠(𝑖)
(V) refers to

edge-coloring 𝐺
󸀠󸀠󸀠 with 𝑓

󸀠).

Case 1. One has deg
𝐺󸀠

(V) ≡ 0 (mod 4). Note that in this case
we are not adding a loop at V when forming 𝐺

󸀠󸀠. Now look at
the following subcases.

Subcase 1.1. ∑
𝑤∈𝑉(𝐺󸀠)\{V}𝑚𝐺(𝑖,𝑗)({V, 𝑤}) is odd. So, an odd

number of edges incident with V of each of the colors 𝑖 and 𝑗

were removed when forming 𝐺
󸀠󸀠󸀠 from 𝐺

󸀠󸀠. So, deg
𝐺󸀠󸀠󸀠

(V) ≡ 2

(mod 4) and hence by (5) deg
𝐺󸀠󸀠󸀠(𝑖)

(V) ≡ deg
𝐺󸀠󸀠󸀠(𝑗)

(V) ≡ 1

(mod 2). Putting back the removed edges shows that V is
incident with an even number of edges of each color in the
edge-coloring 𝑓

󸀠 of 𝐺
󸀠.

Subcase 1.2. ∑
𝑤∈𝑉(𝐺󸀠)\{V}𝑚𝐺(𝑖,𝑗)({V, 𝑤}) is even. So, an even

number of edges incident with V of each of the colors 𝑖 and
𝑗 were removed when forming 𝐺

󸀠󸀠󸀠. So, deg
𝐺󸀠󸀠󸀠

(V) ≡ 0 (mod
4) and hence deg

𝐺󸀠󸀠󸀠(𝑖)
(V) ≡ deg

𝐺󸀠󸀠󸀠(𝑗)
(V) ≡ 0 (mod 2). Putting

back the removed edges shows that V is incident with an even
number of edges of each color in the edge-coloring 𝑓

󸀠 of 𝐺
󸀠.

Case 2. One has deg
𝐺󸀠

(V) ≡ 2 (mod 4). Note that in this case
an uncolored loop is added to V when forming 𝐺

󸀠󸀠. Now look
at the following subcases.

Subcase 2.1. ∑
𝑤∈𝑉(𝐺󸀠)\{V}𝑚𝐺(𝑖,𝑗)({V, 𝑤}) is odd. So, after adding

an uncolored loop at V, an odd number of edges incident with
V of each of the colors 𝑖 and 𝑗 were removed when forming
𝐺
󸀠󸀠󸀠. Then deg

𝐺󸀠󸀠󸀠
(V) ≡ 2 (mod 4), so by (5) in the new edge-

coloring deg
𝐺󸀠󸀠󸀠

(V) = deg
𝐺󸀠󸀠󸀠

(𝑤) ≡ 1 (mod 2). So, for each
𝑢 ∈ {V, 𝑤} and each 𝑙 ∈ {𝑖, 𝑗}, deg

𝐺󸀠(𝑙)
(𝑢) = deg

𝐺󸀠󸀠󸀠(𝑙)
(𝑢) +

𝑚𝐺(𝑖,𝑗)({V, 𝑤}) ≡ 0 (mod 2).

Subcase 2.2. ∑
𝑤∈𝑉(𝐺󸀠)\{V}𝑚𝐺(𝑖,𝑗)({V, 𝑤}) is even. So, after

adding an uncolored loop at V, an even number of edges
incident with V of each of the colors 𝑖 and 𝑗 were removed
when forming 𝐺

󸀠󸀠󸀠. Then deg
𝐺󸀠󸀠󸀠

(V) ≡ 0 (mod 4), so by (5)
in the new edge-coloring deg

𝐺󸀠󸀠󸀠
(V) = deg

𝐺󸀠󸀠󸀠
(𝑤) ≡ 0 (mod

2). So, for each 𝑢 ∈ {V, 𝑤} and each 𝑙 ∈ {𝑖, 𝑗}, deg
𝐺󸀠(𝑙)

(𝑢) =

deg
𝐺󸀠󸀠󸀠(𝑙)

(𝑢) + 𝑚𝐺(𝑖,𝑗)({V, 𝑤}) ≡ 0 (mod 2).
Repetition of this procedure yields an evenly-equitable,

balanced 𝑘-edge-coloring of 𝐺.
For the case when 𝐺 has loops and is possibly discon-

nected, simply remove all the loops from 𝐺 and apply this
procedure to each component of the resulting loopless graph

to get an evenly-equitable, balanced 𝑘-edge-coloring of each
component. Then put back the loops; it is easy to color them
in a balanced way without destroying the evenly-equitable
property at each vertex.

