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In the framework of microscopic theory of black hole (MTBH), which explores the most important processes of rearrangement
of vacuum state and spontaneous breaking of gravitation gauge symmetry at huge energies, we have undertaken a large series of
numerical simulations with the goal to trace an evolution of themass assembly history of 377 plausible accreting supermassive black
hole seeds in active galactic nuclei (AGNs) to the present time and examine the observable signatures today. Given the redshifts,
masses, and luminosities of these black holes at present time collected from the literature, we compute the initial redshifts and
masses of the corresponding seed black holes. For the present masses𝑀BH/𝑀⊙

≃ 1.1 × 10
6 to 1.3 × 1010 of 377 black holes, the

computed intermediate seedmasses are ranging from𝑀Seed
BH /𝑀⊙

≃ 26.4 to 2.9×105. We also compute the fluxes of ultrahigh energy
(UHE) neutrinos produced via simple or modified URCA processes in superdense protomatter nuclei. The AGNs are favored as
promising pure UHE neutrino sources, because the computed neutrino fluxes are highly beamed along the plane of accretion disk,
peaked at high energies, and collimated in smaller opening angle (𝜃 ≪ 1).

1. Introduction

With typical bolometric luminosities ∼1045−48 erg s−1, the
AGNs are amongst the most luminous emitters in the uni-
verse, particularly at high energies (gamma-rays) and radio
wavelengths. From its historical development, up to current
interests, the efforts in theAGNphysics have evoked the study
of a major unsolved problem of how efficiently such huge
energies observed can be generated.This energy scale severely
challenges conventional source models. The huge energy
release from compact regions of AGN requires extremely
high efficiency (typically ≥10 per cent) of conversion of rest
mass to other forms of energy. This serves as the main
argument in favour of supermassive black holes, with masses
of millions to billions of times the mass of the Sun, as central
engines ofmassive AGNs.The astrophysical black holes come
in a wide range of masses, from ≥3𝑀

⊙
for stellar mass black

holes [1] to ∼1010𝑀
⊙
for supermassive black holes [2, 3].

Demography of local galaxies suggests that most galaxies
harbour quiescent supermassive black holes in their nuclei
at the present time and that the mass of the hosted black
hole is correlated with properties of the host bulge. The

visible universe should therefore contain at least 100 billion
supermassive black holes. A complex study of evolution of
AGNs requires an answer to the key questions such as howdid
the first black holes form, how did massive black holes get to
the galaxy centers, and how did they grow in accreting mass,
namely, an understanding of the important phenomenon of
mass assembly history of accreting supermassive black hole
seeds. The observations support the idea that black holes
grow in tandem with their hosts throughout cosmic history,
starting from the earliest times. While the exact mechanism
for the formation of the first black holes is not currently
known, there are several prevailing theories [4]. However,
each proposal towards formation and growth of initial seed
black holes has its own advantage and limitations in proving
the whole view of the issue. In this report we review the mass
assembly history of 377 plausible accreting supermassive
black hole seeds in AGNs and their neutrino radiation in
the framework of gravitation theory, which explores themost
important processes of rearrangement of vacuum state and
a spontaneous breaking of gravitation gauge symmetry at
huge energies. We will proceed according to the following
structure.Most observational, theoretical, and computational
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aspects of the growth of black hole seeds are summarized
in Section 2. The other important phenomenon of ultrahigh
energy cosmic rays, in relevance to AGNs, is discussed in
Section 3. The objectives of suggested approach are outlined
in Section 4. In Section 5 we review the spherical accretion
on superdense protomatter nuclei, in use. In Section 6 we
discuss the growth of the seed black hole at accretion and
derive its intermediate mass, initial redshift, and neutrino
preradiation time (PRT). Section 7 is devoted to the neutrino
radiation produced in superdense protomatter nuclei. The
simulation results of the seed black hole intermediate masses,
PRTs, seed redshifts, and neutrino fluxes for 377 AGN black
holes are brought in Section 8. The concluding remarks are
given in Section 9. We will refrain from providing lengthy
details of the proposed gravitation theory at huge energies
and neutrino flux computations. For these the reader is
invited to visit the original papers and appendices of the
present paper. In the latter we also complete the spacetime
deformation theory, in the model context of gravitation, by
new investigation of building up the complex of distortion
(DC) of spacetime continuum and showing how it restores
the world-deformation tensor, which still has been put in by
hand. Finally, note that we regard the considered black holes
only as the potential neutrino sources. The obtained results,
however, may suffer if not all live black holes at present reside
in final stage of their growth driven by the formation of
protomatter disk at accretion and they radiate neutrino. We
often suppress the indices without notice. Unless otherwise
stated, we take geometrized units throughout this paper.

2. A Breakthrough in Observational and
Computational Aspects on Growth of Black
Hole Seeds

Significant progress has been made in the last few years in
understanding how supermassive black holes form and grow.
Given the currentmasses of 106−9𝑀

⊙
, most black hole growth

happens in the AGN phase. A significant fraction of the total
black hole growth, 60% [6], happens in the most luminous
AGN, quasars. In an AGN phase, which lasts ∼108 years, the
central supermassive black hole can gain up to ∼107−8𝑀

⊙
,

so even the most massive galaxies will have only a few of
these events over their lifetime. Aforesaid gathers support
especially from a breakthroughmade in recent observational,
theoretical, and computational efforts in understanding of
evolution of black holes and their host galaxies, particularly
through self-regulated growth and feedback from accretion-
powered outflows; see, for example, [4, 7–18]. Whereas the
multiwavelength methods are used to trace the growth of
seed BHs, the prospects for future observations are reviewed.
The observations provide strong support for the existence
of a correlation between supermassive black holes and their
hosts out to the highest redshifts. The observations of the
quasar luminosity function show that the most supermassive
black holes get most of their mass at high redshift, while
at low redshift only low mass black holes are still growing
[19]. This is observed in both optical [20] and hard X-
ray luminosity functions [19, 21], which indicates that this

result is independent of obscuration. Natarajan [13] has
reported that the initial black hole seeds form at extremely
high redshifts from the direct collapse of pregalactic gas
discs. Populating dark matter halos with seeds formed in
this fashion and using a Monte-Carlo merger tree approach,
he has predicted the black hole mass function at high
redshifts and at the present time. The most aspects of the
models that describe the growth and accretion history of
supermassive black holes and evolution of this scenario have
been presented in detail by [9, 10]. In these models, at early
times the properties of the assembling black hole seeds are
more tightly coupled to properties of the dark matter halo
as their growth is driven by the merger history of halos.
While a clear picture of the history of black hole growth is
emerging, significant uncertainties still remain [14], and in
spite of recent advances [6, 13], the origin of the seed black
holes remains an unsolved problem at present. The NuSTAR
deep high-energy observations will enable obtaining a nearly
complete AGN survey, including heavily obscured Compton-
thick sources, up to 𝑧 ∼ 1.5 [22]. A similar mission, ASTRO-
H [23], will be launched by Japan in 2014.These observations
in combination with observations at longer wavelengths will
allow for the detection and identification of most growing
supermassive black holes at 𝑧 ∼ 1. The ultradeep X-ray and
near-infrared surveys covering at least ∼1 deg2 are required
to constrain the formation of the first black hole seeds. This
will likely require the use of the next generation of space-
based observatories such as the James Webb Space Telescope
and the International X-ray Observatory. The superb spatial
resolution and sensitivity of the Atacama Large Millimeter
Array (ALMA) [24] will revolutionize our understanding of
galaxy evolution. Combining these new data with existing
multiwavelength information will finally allow astrophysi-
cists to pave the way for later efforts by pioneering some of
the census of supermassive black hole growth, in use today.