Note that in the statement ofTheorem 1we cannot replace
the condition on the existence of an even, balanced 𝑘-edge-
coloring by a weaker set of conditions, as is illustrated by
the next two examples. A cycle of length 3 with a cycle
of length 2 intersecting in one of its vertices is an even
graph and clearly has a balanced (and equalized) 2-edge-
coloring, but no 2-edge-coloring that is evenly-equitable and
balanced. The graph 2𝐾2 (the graph with two vertices and
two edges joining these two vertices) has an even (actually
evenly-equitable) 2-edge-coloring, but no 2-edge-coloring
that is evenly-equitable and balanced.While these two graphs
are trivial, they can be generalized to more complicated
examples.

Theorem 1 leads to the problem of finding conditions
guaranteeing that a graph has an even, balanced 𝑘-edge-
coloring. The following result addresses that problem. Recall
that our unusual definitions of even and odd vertices and of
𝐺
(2) are given at the end of Section 1.

Theorem 2. 𝐺 has an even, balanced 2-edge-coloring if and
only if 𝐺 is even and 𝐺

(2) has no components with an odd
number of odd vertices.

Proof. To prove the necessity, suppose that an even, balanced
2-edge-coloring of𝐺 is given. Since the given 2-edge-coloring
is balanced, for each pair of vertices V and 𝑤, the 𝑚𝐺({V, 𝑤})−

𝑟𝐺,2({V, 𝑤}) edges between V and𝑤 that are to be deleted when
forming 𝐺

(2) from 𝐺 can be chosen so that they are shared
evenly among the two color classes. Let 𝐶 be a component in
𝐺
(2). Now since the given 2-edge-coloring of 𝐺 is even, for

each color 𝑖 ∈ Z2, an odd vertex in 𝐶 contributes an odd
number to the degree sum of the graph 𝐺

(2)
(𝑖), and an even

vertex in 𝐶 contributes an even number to the degree sum of
the graph𝐺

(2)
(𝑖). Hence the number of odd vertices in𝐶must

be even.
To show the sufficiency, color the edges in 𝐺 as follows.

To satisfy the balanced property, for each pair of vertices
{V, 𝑤} ⊆ 𝑉(𝐺) color (𝑚𝐺({V, 𝑤}) − 𝑟𝐺,2({V, 𝑤}))/2 (note that
by definition of 𝑟𝐺,2 this is an integer) of the edges between V
and 𝑤 with each color 𝑖 ∈ Z2. Let 𝐺

∗ be the graph induced
by the edges that have been colored so far, and note that the
graph induced by the uncolored edges is 𝐺

(2). Also note that
by the definition of odd and even vertices, for each 𝑖 ∈ Z2,

deg
𝐺∗(𝑖)

(V) is odd (even)

if and only if V is an odd (even) vertex.

(∗)

Since 𝐺 is an even graph and since 𝑚𝐺({V, 𝑤}) − 𝑟𝐺,2({V, 𝑤})

is even for each {V, 𝑤} ⊆ 𝑉(𝐺), 𝐺(2) is also an even graph. For
each component 𝐶 in 𝐺

(2) color the edges of an eulerian tour
of 𝐶 as follows. Start by coloring the first edge in the eulerian
tour with 𝑖 ∈ Z2 and then switch to 𝑖+1 (modulo 2) whenever
the eulerian tour reaches an odd vertex for the first time. Note
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that if the first vertex in the eulerian tour is even, then the
first and last edges in the eulerian tour will have the same
color because an even number of color switches will occur
(by assumption there are an even number of odd vertices).
Similarly, if the first vertex, say V, is odd, then the first and the
last edges will have different colors if deg