3. UHE Cosmic-Ray Particles

The galactic sources like supernova remnants (SNRs) or
microquasars are thought to accelerate particles at least up
to energies of 3 × 1015 eV. The ultrahigh energy cosmic-
ray (UHECR) particles with even higher energies have since
been detected (comprehensive reviews can be found in [25–
29]). The accelerated protons or heavier nuclei up to energies
exceeding 1020 eV are firstly observed by [30]. The cosmic-
ray events with the highest energies so far detected have
energies of 2 × 1011 GeV [31] and 3 × 1011 GeV [32]. These
energies are 107 times higher than the most energetic man-
made accelerator, the LHC at CERN. These highest energies
are believed to be reached in extragalactic sources like AGNs
or gamma-ray bursts (GRBs). During propagation of such
energetic particles through the universe, the threshold for
pion photoproduction on the microwave background is ∼2
× 1010 GeV, and at ∼3 × 1011 GeV the energy-loss distance is
about 20Mpc. Propagation of cosmic rays over substantially
larger distances gives rise to a cutoff in the spectrum at ∼
1011 GeV as was first shown by [33, 34], the GZK cutoff.
The recent confirmation [35, 36] of GZK suppression in the
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cosmic-ray energy spectrum indicates that the cosmic rays
with energies above the GZK cutoff, 𝐸GZK ∼ 40EeV, mostly
come from relatively close (within the GZK radius, 𝑟GZK ∼
100Mpc) extragalactic sources. However, despite the detailed
measurements of the cosmic-ray spectrum, the identification
of the sources of the cosmic-ray particles is still an open
question as they are deflected in the galactic and extragalactic
magnetic fields and hence have lost all information about
their originwhen reaching Earth. Only at the highest energies
beyond ∼1019.6 GeV cosmic-ray particles may retain enough
directional information to locate their sources. The latter
must be powerful enough to sustain the energy density in
extragalactic cosmic rays of about 3×10−19 erg cm−3 which is
equivalent to∼8× 1044 ergMpc−3 yr−1.Though it has not been
possible up to now to identify the sources of galactic or extra-
galactic cosmic rays, general considerations allow limiting
potential source classes. For example, the existing data on the
cosmic-ray spectrum and on the isotropic 100MeV gamma-
ray background limit significantly the parameter space in
which topological defects can generate the flux of the highest
energy cosmic rays and rule out models with the standard
X-particle mass of 1016 GeV and higher [37]. Eventually, the
neutrinos will serve as unique astronomical messengers, and
they will significantly enhance and extend our knowledge
on galactic and extragalactic sources of the UHE universe.
Indeed, except for oscillations induced by transit in a vacuum
Higgs field, neutrinos can penetrate cosmological distances
and their trajectories are not deflected by magnetic fields
as they are neutral, providing powerful probes of high
energy astrophysics in ways which no other particle can.
Moreover, the flavor composition of neutrinos originating at
astrophysical sources can serve as a probe of new physics
in the electroweak sector. Therefore, an appealing possibility
among the various hypotheses of the origin of UHECR is
so-called Z-burst scenario [38–51]. This suggests that if ZeV
astrophysical neutrino beam is sufficiently strong, it can
produce a large fraction of observed UHECR particles within
100Mpc by hitting local light relic neutrinos clustered in dark
halos and form UHECR through the hadronic Z (s-channel
production) andW-bosons (t-channel production) decays by
weak interactions. The discovery of UHE neutrino sources
would also clarify the productionmechanism of the GeV-TeV
gamma rays observed on Earth [43, 52, 53] as TeV photons
are also produced in the up-scattering of photons in reactions
to accelerated electrons (inverse-Compton scattering). The
direct link between TeV gamma-ray photons and neutrinos
through the charged and neutral pion production, which is
well known from particle physics, allows for a quite robust
prediction of the expected neutrino fluxes provided that
the sources are transparent and the observed gamma rays
originate from pion decay. The weakest link in the Z-burst
hypothesis is probably both unknown boosting mechanism
of the primary neutrinos up to huge energies of hundreds
ZeV and their large flux required at the resonant energy 𝐸] ≃
𝑀

2

𝑍
/(2𝑚]) ≃ 4.2 × 10

21 eV (eV/𝑚]) well above the GZK
cutoff. Such a flux severely challenges conventional source
models. Any concomitant photon flux should not violate
existing upper limits [37, 48, 49, 54]. The obvious question is

then raised: where in the Cosmos are these neutrinos coming
from? It turns out that currently, at energies in excess of
10

19 eV, there are only two good candidate source classes for
UHE neutrinos: AGNs and GRBs. The AGNs as significant
point sources of neutrinos were analyzed in [50, 55, 56].
While hard to detect, neutrinos have the advantage of repre-
senting aforesaid unique fingerprints of hadron interactions
and, therefore, of the sources of cosmic rays. Two basic
event topologies can be distinguished: track-like patterns of
detected Cherenkov light (hits) which originate from muons
produced in charged-current interactions of muon neutrinos
(muon channel); spherical hit patterns which originate from
the hadronic cascade at the vertex of neutrino interactions
or the electromagnetic cascade of electrons from charged-
current interactions of electron neutrinos (cascade channel).
If the charged-current interaction happens inside the detector
or in case of charged-current tau-neutrino interactions, these
two topologies overlap which complicates the reconstruc-
tion. At the relevant energies, the neutrino is approximately
collinear with the muon and, hence, the muon channel is
the prime channel for the search for point-like sources of
cosmic neutrinos. On the other hand, cascades deposit all
of their energy inside the detector and therefore allow for
a much better energy reconstruction with a resolution of a
few 10%. Finally, numerous reports are available at present
in literature on expected discovery potential and sensitivity
of experiments to neutrino point-like sources. Currently
operating high energy neutrino telescopes attempt to detect
UHE neutrinos, such as ANTARES [57, 58] which is themost
sensitive neutrino telescope in theNorthernHemisphere, Ice-
Cube [35, 59–64] which is worldwide largest and hence most
sensitive neutrino telescope in the Southern Hemisphere,
BAIKAL [65], as well as the CR extended experiments ofThe
Telescope Array [66], Pierre Auger Observatory [67, 68], and
JEM-EUSO mission [69]. The JEM-EUSO mission, which
is planned to be launched by a H2B rocket around 2015-
2016, is designed to explore the extremes in the universe and
fundamental physics through the detection of the extreme
energy (𝐸 > 10

20 eV) cosmic rays. The possible origins
of the soon-to-be famous 28 IceCube neutrino-PeV events
[59–61] are the first hint for astrophysical neutrino signal.
Aartsen et al. have published an observation of two ∼1 PeV
neutrinos, with a 𝑃 value 2.8𝜎 beyond the hypothesis that
these events were atmospherically generated [59]. The anal-
ysis revealed an additional 26 neutrino candidates depositing
“electromagnetic equivalent energies” ranging from about
30 TeV up to 250 TeV [61]. New results were presented at the
IceCube Particle Astrophysics Symposium (IPA 2013) [62–
64]. If cosmic neutrinos are primarily of extragalactic origin,
then the 100GeV gamma ray flux observed by Fermi-LAT
constrains the normalization at PeV energies at injection,
which in turn demands a neutrino spectral index Γ < 2.1 [70].

4. MTBH, Revisited: Preliminaries

For the benefit of the reader, a brief outline of the key ideas
behind the microscopic theory of black hole, as a guiding
principle, is given in this section to make the rest of the
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paper understandable. There is a general belief reinforced by
statements in textbooks that, according to general relativity
(GR), a long-standing standard phenomenological black hole
model (PBHM)—namely, the most general Kerr-Newman
black hole model, with parameters of mass (𝑀), angular
momentum (𝐽), and charge (𝑄), still has to be put in by
hand—can describe the growth of accreting supermassive
black hole seed. However, such beliefs are suspect and should
be critically reexamined. The PBHM cannot be currently
accepted as convincing model for addressing the afore-
mentioned problems, because in this framework the very
source of gravitational field of the black hole is a kind of
curvature singularity at the center of the stationary black
hole. A meaningless central singularity develops which is
hidden behind the event horizon. The theory breaks down
inside the event horizon which is causally disconnected from
the exterior world. Either the Kruskal continuation of the
Schwarzschild (𝐽 = 0, 𝑄 = 0) metric, or the Kerr (𝑄 = 0)
metric, or the Reissner-Nordstrom (𝐽 = 0) metric, shows
that the static observers fail to exist inside the horizon.
Any object that collapses to form a black hole will go on
to collapse to a singularity inside the black hole. Thereby
any timelike worldline must strike the central singularity
which wholly absorbs the infalling matter. Therefore, the
ultimate fate of collapsing matter once it has crossed the
black hole surface is unknown. This, in turn, disables any
accumulation of matter in the central part and, thus, neither
the growth of black holes nor the increase of their mass-
energy density could occur at accretion of outside matter,
or by means of merger processes. As a consequence, the
mass and angular momentum of black holes will not change
over the lifetime of the universe. But how can one be sure
that some hitherto unknown source of pressure does not
become important at huge energies and halt the collapse? To
fill the voidwhich the standard PBHMpresents, one plausible
idea to innovate the solution to alluded key problems would
appear to be the framework of microscopic theory of black
hole. This theory has been originally proposed by [71] and
references therein and thoroughly discussed in [72–75].
Here we recount some of the highlights of the MTBH,
which is the extension of PBHM and rather completes it by
exploring the most important processes of rearrangement
of vacuum state and a spontaneous breaking of gravitation
gauge symmetry at huge energies [71, 74, 76]. We will not
be concerned with the actual details of this framework but
only use it as a backdrop to validate the theory with some
observational tests. For details, the interested reader is invited
to consult the original papers. Discussed gravitational theory
is consistent with GR up to the limit of neutron stars. But
this theory manifests its virtues applied to the physics of
internal structure of galactic nuclei. In the latter a significant
change of properties of spacetime continuum, so-called
inner distortion (ID), arises simultaneously with the strong
gravity at huge energies (see Appendix A). Consequently the
matter undergoes phase transition of second kind, which
supplies a powerful pathway to form a stable superdense
protomatter core (SPC) inside the event horizon. Due to this,
the stable equilibrium holds in outward layers too and, thus,
an accumulation of matter is allowed now around the SPC.

The black hole models presented in phenomenological and
microscopic frameworks have been schematically plotted in
Figure 1, to guide the eye. A crucial point of the MTBH is
that a central singularity cannot occur, which is now replaced
by finite though unbelievably extreme conditions held in the
SPC, where the static observers existed. The SPC surrounded
by the accretion disk presents the microscopic model of
AGN.The SPC accommodates the highest energy scale up to
hundreds of ZeV in central protomatter core which accounts
for the spectral distribution of the resulting radiation of
galactic nuclei. External physics of accretion onto the black
hole in earlier part of its lifetime is identical to the processes
in Schwarzschild’s model. However, a strong difference in
the model context between the phenomenological black hole
and the SPC is arising in the second part of its lifetime
(see Section 6). The seed black hole might grow up driven
by the accretion of outside matter when it was getting
most of its mass. An infalling matter with time forms the
protomatter disk around the protomatter core tapering off
faster at reaching out the thin edge of the event horizon. At
this, metric singularity inevitably disappears (see appendices)
and the neutrinos may escape through vista to outside
world, even after the neutrino trapping. We study the growth
of protomatter disk and derive the intermediate mass and
initial redshift of seed black hole and examine luminosities,
neutrino surfaces for the disk. In this framework, we have
computed the fluxes of UHE neutrinos [75], produced in the
mediumof the SPC via simple (quark and pionic reactions) or
modified URCA processes, even after the neutrino trapping
(G. Gamow was inspired to name the process URCA after
the name of a casino in Rio de Janeiro, when M. Schenberg
remarked to him that “the energy disappears in the nucleus
of the supernova as quickly as the money disappeared at that
roulette table”). The “trapping” is due to the fact that as
the neutrinos are formed in protomatter core at superhigh
densities they experience greater difficulty escaping from the
protomatter core before being dragged along with thematter;
namely, the neutrinos are “trapped” comove with matter.
The part of neutrinos annihilates to produce, further, the
secondary particles of expected ultrahigh energies. In this
model, of course, a key open question is to enlighten the
mechanisms that trigger the activity, and how a large amount
ofmatter can be steadily funneled to the central regions to fuel
this activity. In high luminosity AGNs the large-scale internal
gravitational instabilities drive gas towards the nucleus which
trigger big starbursts, and the coeval compact cluster just
formed. It seemed they have some connection to the nuclear
fueling through mass loss of young stars as well as their tidal
disruption and supernovae. Note that we regard the UHECR
particles as a signature of existence of superdence protomatter
sources in the universe. Since neutrino events are expected to
be of sufficient intensity, our estimates can be used to guide
investigations of neutrino detectors for the distant future.

5. Spherical Accretion onto SPC

As alluded to above, the MTBH framework supports the idea
of accreting supermassive black holes which link to AGNs.
In order to compute the mass accretion rate �̇�, in use, it is
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Figure 1: (a) The phenomenological model of AGN with the central stationary black hole. The meaningless singularity occurs at the center
inside the black hole. (b) The microscopic model of AGN with the central stable SPC. In due course, the neutrinos of huge energies may
escape through the vista to outside world. Accepted notations: EH = event horizon, AD = accretion disk, SPC = superdense protomatter core,
PC = protomatter core.

necessary to study the accretion onto central supermassive
SPC. The main features of spherical accretion can be briefly
summed up in the following three idealized models that
illustrate some of the associated physics [72].

5.1. Free Radial Infall. We examine the motion of freely
moving test particle by exploring the external geometry of the
SPC, with the line element (A.7), at 𝑥 = 0. Let us denote the 4-
vector of velocity of test particle V𝜇 = 𝑑�̃�𝜇/𝑑�̃�, �̃�𝜇 = (̃𝑡, �̃�, �̃�, �̃�),
and consider it initially for simplest radial infall V2 = V3 =
0. We determine the value of local velocity V�̂� < 0 of the
particle for the moment of crossing the EH sphere, as well as
at reaching the surface of central stable SPC. The equation of
geodesics is derived from the variational principle 𝛿 ∫ 𝑑𝑆 = 0,
which is the extremum of the distance along the wordline for
the Lagrangian at hand

2𝐿 = (1 − 𝑥
0
)
2 ̇̃
𝑡
2

− (1 + 𝑥
0
)
2 ̇̃𝑟

2

− �̃�
2sin2�̃� ̇̃𝜑2 − �̃�2 ̇̃𝜃

2

, (1)

where ̇̃𝑡 ≡ 𝑑 �̃�/𝑑𝜆 is the 𝑡-component of 4-momentum and 𝜆
is the affine parameter along the worldline. We are using an
affine parametrization (by a rescaling 𝜆 → 𝜆(𝜆


)) such that

𝐿 = const is constant along the curve. A static observermakes
measurements with local orthonormal tetrad:

⃗𝑒
�̂�
=
1 − 𝑥0



−1

⃗𝑒
𝑡
, ⃗𝑒

�̂�
= (1 + 𝑥

0
)
−1

⃗𝑒
𝑟
,

⃗𝑒
�̂�
= �̃�

−1
⃗𝑒
𝜃
, ⃗𝑒

�̂�
= (�̃� sin �̃�)

−1

⃗𝑒
𝜃
.