𝐺(2)
(V) = 2 (since no

color switch is made at V) and they will have the same color if
deg
𝐺(2)

(V) > 2 (since then the eulerian tour will pass through
V, so a color switch will occur at V). This coloring of the edges
in 𝐺
(2) has the property that for each V ∈ 𝑉(𝐺) and for each

𝑖 ∈ Z2

(i) if V is odd, then deg
𝐺(2)(𝑖)

(V) is odd,
(ii) if V is even, then deg

𝐺(2)(𝑖)
(V) is even.

So, for each 𝑖 ∈ Z2 and each V ∈ 𝑉(𝐺), since deg
𝐺(𝑖)

(V) =

deg
𝐺(2)(𝑖)

(V)+deg
𝐺∗(𝑖)

(V), by (∗), (i), and (ii) each vertex in𝐺(𝑖)

has even degree and hence the given 2-edge-coloring has the
desired properties.

It appears to us that a generalization of Theorem 2 for
three or more colors may be difficult to obtain.

The following result characterizes graphs which have an
evenly-equitable, balanced 2-edge-coloring.

Corollary 3. Suppose that 𝐺 is an even graph. Then 𝐺 has an
evenly-equitable, balanced 2-edge-coloring if and only if 𝐺

(2)

has no components with an odd number of odd vertices.

Proof. This follows immediately byTheorems 1 and 2.

3. An Application Using Amalgamations

In this section edge-colorings that satisfy another notion of
equally distributing edges across color classes are considered,
namely, that of fairness. Not only are the edge-colorings
equitable, but also for any given partition 𝑃 of the vertices,
for each two parts in 𝑃 (possibly they are the same) the edges
between vertices in the two parts are equally divided among
the color classes. While the results here (Theorems 5 and 6)
address general partitions, these types of questions naturally
arise when edge-coloring the complete multipartite graph
𝐾𝑎1 ,...,𝑎𝑝

, in which the partition is chosen to be the parts of
the graph. For example, it has been shown when there exist
fair equitable edge-colorings of 𝐾𝑎1 ,...,𝑎𝑝

in which each color
class induces a hamilton cycle [11] or a 1-factor [12].

To prove Theorem 5, the method of amalgamations is
used. A graph 𝐻 is said to be the 𝜓-amalgamation of a
graph 𝐺 if 𝜓 is a function from 𝑉(𝐺) onto 𝑉(𝐻) such that
𝑒 = {𝑢, V} ∈ 𝐸(𝐺) if and only if {𝜓(𝑢), 𝜓(V)} ∈ 𝐸(𝐻).
The function 𝜓 is called an amalgamation function. We say
that 𝐺 is a detachment of 𝐻, where each vertex V of 𝐻

splits into the vertices of 𝜓
−1

({V}). An 𝜂-detachment of 𝐻

is a detachment in which each vertex V of 𝐻 splits into
𝜂(V) vertices. Amalgamating a finite graph 𝐺 to form the
corresponding amalgamated graph 𝐻 can be thought of as
grouping the vertices of 𝐺 and forming one supervertex for
each such group by squashing together the original vertices
in the same group. An edge incident with a vertex in 𝐺 is

then incident with the corresponding new vertex in 𝐻; in
particular an edge joining two vertices from the same group
becomes a loop on the corresponding new vertex in 𝐻.

In what follows, 𝐺[𝑗] denotes the subgraph of 𝐺 induced
by the edges colored 𝑗 (so unlike 𝐺(𝑗), 𝐺[𝑗] is not necessarily
a spanning subgraph), and 𝑙𝐺(𝑢) denotes the number of loops
at 𝑢 in 𝐺. The following theorem was proved in much more
generality by Bahmanian and Rodger in [13], but this is
sufficient for our purposes.