(2)

The Euler-Lagrange equations for �̃�, �̃�, and �̃� can be derived
from the variational principle. A local measurement of the
particle’s energy made by a static observer in the equatorial
plane gives the time component of the 4-momentum as
measured in the observer’s local orthonormal frame. This

is the projection of the 4-momentum along the time basis
vector. The Euler-Lagrange equations show that if we orient
the coordinate system as initially the particle is moving in the
equatorial plane (i.e., �̃� = 𝜋/2, ̇̃𝜃 = 0), then the particle always
remains in this plane. There are two constants of the motion
corresponding to the ignorable coordinates �̃� and �̃�, namely,
the 𝐸-“energy-at-infinity” and the 𝑙-angular momentum. We
conclude that the free radial infall of a particle from the
infinity up to the moment of crossing the EH sphere, as
well as at reaching the surface of central body, is absolutely
the same as in the Schwarzschild geometry of black hole
(Figure 2(a)). We clear up a general picture of orbits just
outside the event horizon by considering the Euler-Lagrange
equation for radial component with “effective potential.” The
circular orbits are stable if𝑉 is concave up, namely, at �̃� > 4�̃�,
where �̃� is the mass of SPC. The binding energy per unit
mass of a particle in the last stable circular orbit at �̃� = 4�̃�
is �̃�bind = (𝑚 − 𝐸)/�̃� ≃ 1 − (27/32)

1/2. Namely, this is
the fraction of rest-mass energy released when test particle
originally at rest at infinity spirals slowly toward the SPC to
the innermost stable circular orbit and then plunges into it.
Thereby one of the important parameters is the capture cross
section for particles falling in from infinity: 𝜎capt = 𝜋𝑏

2

max,
where 𝑏max is the maximum impact parameter of a particle
that is captured.

5.2. Collisionless Accretion. The distribution function for a
collisionless gas is determined by the collisionless Boltzmann
equation or Vlasov equation. For the stationary and spherical
flow we obtain then

�̇� (𝐸 > 0) = 16𝜋 (𝐺�̃�)
2

𝜌
∞
V−1
∞
𝑐
−2
, (3)
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Figure 2: (a) The free radial infall of a particle from the infinity to EH sphere (𝑥
0
= 1), which is similar to the Schwarzschild geometry of

BH. Crossing the EH sphere, a particle continues infall reaching finally the surface (𝑥
0
= 2) of the stable SPC. (b) Approaching the EH sphere

(𝑥
0
= 1), the particle concentration increases asymptotically until the threshold value of protomatter. Then, due to the action of cutoff effect,

the metric singularity vanishes and the particles well pass EH sphere.

where the particle density 𝜌
∞

is assumed to be uniform at
far from the SPC and the particle speed is V

∞
≪ 1. During

the accretion process the particles approaching the EH
become relativistic. Approaching event horizon, the particle
concentration increases asymptotically as (�̃�(�̃�)/𝑛

∞
)
𝑥0→1

≈

−(ln �̃�
00
)/2 V

∞
, up to the ID threshold value �̃�

𝑑
(�̃�)

−1/3
=

0.4 fm (Figure 2(b)). Due to the action of cutoff effect, the
metric singularity then vanishes and the particles well pass
EH sphere (𝑥

0
= 1) and in the sequel form the protomatter

disk around the protomatter core.

5.3. Hydrodynamic Accretion. For real dynamical conditions
found in considered superdense medium, it is expected that
themean free path for collisionswill bemuch shorter than the
characteristic length scale; that is, the accretion of ambient
gas onto a stationary, nonrotating compact SPC will be
hydrodynamical in nature. For any equation of state obeying
the causality constraint the sound speed implies 𝑎2 < 1 and
the flowmust pass through a critical sonic point 𝑟

𝑠
outside the

event horizon. The locally measured particle velocity reads
V�̂� = (1 − �̃�

00
/𝐸

2
), where 𝐸 = 𝐸

∞
/𝑚 = (�̃�

00
/(1 − 𝑢

2
))
1/2 and

𝐸
∞

is the energy at infinity of individual particle of the mass
𝑚.Thus, the proper flow velocity V�̂� = 𝑢 → 0 and is subsonic.
At �̃� = 𝑅

𝑔
/2, the proper velocity equals the speed of light

|V�̂�| = 𝑢 = 1 > 𝑎 and the flow is supersonic. This condition
is independent of the magnitude of 𝑢 and is not sufficient by
itself to guarantee that the flow passes through a critical point
outside EH. For large �̃� ≥ 𝑟

𝑠
, it is expected that the particles be

nonrelativistic with 𝑎 ≤ 𝑎
𝑠
≪ 1 (i.e., 𝑇 ≪ 𝑚𝑐2/𝐾 = 1013𝐾),

as they were nonrelativistic at infinity (𝑎
∞
≪ 1). Considering

the equation of accretion onto superdense protomatter core,
which is an analogue of Bondi equations for spherical, steady-
state adiabatic accretion onto the SPC, we determine a mass
accretion rate

�̇� = 2𝜋𝑚𝑛
𝑠
𝑟
5/2

𝑠
(ln �̃�

00
)


𝑠
, (4)

where prime ()
𝑠
denotes differentiation with respect to �̃� at

the point 𝑟
𝑠
. The gas compression can be estimated as

�̃�

𝑛
∞

≈
𝑟
5/2

𝑠

2𝑟2
[
(ln �̃�

00
)


𝑠

1 + �̃�
𝑟𝑟
(�̃�)
]

1/2

. (5)

The approximate equality between the sound speed and the
mean particle speed implies that the hydrodynamic accretion
rate is larger than the collisionless accretion rate by the large
factor ≈109.

6. The Intermediate Mass, PRT, and Initial
Redshift of Seed Black Hole

The key objectives of the MTBH framework are then an
increase of the mass, 𝑀Seed

BH , gravitational radius, 𝑅Seed
𝑔

, and
of the seed black hole, BHSeed, at accretion of outside matter.
Thereby an infalling matter forms protomatter disk around
protomatter core tapering off faster at reaching the thin edge
of event horizon. So, a practical measure of growth BHSeed

→

BH may most usefully be the increase of gravitational radius
or mass of black hole:

Δ𝑅
𝑔
= 𝑅

BH
𝑔
− 𝑅

Seed
𝑔
=
2𝐺

𝑐2
𝑀

𝑑
=
2𝐺

𝑐2
𝜌
𝑑
𝑉
𝑑
,

Δ𝑀BH = 𝑀BH −𝑀
Seed
BH = 𝑀

Seed
BH
Δ𝑅

𝑔

𝑅Seed
𝑔

,

(6)

where 𝑀
𝑑
, 𝜌

𝑑
, and 𝑉

𝑑
, respectively, are the total mass,

density, and volume of protomatter disk. At the value �̂�BH
𝑔

of gravitational radius, when protomatter disk has finally
reached the event horizon of grown-up supermassive black
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Figure 3: A schematic cross section of the growth of supermassive
black hole driven by the formation of protomatter disk at accretion,
when protomatter disk has finally reached the event horizon of
grown-up supermassive black hole.

hole, the volume �̂�
𝑑
can be calculated in polar coordinates

(𝜌, 𝑧, 𝜑) from Figure 3:

�̂�
𝑑
= ∫

�̂�
BH
𝑔

𝜌0

𝑑𝜌∫

2𝜋

0

𝜌𝑑𝜙∫

𝑧1(𝜌)

−𝑧1(𝜌)

𝑑𝑧

− ∫

𝑅𝑑

𝜌0

𝑑𝜌∫

2𝜋

0

𝜌𝑑𝜙∫

𝑧0(𝜌)

−𝑧0(𝜌)

𝑑𝑧

(𝑅𝑑≪�̂�
BH
𝑔

)

≃
√2𝜋

3
𝑅
𝑑
(�̂�

BH
𝑔
)

2

,

(7)

where 𝑧
1
(𝜌) ≃ 𝑧

0
− 𝑧

0
(𝜌 − 𝜌

0
)/(�̂�

BH
𝑔
− 𝜌

0
), 𝑧

0
(𝜌) = √𝑅

2

𝑑
− 𝜌2,

and in approximation𝑅
𝑑
≪ �̂�

BH
𝑔

we set 𝑧
0
(𝜌

0
) ≃ 𝜌

0
≃ 𝑅

𝑑
/√2.

6.1. The Intermediate Mass of Seed Black Hole. From the first
line of (6), by virtue of (7), we obtain

�̂�
BH
𝑔
= 𝑘(1 ± √1 −

2

𝑘
𝑅Seed
𝑔
) , (8)

where 2/𝑘 = 8.73 [km]𝑅
𝑑
𝜌
𝑑
/𝑀

⊙
. The (8) is valid at (2/

𝑘)𝑅
Seed
𝑔
≤ 1; namely,

𝑅
⊙

𝑅
𝑑

≥ 2.09
[km]
𝑅
⊙

𝜌
𝑑

𝜌
⊙

𝑅
Seed
𝑔

𝑅
⊙

. (9)

For the values 𝜌
𝑑
= 2.6×10

16
[g cm]−3 (see below) and𝑅Seed

𝑔
≃

2.95 [km](103 to 106), inequality (9) is reduced to 𝑅
⊙
/𝑅

𝑑
≥

2.34 × 10
8
(1 to 103) or [cm]/𝑅

𝑑
≥ 0.34(10

−2 to 10). This
condition is always satisfied, because for considered 377 black
holes, with the masses 𝑀BH/𝑀⊙

≃ 1.1 × 10
6 to 1.3 × 1010,

we approximately have 𝑅
𝑑
/𝑟OV ≃ 10

−10 to 10−7 [71]. Note
that Woo and Urry [5] collect and compare all the AGN/BH
mass and luminosity estimates from the literature. According
to (6), the intermediate mass of seed black hole reads

𝑀
Seed
BH
𝑀

⊙

≃
𝑀BH
𝑀

⊙

(1 − 1.68 × 10
−6 𝑅𝑑

[cm]
𝑀BH
𝑀

⊙

) . (10)

6.2. PRT. The PRT is referred to as a lapse of time 𝑇BH from
the birth of black hole till neutrino radiation, the earlier
part of the lifetime. That is, 𝑇BH = 𝑀𝑑

/�̇�, where �̇� is the
accretion rate. In approximation at hand 𝑅

𝑑
≪ 𝑅

𝑔
, the PRT

reads

𝑇BH = 𝜌𝑑
𝑉
𝑑

�̇�
≃ 9.33 ⋅ 10

15
[g cm−3

]

𝑅
𝑑
𝑅
2

𝑔

�̇�
. (11)

In case of collisionless accretion, (3) and (11) give

𝑇BH ≃ 2.6 ⋅ 10
16 𝑅𝑑

cm
10

−24 g cm−3

𝜌
∞

V
∞

10 km 𝑠−1
yr. (12)

In case of hydrodynamic accretion, (4) and (11) yield

𝑇BH ≃ 8.8 ⋅ 10
38
𝑅
𝑑
𝑅
2

𝑔
cm−3

𝑛
𝑠
𝑟
5/2

𝑠 (ln𝑔00)


𝑠

. (13)

Note that the spherical accretion onto black hole, in general,
is not necessarily an efficient mechanism for converting rest-
mass energy into radiation. Accretion onto black hole may
be far from spherical accretion, because the accreted gas
possesses angular momentum. In this case, the gas will be
thrown into circular orbits about the black hole when cen-
trifugal forces will become significant before the gas plunges
through the event horizon. Assuming a typical mass-energy
conversion efficiency of about 𝜖 ∼ 10%, in approximation
𝑅
𝑑
≪ 𝑅

𝑔
, according to (12) and (13), the resulting relationship

of typical PRT versus bolometric luminosity becomes

𝑇BH ≃ 0.32
𝑅
𝑑

𝑟OV
(
𝑀BH
𝑀

⊙

)

2
10

39
𝑊

𝐿bol
[yr] . (14)

We supplement this by computing neutrino fluxes in the next
section.

6.3. Redshift of Seed Black Hole. Interpreting the redshift
as a cosmological Doppler effect and that the Hubble law
could most easily be understood in terms of expansion of the
universe, we are interested in the purely academic question
of principle to ask what could be the initial redshift, 𝑧Seed, of
seed black hole if the mass, the luminosity, and the redshift,
𝑧, of black hole at present time are known. To follow the
history of seed black hole to the present time, let us place
ourselves at the origin of coordinates 𝑟 = 0 (according to
the Cosmological Principle, this is mere convention) and
consider a light traveling to us along the −𝑟 direction, with
angular variables fixed. If the light has left a seed black hole,
located at 𝑟

𝑠
, 𝜃

𝑠
, and 𝜑

𝑠
, at time 𝑡

𝑠
, and it has to reach us at

a time 𝑡
0
, then a power series for the redshift as a function

of the time of flight is 𝑧Seed = 𝐻
0
(𝑡
0
− 𝑡

𝑠
) + ⋅ ⋅ ⋅ , where 𝑡

0

is the present moment and 𝐻
0
is Hubble’s constant. Similar

expression, 𝑧 = 𝐻
0
(𝑡
0
−𝑡

1
)+⋅ ⋅ ⋅ , can be written for the current

black hole, located at 𝑟
1
, 𝜃

1
, and 𝜑

1
, at time 𝑡

1
, where 𝑡

1
=

𝑡
𝑠
+ 𝑇BH, as seed black hole is an object at early times. Hence,

in the first-order approximation byHubble’s constant, wemay
obtain the following relation between the redshifts of seed
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and present black holes: 𝑧Seed ≃ 𝑧+𝐻
0
𝑇BH.This relation is in

agreement with the scenario of a general recession of distant
galaxies away from us in all directions, the furthest naturally
being those moving the fastest. This relation, incorporating
with (14), for the value 𝐻

0
= 70 [km]/[sMpc] favored today

yields

𝑧
Seed
≃ 𝑧 + 2.292 × 10

28 𝑅𝑑

𝑟OV
(
𝑀BH
𝑀

⊙

)

2
𝑊

𝐿bol
. (15)

7. UHE Neutrino Fluxes

The flux can be written in terms of luminosity as 𝐽]𝜀 =
�̃�]𝜀/4𝜋𝐷

2

𝐿
(𝑧)(1 + 𝑧), where 𝑧 is the redshift and 𝐷

𝐿
(𝑧) is the

luminosity distance depending on the cosmological model.
The (1+𝑧)−1 is due to the fact that each neutrino with energy
�̃�


] if observed near the place and time of emission 𝑡 will be
red-shifted to energy �̃�] = �̃�



]𝑅(𝑡1)/𝑅(𝑡0) = �̃�


](1 + 𝑧)
−1 of

the neutrino observed at time 𝑡 after its long journey to us,
where 𝑅(𝑡) is the cosmic scale factor. Computing the UHE
neutrino fluxes in the framework of MTBH, we choose the
cosmological model favored today, with a flat universe, filled
with matterΩ

𝑀
= 𝜌

𝑀
/𝜌

𝑐
and vacuum energy densitiesΩ

𝑉
=

𝜌
𝑉
/𝜌

𝑐
, therebyΩ

𝑉
+Ω

𝑀
= 1, where the critical energy density

𝜌
𝑐
= 3𝐻

2

0
/(8𝜋𝐺

𝑁
) is defined through the Hubble parameter

𝐻
0
[77]:

𝐷
𝐿
(𝑧) =

(1 + 𝑧) 𝑐

𝐻
0
√Ω

𝑀

∫

1+𝑧

1

𝑑𝑥

√Ω
𝑉
/Ω

𝑀
+ 𝑥3

= 2.4 × 10
28
𝐼 (𝑧) cm.