Theorem 4. Let 𝐻 be a 𝑘-edge-colored graph and let 𝜂 be a
function from 𝑉(𝐻) into N such that for each 𝑤 ∈ 𝑉(𝐻),
𝜂(𝑤) = 1 implies 𝑙𝐻(𝑤) = 0. Then there exists a loopless 𝜂-
detachment 𝐺 of 𝐻 with amalgamation function 𝜓 : 𝑉(𝐺) →

𝑉(𝐻), 𝜂 being the number function associatedwith𝜓, such that
𝐺 satisfies the following property:

(i) deg
𝐺[𝑗]

(𝑢) ∈ {⌊deg
𝐻[𝑗]

(𝑤)/𝜂(𝑤)⌋, ⌈deg
𝐻[𝑗]

(𝑤)/𝜂(𝑤)⌉}

for each 𝑤 ∈ 𝑉(𝐻) and each 𝑢 ∈ 𝜓
−1

(𝑤) and each
𝑗 ∈ Z𝑘,

(ii) 𝑚𝐺(𝑢, 𝑢
󸀠
) ∈ {⌊𝑙𝐻(𝑤)/(𝜂(𝑤)(𝜂(𝑤) − 1)/2)⌋, ⌈𝑙𝐻(𝑤)/

(𝜂(𝑤)(𝜂(𝑤)−1)/2)⌉} for each𝑤 ∈ 𝑉(𝐻)with 𝜂(𝑤) ≥ 2

and every pair of distinct vertices 𝑢, 𝑢
󸀠

∈ 𝜓
−1

(𝑤),
(iii) 𝑚𝐺(𝑢, V) ∈ {⌊𝑚𝐻(𝑤, 𝑧)/(𝜂(𝑤)𝜂(𝑧))⌋, ⌈𝑚𝐻(𝑤, 𝑧)/

(𝜂(𝑤)𝜂(𝑧))⌉} for every pair of distinct vertices 𝑤, 𝑧 ∈

𝑉(𝐻), each 𝑢 ∈ 𝜓
−1

(𝑤), and each V ∈ 𝜓
−1

(𝑧).

The following theorem provides a necessary condition for
the existence of fair 2-factorizations of 4𝑘-regular graphs (𝑘 ≥

1). For any graph 𝐺 and any partition 𝑃 of 𝑉(𝐺), let 𝑃(𝐺) be
the 𝜓-amalgamation of 𝐺, where 𝜓 maps two vertices in 𝐺 to
the same vertex in 𝑃(𝐺) if and only if they are in the same
element of 𝑃.

Theorem 5. Let 𝐺 be a 4𝑘-regular graph (𝑘 ≥ 1). Let 𝑃 be any
partition of 𝑉(𝐺). Let 𝐻 = 𝑃(𝐺). Suppose that 𝐺 has a fair
2𝑘-factorization. Then

(1) 𝐻
(2) has no components with an odd number of odd

vertices.

Proof. Suppose that 𝐺 has a fair 2𝑘-factorization. Let 𝐹1 and
𝐹2 be the subgraphs of𝐻 induced by the edges corresponding
to the 2𝑘-factors of 𝐺. Since at each vertex in 𝐻 the number
of edge-ends incident with a vertex is a multiple of 4 and
since these edge-ends are shared evenly among 𝐹1 and 𝐹2,
the number of edge-ends incident with each vertex in 𝐻 in
each of 𝐹1 and 𝐹2 is even. So, by the definition of odd and
even vertices, in 𝐻

(2) an odd vertex is incident with an odd
number of edge-ends in each of 𝐹1 and 𝐹2, and an even vertex
is incident with an even number of edge-ends in each of 𝐹1

and𝐹2. Let𝐶 be a component of𝐻
(2). Clearly∑V∈𝑉(𝐶) deg𝐶(V)

is an even number and

∑

V∈𝑉(𝐶)
deg
𝐶

(V) = ∑

V∈𝑉(𝐶) is odd
deg
𝐶

(V)

+ ∑

V∈𝑉(𝐶) is even
deg
𝐶

(V) ,

(6)
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where∑V∈𝑉(𝐶) is even deg𝐶(V) is an even number and each term
in the summation ∑V∈𝑉(𝐶) is odd deg𝐶(V) is an odd number by
the above observation. Hence the number of odd vertices in
𝑉(𝐶) must be even.