(16)

Here 𝐼(𝑧) = (1+𝑧) ∫1+𝑧
1
𝑑𝑥/√2.3 + 𝑥3, we set the values𝐻

0
=

70 km/sMpc, Ω
𝑉
= 0.7 andΩ

𝑀
= 0.3.

7.1. URCA Reactions. The neutrino luminosity of SPC of
given mass, �̃�, by modified URCA reactions with no muons
reads [75]

�̃�
URCA
]𝜀 = 3.8 × 10

50
𝜀
𝑑
(
𝑀

⊙

�̃�

)

1.75

[erg s−1] , (17)

where 𝜀
𝑑
= 𝑑/2 𝑅

𝑔
and 𝑑 is the thickness of the protomatter

disk at the edge of even horizon. The resulting total UHE
neutrino flux of cooling of the SPC can be obtained as

𝐽
URCA
]𝜀 ≃ 5.22 × 10

−8

×
𝜀
𝑑

𝐼2 (𝑧) (1 + 𝑧)
(
𝑀

⊙

�̃�

)

1.75

[erg cm−2 s−1 sr−1] ,

(18)

where the neutrino is radiated in a cone with the beaming
angle 𝜃 ∼ 𝜀

𝑑
≪ 1, 𝐼(𝑧) = (1 + 𝑧) ∫1+𝑧

1
𝑑𝑥/√2.3 + 𝑥3. As it is

seen, the nucleon modified URCA reactions can contribute
efficiently only to extragalactic objects with enough small
redshift 𝑧 ≪ 1.

7.2. Pionic Reactions. The pionic reactions, occurring in the
superdense protomatter medium of SPC, allow both the
distorted energy and momentum to be conserved. This is the
analogue of the simple URCA processes:

𝜋
−
+ 𝑛 → 𝑛 + 𝑒

−
+ ]

𝑒
, 𝜋

−
+ 𝑛 → 𝑛 + 𝜇

−
+ ]

𝜇
(19)

and the two inverse processes. As in the modified URCA
reactions, the total rate for all four processes is essentially four
times the rate of each reaction alone. The muons are already
present when pions appear. The neutrino luminosity of the
SPC of given mass, �̃�, by pionic reactions reads [75]

�̃�
𝜋

]𝜀 = 5.78 × 10
58
𝜀
𝑑
(
𝑀

⊙

�̃�

)

1.75

[erg s−1] . (20)

Then, the UHE neutrino total flux is

𝐽
𝜋

]𝜀 ≃ 7.91
𝜀
𝑑

𝐼2 (𝑧) (1 + 𝑧)
(
𝑀

⊙

�̃�

)

1.75

[erg cm−2 s−1 sr−1] .

(21)

The resulting total energy-loss rate will then be dramatically
larger due to the pionic reactions (19) rather than the
modified URCA processes.

7.3. Quark Reactions. In the superdense protomattermedium
the distorted quark Fermi energies are far below the charmed
c-, t-, and b-quark production thresholds. Therefore, only
up-, down-, and strange quarks are present.The𝛽 equilibrium
is maintained by reactions like

𝑑 → 𝑢 + 𝑒
−
+ ]

𝑒
, 𝑢 + 𝑒

−
→ 𝑑 + ]

𝑒
, (22)

𝑠 → 𝑢 + 𝑒
−
+ ]

𝑒
, 𝑢 + 𝑒

−
→ 𝑠 + ]

𝑒
, (23)

which are 𝛽 decay and its inverse. These reactions constitute
simple URCA processes, in which there is a net loss of a ]

𝑙
]
𝑙

pair at nonzero temperatures. In this application a sufficient
accuracy is obtained by assuming 𝛽-equilibrium and that
the neutrinos are not retained in the medium of Λ-like
protomatter. The quark reactions (22) and (23) proceed at
equal rates in 𝛽 equilibrium, where the participating quarks
must reside close to their Fermi surface. Hence, the total
energy of flux due to simple URCA processes is rather twice
than that of (22) or (23) alone. For example, the spectral fluxes
of theUHEantineutrinos andneutrinos for different redshifts
from quark reactions are plotted, respectively, in Figures 4
and 5 [75]. The total flux of UHE neutrino can be written as

𝐽
𝑞

]𝜀 ≃ 70.68
𝜀
𝑑

𝐼2 (𝑧) (1 + 𝑧)
(
𝑀

⊙

�̃�

)

1.75

[erg cm−2 s−1 sr−1] .

(24)

8. Simulation

For simulation we use the data of AGN/BH mass and
luminosity estimates for 377 black holes presented by [5].
These masses are mostly based on the virial assumption for
the broad emission lines, with the broad-line region size
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Figure 4: The spectral fluxes of UHE antineutrinos for different redshifts from quark reactions.
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Figure 5: The spectral fluxes of UHE neutrinos for different redshifts from quark reactions.

determined from either reverberation mapping or optical
luminosity. Additional black hole mass estimates based on
properties of the host galaxy bulges, either using the observed
stellar velocity dispersion or using the fundamental plane
relation. Since the aim is to have more than a thousand of
realizations, each individual run is simplified, with a use
of previous algorithm of the SPC-configurations [71] as a
working model, given in Appendix G. Computing the cor-
responding PRTs, seed black hole intermediate masses, and
total neutrino fluxes, a main idea comes to solving an inverse
problem. Namely, by the numerous reiterating integrations of
the state equations of SPC-configurationswe determine those

required central values of particle concentration �̃�(0) and ID-
field𝑥(0), for which the integrated totalmass of configuration
has to be equal to the black hole mass 𝑀BH given from
observations. Along with all integral characteristics, the
radius𝑅

𝑑
is also computed, which is further used in (10), (14),

(15), (18), (21), and (24) for calculating𝑀Seed
BH , 𝑇BH, 𝑧

Seed, and
𝐽
𝑖

]𝜀, respectively.The results are summed up in Tables 1, 2, 3, 4
and 5. Figure 6 gives the intermediate seed masses𝑀Seed

BH /𝑀⊙

versus the present masses 𝑀BH/𝑀⊙
of 337 black holes, on

logarithmic scales. For the present masses𝑀BH/𝑀⊙
≃ 1.1 ×

10
6 to 1.3 × 1010, the computed intermediate seed masses
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Figure 6: The 𝑀Seed
BH /𝑀⊙

-𝑀BH/𝑀⊙
relation on logarithmic scales

of 337 black holes from [5]. The solid line is the best fit to data of
samples.

are ranging from 𝑀
Seed
BH /𝑀⊙

≃ 26.4 to 2.9 × 105. The
computed neutrino fluxes are ranging from (1) (quark
reactions)—𝐽𝑞]𝜀/𝜀𝑑 [erg cm

−2 s−1 sr−1] ≃ 8.29×10−16 to 3.18×
10

−4, with the average 𝐽𝑞]𝜀 ≃ 5.53×10
−10
𝜀
𝑑
[erg cm−2 s−1 sr−1];

(2) (pionic reactions)—𝐽𝜋]𝜀 ≃ 0.112𝐽
𝑞

]𝜀, with the average
𝐽
𝜋

]𝜀 ≃ 3.66 × 10
−11
𝜀
𝑑
[erg cm−2 s−1 sr−1]; and (3) (modified

URCA processes)—𝐽URCA]𝜀 ≃ 7.39× 10
−11
𝐽
𝑞

]𝜀, with the average
𝐽
URCA
]𝜀 ≃ 2.41 × 10

−20
𝜀
𝑑
[erg cm−2 s−1 sr−1]. In accordance,

the AGNs are favored as promising pure neutrino sources
because the computed neutrino fluxes are highly beamed
along the plane of accretion disk and peaked at high energies
and collimated in smaller opening angle 𝜃 ∼ 𝜀

𝑑
= 𝑑/2 𝑟

𝑔
≪ 1.