To investigate whether the necessary condition given in
Theorem 5 is also sufficient for a graph to have a fair 2𝑘-
factorization, we introduce the notion of 𝑃-equivalence.

Let 𝐺1 and 𝐺2 be two graphs with 𝑉(𝐺1) = 𝑉(𝐺2) = 𝑉,
and let𝑃 be a partition of𝑉.Then𝐺1 is said to be𝑃-equivalent
to 𝐺2 if for all 𝑉𝑖, 𝑉𝑗 ∈ 𝑃 (possibly 𝑖 = 𝑗) 𝑒(𝐺1(𝑉𝑖, 𝑉𝑗)) =

𝑒(𝐺2(𝑉𝑖, 𝑉𝑗)), where 𝑒(𝐺𝑘(𝑉𝑖, 𝑉𝑗)) denotes the number of
edges in 𝐺𝑘 (for 𝑘 = 1, 2) between the parts 𝑉𝑖 and 𝑉𝑗. So
if 𝐺1 and 𝐺2 are 𝑃-equivalent, then 𝐻 = 𝑃(𝐺1) = 𝑃(𝐺2). If
either 𝐺1 or 𝐺2 has a fair 2𝑘-factorization, then Theorem 5
shows that (1) must be satisfied. To investigate the strength of
(1), Theorem 6 shows that if 𝐺 is a 4-regular graph for which
𝐻
(2)

= 𝑃(𝐺)
(2) satisfies (1), then 𝐺 is 𝑃-equivalent to some

graph (which is simple if a certain necessary condition ismet)
with a fair 2-factorization. Conjecture 7 goes on to make a
much stronger claim that if 𝐺1 is 𝑃-equivalent to 𝐺2, then 𝐺1

has a fair 2𝑘-factorization if and only if 𝐺2 does.

Theorem6. Let𝐺1 be a 4-regular graph. Let𝑃 be any partition
of 𝑉(𝐺1). Let 𝐻 = 𝑃(𝐺1). Suppose 𝐻

(2) has no components
with an odd number of odd vertices. Then there exists a graph
𝐺2 such that

(i) 𝑉(𝐺1) = 𝑉(𝐺2),

(ii) 𝐺2 is 𝑃-equivalent to 𝐺1,

(iii) 𝐺2 has a fair 2-factorization (with respect to the given
partition 𝑃),

(iv) 𝐺2 can be chosen to be simple if and only if for all
𝑉𝑖, 𝑉𝑗 ∈ 𝑃, 𝑒(𝑉𝑖, 𝑉𝑗) ≤ |𝑉𝑖||𝑉𝑗| if 𝑖 ̸= 𝑗, and 𝑒(𝑉𝑖, 𝑉𝑗) ≤

|𝑉𝑖|(|𝑉𝑖| − 1)/2 if 𝑖 = 𝑗.

Note that it is long known by Petersen’s 2-factor the-
orem (see, e.g., [14]) that every 2𝑘-regular graph has a 2-
factorization. The importance of Theorem 6 is that if the
condition of the theorem is satisfied, then regardless of the
partition 𝑃 that is chosen, the resulting factorization of 𝐺2

(formed with 𝑃 in mind) is fair.

Proof. By the supposition 𝐻
(2) has no components with an

odd number of odd vertices. Clearly 𝐻 is even since 𝐺1 is
even. So 𝐻 satisfies the conditions of Corollary 3 and hence
it has an evenly-equitable, balanced 2-edge-coloring. By the
evenly-equitable property of this 2-edge-coloring, each color
appears on exactly half of the edge-ends incident with each
vertex of 𝐻 (a loop contributes two edge-ends to the incident
vertex). Notice that 𝐻 is the 𝜓-amalgamation of 𝐺1 where
𝜓(V1) = 𝜓(V2) if and only if V1 and V2 are in the same element
of 𝑃. For each V ∈ 𝑉(𝐻) define 𝜂(V) = deg

𝐻
(V)/4 = |𝜓

−1
(V)|.