To render our discussion here a bit more transparent and to
obtain some feeling for the parameter 𝜀

𝑑
we may estimate

𝜀
𝑑
≃ 1.69×10

−10, just for example, only, for the suppermassive
black hole of typical mass ∼109𝑀

⊙
(2 𝑅

𝑔
= 5.9×10

14 cm), and
so 𝑑 ∼ 1 km. But the key problem of fixing the parameter
𝜀
𝑑
more accurately from experiment would be an important

topic for another investigation elsewhere.

9. Conclusions

The growth of accreting supermassive black hole seeds and
their neutrino radiation are found to be common phenom-
ena in the AGNs. In this report, we further expose the
assertions made in the framework of microscopic theory
of black hole via reviewing the mass assembly history of
377 plausible accreting supermassive black hole seeds. After
the numerous reiterating integrations of the state equations
of SPC-configurations, we compute their intermediate seed
masses, 𝑀Seed

BH , PRTs, initial redshifts, 𝑧Seed, and neutrino
fluxes. All the results are presented in Tables 1–5. Figure 6
gives the intermediate seed masses 𝑀Seed

BH /𝑀⊙
versus the

present masses 𝑀BH/𝑀⊙
of 337 black holes, on logarithmic

scales. In accordance, the AGNs are favored as promising
pure UHE neutrino sources. Such neutrinos may reveal clues
on the puzzle of origin of UHE cosmic rays. We regard
the considered black holes only as the potential neutrino
sources. The obtained results, however, may suffer and that
would be underestimated if not all 377 live black holes in the

𝑀BH/𝑀⊙
≃ 1.1 × 10

6 to 1.3 × 1010 mass range at present
reside in final stage of their growth, when the protomatter
disk driven by accretion has reached the event horizon.

Appendices

A. Outline of the Key Points of Proposed
Gravitation Theory at Huge Energies

Theproposed gravitation theory explores themost important
processes of rearrangement of vacuum state and a spon-
taneous breaking of gravitation gauge symmetry at huge
energies. From its historical development, the efforts in gauge
treatment of gravity mainly focus on the quantum gravity
and microphysics, with the recent interest, for example, in
the theory of the quantum superstring or, in the very early
universe, in the inflationary model. The papers on the gauge
treatment of gravity provide a unified picture of gravity
modified models based on several Lie groups. However,
currently no single theory has been uniquely accepted as the
convincing gauge theory of gravitation which could lead to a
consistent quantum theory of gravity. They have evoked the
possibility that the treatment of spacetimemight involve non-
Riemannian features on the scale of the Planck length. This
necessitates the study of dynamical theories involving post-
Riemannian geometries. It is well known that the notions of
space and connections should be separated; see, for example,
[78–81]. The curvature and torsion are in fact properties of
a connection, and many different connections are allowed
to exist in the same spacetime. Therefore, when considering
several connections with different curvature and torsion, one
takes spacetime simply as a manifold and connections as
additional structures. From this view point in a recent paper
[82] we tackle the problem of spacetime deformation. This
theory generalizes and, in particular cases, fully recovers the
results of the conventional theory. Conceptually and tech-
niquewise this theory is versatile and powerful and manifests
its practical and technical virtue in the fact that through a
nontrivial choice of explicit form of the world-deformation
tensor, which we have at our disposal, in general, we have
a way to deform the spacetime which displayed different
connections, which may reveal different post-Riemannian
spacetime structures as corollary. All the fundamental grav-
itational structures in fact—the metric as much as the
coframes and connections—acquire a spacetime deformation
induced theoretical interpretation. There is another line of
reasoningwhich supports the side of thismethod.We address
the theory of teleparallel gravity and construct a consistent
Einstein-Cartan (EC) theory with the dynamical torsion.
We show that the equations of the standard EC theory, in
which the equation defining torsion is the algebraic type
and, in fact, no propagation of torsion is allowed, can be
equivalently replaced by the set of modified Einstein-Cartan
equations in which the torsion, in general, is dynamical.
Moreover, the special physical constraint imposed upon the
spacetime deformations yields the short-range propagating
spin-spin interaction. For the self-contained arguments in
Appendix A.1 and Appendices B and C we complete the
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Table 1: Seed black hole intermediate masses, preradiation times, redshifts, and neutrino fluxes from spatially resolved kinematics. Columns:
(1) name, (2) redshift, (3) AGN type: SY2: Seyfert 2, (4) log of the bolometric luminosity (ergs−1), (5) log of the radius of protomatter
core in special unit 𝑟OV = 13.68 km, (6) log of the black hole mass in solar masses, (7) log of the seed black hole intermediate mass in
solar masses, (8) log of the neutrino preradiation time (yrs), (9) redshift of seed black hole, (10) 𝐽𝑖=𝑞, (11) 𝐽𝑖=URCA, and (12) 𝐽𝑖=𝜋, where
𝐽
𝑖
≡ log(𝐽𝑖V𝜀/𝜀𝑑 erg cm

−2 s−1 sr−1).

Name 𝑧 Type log 𝐿bol log(
𝑅
𝑑

𝑟ov
) log(𝑀BH

𝑀
⊙

) log(
𝑀

Seed
BH

𝑀
⊙

) log𝑇BH 𝑧
Seed

𝐽
𝑞

𝐽
URCA

𝐽
𝜋

NGC 1068 0.004 SY2 44.98 −7.59201 7.23 2.5922 8.02 0.006 −5.49 −15.62 −6.44
NGC 4258 0.001 SY2 43.45 −7.98201 7.62 2.9822 10.33 0.148 −4.97 −15.10 −5.92

Table 2: Seed black hole intermediate masses, preradiation times, redshifts, and neutrino fluxes from reverberation mapping. Columns: (1)
name, (2) redshift, (3)AGN type: SY2: Seyfert 2, (4) log of the bolometric luminosity (ergs−1), (5) log of the radius of protomatter core in special
unit 𝑟OV = 13.68 km, (6) log of the black hole mass in solar masses, (7) log of the seed black hole intermediate mass in solar masses, (8) log of
the neutrino preradiation time (yrs), (9) redshift of seed black hole, (10) 𝐽𝑖=𝑞, (11) 𝐽𝑖=URCA, and (12) 𝐽𝑖=𝜋, where 𝐽𝑖 ≡ log(𝐽𝑖V𝜀/𝜀𝑑 erg cm

−2 s−1 sr−1) .