By (i) of Theorem 4, there exists an 𝜂-detachment 𝐺2 of 𝐻

such that

(1) 𝐺2 is 𝑃-equivalent to 𝐺1,

(2) for each vertex V of 𝐻 the edges of each color incident
with V are shared as evenly as possible among the ver-
tices in 𝜓

−1
(V) (i.e., the vertices in the corresponding

part of 𝐺2).

Note that, by (ii) and (iii) of Theorem 4, 𝐺2 will be simple if
for all 𝑉𝑖, 𝑉𝑗 ∈ 𝑃, 𝑒(𝑉𝑖, 𝑉𝑗) ≤ |𝑉𝑖||𝑉𝑗| if 𝑖 ̸= 𝑗, and 𝑒(𝑉𝑖, 𝑉𝑗) ≤

|𝑉𝑖|(|𝑉𝑖| − 1)/2 if 𝑖 = 𝑗. Clearly these are necessary conditions
if the 𝜂-detachment of 𝐻 is to be simple.

By (2), in 𝐺2 each color is on two edges incident with
each vertex. So, in 𝐺2 the subgraph induced by the edges
of each color is a 2-factor, and hence this 2-edge-coloring
is a 2-factorization of 𝐺2. The fairness of this 2-factorization
follows from the following observation:There is a one-to-one
correspondence between the edges colored 𝑐 joining any pair
of vertices 𝑢 and 𝑤 in 𝐻 and the edges colored 𝑐 between
the two corresponding parts 𝜓

−1
(𝑢) and 𝜓

−1
(𝑤) of 𝐺2. So,

the balanced property of this 2-edge-coloring implies the
required fairness property of the 2-factorization.

In the light of Theorems 5 and 6 we make the following
conjecture.

Conjecture 7. Let 𝐺 be a 4𝑘-regular graph (𝑘 ≥ 1). Let 𝑃 be
any partition of 𝑉(𝐺). Let 𝐻 = 𝑃(𝐺). Suppose 𝐻

(2) has no
components with an odd number of odd vertices. Then 𝐺 has a
fair 2𝑘-factorization.

4. Other Combinations of Requirements

As described in the introduction we now consider other
combinations of edge-coloring properties in turn.The results
in this section are straight forward to obtain but are reported
here for completeness.

(𝑃1) Evenly-equitable, balanced, and equalized: as is
discussed below, the examples in Figure 1 show that there
are graphs which have an even, balanced, equalized 2-edge-
coloring, but no 2-edge-coloring that is evenly-equitable and
equalized. So, for each positive integer 𝑘, no matter which
combination of the conditions on the existence of an even
𝑘-edge-coloring, balanced 𝑘-edge-coloring and equalized 𝑘-
edge-coloring of a graph 𝐺 is used, it is not possible to
guarantee that 𝐺 has a 𝑘-edge-coloring which is evenly-
equitable, balanced, and equalized.

A graph is said to be of color-type 1 if it is connected and
simple and has an even, equalized 2-edge-coloring but has
no evenly-equitable, equalized 2-edge-coloring.Note that any
edge-coloring of a color-type 1 graph is balanced because it
is simple. In 𝐺1 there are two 3-cycles that intersect in just
the top vertex; color the six edges in these 3-cycles with color
0 and color the remaining edges with color 1 to produce
an even, balanced, equalized 2-edge-coloring. 𝐺1 does not
have an evenly-equitable, equalized 2-edge-coloring, since in
every evenly-equitable 2-edge-coloring one color class must
be 2-regular and spanning and so has 7 edges. So, 𝐺1 is of
color-type 1. In fact, a basic search shows that there is no
color-type 1 graph with fewer vertices nor one on 7 vertices
with less than 12 edges.
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(a) 𝐺1: A vertex-
minimum example

(b) 𝐺2: An edge-minimum example

Figure 1: Examples of graphs that are not of color-type 1.

Table 1

𝐺 has an even,
balanced, equalized
𝑘-edge-coloring for
each positive integer 𝑘

󴁁󴁙󴀡

by (𝑃1)

𝐺 has an
evenly-equitable,
equalized
𝑘-edge-coloring for each
positive integer 𝑘

𝐺 has an even,
balanced
𝑘-edge-coloring for
each positive integer 𝑘

⇔

byTheorem 1

𝐺 has an
evenly-equitable,
balanced
𝑘-edge-coloring for each
positive integer 𝑘

𝐺 is any graph ⇒

byTheorem 8

𝐺 has a balanced,
equalized
𝑘-edge-coloring for each
positive integer 𝑘

𝐺 is even ⇒

byTheorem 9

𝐺 has an
evenly-equitable
𝑘-edge-coloring for each
positive integer 𝑘

In 𝐺2 the six edges of the two 3-cycles can be colored
with color 0 and the edges of the 5-cycle with color 1, thereby
producing an even, balanced, equalized 2-edge-coloring.
𝐺2 does not have an evenly-equitable, equalized 2-edge-
coloring, since the only evenly-equitable 2-edge-coloring has
one color class consisting of the three edges in the middle 3-
cycle. So, 𝐺2 is of color-type 1. In fact, another basic search
shows that there is no color-type 1 graph with fewer edges
nor one with 11 edges on less than 9 vertices.

Note that 𝐺2 suggests a way to construct infinitely many
color-type 1 graphs: Take any cycle of length 𝑎 as the middle
cycle, attach to it a cycle of length 𝑏 on the left and a cycle of
length 𝑐 on the right where 𝑐 ∈ {𝑎 + 𝑏 − 1, 𝑎 + 𝑏, 𝑎 + 𝑏 + 1}, and
𝑎, 𝑏, 𝑐 ≥ 3.

Since we cannot guarantee the existence of an evenly-
equitable, balanced, and equalized 𝑘-edge-coloring of a graph
𝐺, even with the strong assumption that 𝐺 has a 𝑘-edge-
coloring which is even, balanced, and equalized, we focus
our attention on conditions implying the existence of 𝑘-
edge-colorings that are (𝑃2) evenly-equitable and equalized,
(𝑃3) balanced and equalized, (𝑃4) evenly-equitable, (𝑃5) bal-
anced, and (𝑃6) equalized; evenly-equitable, balanced edge-
colorings are the focus of Section 2.

(𝑃2) Evenly-equitable and equalized: the examples in
Figure 1 show that even with the strong assumption that a
graph 𝐺 has an even, balanced, equalized 𝑘-edge-coloring,
𝐺 does not necessarily have an evenly-equitable, equalized
𝑘-edge-coloring; characterizations of graphs with such edge-
colorings would seem to be difficult to find.

(𝑃3) Balanced and equalized: such edge-colorings are
always easy to find as is stated in the following theorem.

Theorem 8. For each positive integer 𝑘, each graph has a
balanced, equalized 𝑘-edge-coloring.

Proof. Let 𝐺 be a graph with 𝑚 edges (loops, being special
types of edges, are also included in this count). Form
an ordering (𝑒1, 𝑒2, . . . , 𝑒𝑚) of the edges of 𝐺 where loops
incident with the same vertex appear consecutively in the list,
as do the edges joining the same pair of vertices. For 1 ≤ 𝑖 ≤ 𝑚

color 𝑒𝑖 with 𝑖 (modulo 𝑘). This 𝑘-edge-coloring is clearly
balanced and equalized.

(𝑃4) Evenly-equitable: Hilton proved the following theo-
rem in [5].

Theorem 9. For each 𝑘 ≥ 1, each even graph 𝐺 has an evenly-
equitable 𝑘-edge-coloring.

Note that the condition that 𝐺 is even is clearly necessary.
(𝑃5) Balanced: by Theorem 8 for each positive integer 𝑘,

any graph 𝐺 has a balanced 𝑘-edge-coloring.
(𝑃6) Equalized: by Theorem 8 for each positive integer 𝑘,

any graph 𝐺 has an equalized 𝑘-edge-coloring.
The discussion above leads to the chart in Table 1.
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