Name 𝑧 Type log 𝐿bol log(
𝑅
𝑑

𝑟ov
) log(𝑀BH

𝑀
⊙

) log(
𝑀

Seed
BH

𝑀
⊙

) log𝑇BH 𝑧
Seed

𝐽
𝑞

𝐽
URCA

𝐽
𝜋

3C 120 0.033 SY1 45.34 −7.78201 7.42 2.7822 8.04 0.034 −7.69 −17.82 −8.64
3C 390.3 0.056 SY1 44.88 −8.91201 8.55 3.9122 10.76 0.103 −10.15 −20.28 −11.10
Akn 120 0.032 SY1 44.91 −8.63201 8.27 3.6322 10.17 0.055 −9.15 −19.28 −10.10
F9 0.047 SY1 45.23 −8.27201 7.91 3.2722 9.13 0.052 −8.87 −19.00 −9.82
IC 4329A 0.016 SY1 44.78 −7.13201 6.77 2.1322 7.30 0.017 −5.91 −16.04 −6.86
Mrk 79 0.022 SY1 44.57 −8.22201 7.86 3.2222 9.69 0.041 −8.10 −18.23 −9.05
Mrk 110 0.035 SY1 44.71 −7.18201 6.82 2.1822 7.47 0.036 −6.69 −16.82 −7.64
Mrk 335 0.026 SY1 44.69 −7.05201 6.69 2.0522 7.23 0.027 −6.20 −16.33 −7.15
Mrk 509 0.034 SY1 45.03 −8.22201 7.86 3.2222 9.23 0.041 −8.49 −18.62 −9.44
Mrk 590 0.026 SY1 44.63 −7.56201 7.20 2.5622 8.31 0.030 −7.09 −17.22 −8.04
Mrk 817 0.032 SY1 44.99 −7.96201 7.60 2.9622 8.75 0.036 −7.98 −18.11 −8.93
NGC 3227 0.004 SY1 43.86 −8.00201 7.64 3.0022 9.96 0.064 −6.21 −16.34 −7.16
NGC 3516 0.009 SY1 44.29 −7.72201 7.36 2.7222 8.97 0.021 −6.43 −16.56 −7.38
NGC 3783 0.010 SY1 44.41 −7.30201 6.94 2.3022 8.01 0.013 −5.79 −15.92 −6.74
NGC 4051 0.002 SY1 43.56 −6.49201 6.13 1.4922 7.24 0.006 −2.96 −13.10 −3.91
NGC 4151 0.003 SY1 43.73 −7.49201 7.13 2.4922 9.07 0.028 −5.07 −15.20 −6.02
NGC 4593 0.009 SY1 44.09 −7.27201 6.91 2.2722 8.27 0.016 −5.64 −15.77 −6.59
NGC 5548 0.017 SY1 44.83 −8.39201 8.03 3.3922 9.77 0.033 −8.16 −18.30 −9.11
NGC 7469 0.016 SY1 45.28 −7.20201 6.84 2.2022 6.94 0.016 −6.03 −16.16 −6.98
PG 0026 + 129 0.142 RQQ 45.39 −7.94201 7.58 2.9422 8.31 0.144 −9.35 −19.48 −10.30
PG 0052 + 251 0.155 RQQ 45.93 −8.77201 8.41 3.7722 9.43 0.158 −10.89 −21.02 −11.84
PG 0804 + 761 0.100 RQQ 45.93 −8.60201 8.24 3.6022 9.09 0.102 −10.16 −20.29 −11.11
PG 0844 + 349 0.064 RQQ 45.36 −7.74201 7.38 2.7422 7.94 0.065 −8.23 −18.36 −9.18
PG 0953 + 414 0.239 RQQ 46.16 −8.60201 8.24 3.6022 8.86 0.240 −11.04 −21.17 −11.99
PG 1211 + 143 0.085 RQQ 45.81 −7.85201 7.49 2.8522 7.71 0.085 −8.69 −18.82 −9.64
PG 1229 + 204 0.064 RQQ 45.01 −8.92201 8.56 3.9222 10.65 0.099 −10.29 −20.42 −11.24
PG 1307 + 085 0.155 RQQ 45.83 −8.26201 7.90 3.2622 8.51 0.156 −9.99 −20.12 −10.94
PG 1351 + 640 0.087 RQQ 45.50 −8.84201 8.48 3.8422 10.00 0.097 −10.44 −20.57 −11.39
PG 1411 + 442 0.089 RQQ 45.58 −7.93201 7.57 2.9322 8.10 0.090 −8.87 −19.00 −9.82
PG 1426 + 015 0.086 RQQ 45.19 −8.28201 7.92 3.2822 9.19 0.091 −9.45 −19.58 −10.40
PG 1613 + 658 0.129 RQQ 45.66 −8.98201 8.62 3.9822 10.12 0.138 −11.07 −21.20 −12.02
PG 1617 + 175 0.114 RQQ 45.52 −8.24201 7.88 3.2422 8.78 0.116 −9.65 −19.78 −10.60
PG 1700 + 518 0.292 RQQ 46.56 −8.67201 8.31 3.6722 8.60 0.293 −11.38 −21.51 −12.33
PG 2130 + 099 0.061 RQQ 45.47 −8.10201 7.74 3.1022 8.55 0.063 −8.81 −18.94 −9.76
PG 1226 + 023 0.158 RLQ 47.35 −7.58201 7.22 2.5822 5.63 0.158 −8.82 −18.95 −9.77
PG 1704 + 608 0.371 RLQ 46.33 −8.59201 8.23 3.5922 8.67 0.372 −11.50 −21.64 −12.45
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Table 3: Seed black hole intermediate masses, preradiation times, redshifts, and neutrino fluxes from optimal luminosity. Columns: (1) name,
(2) redshift, (3) AGN type: SY2: Seyfert 2, (4) log of the bolometric luminosity (ergs−1), (5) log of the radius of protomatter core in special unit
𝑟OV = 13.68 km, (6) log of the black hole mass in solar masses, (7) log of the seed black hole intermediate mass in solar masses, (8) log of the
neutrino preradiation time (yrs), (9) redshift of seed black hole, (10) 𝐽𝑖=𝑞, (11) 𝐽𝑖=URCA, and (12) 𝐽𝑖=𝜋, where 𝐽𝑖 ≡ log(𝐽𝑖V𝜀/𝜀𝑑 erg cm

−2 s−1 sr−1).

Name 𝑧 Type log 𝐿bol log(
𝑅
𝑑

𝑟ov
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𝑀
⊙
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) log𝑇BH 𝑧
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𝐽
𝑞

𝐽
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𝐽
𝜋

Mrk 841 0.036 SY1 45.84 −8.46201 8.10 3.4622 8.90 0.038 −8.96 −19.09 −9.91
NGC 4253 0.013 SY1 44.40 −6.90201 6.54 1.9022 7.22 0.014 −5.32 −15.45 −6.27
NGC 6814 0.005 SY1 43.92 −7.64201 7.28 2.6422 9.18 0.028 −5.78 −15.91 −6.73
0054 + 144 0.171 RQQ 45.47 −9.26201 8.90 4.2622 10.87 0.198 −11.84 −21.97 −12.79
0157 + 001 0.164 RQQ 45.62 −8.06201 7.70 3.0622 8.32 0.165 −9.70 −19.83 −10.65
0204 + 292 0.109 RQQ 45.05 −7.03201 6.67 2.0322 6.83 0.109 −7.49 −17.62 −8.44
0205 + 024 0.155 RQQ 45.45 −8.22201 7.86 3.2222 8.81 0.158 −9.92 −20.05 −10.87
0244 + 194 0.176 RQQ 45.51 −8.39201 8.03 3.3922 9.09 0.179 −10.35 −20.48 −11.30
0923 + 201 0.190 RQQ 46.22 −9.30201 8.94 4.3022 10.20 0.195 −12.02 −22.15 −12.97
1012 + 008 0.185 RQQ 45.51 −8.15201 7.79 3.1522 8.61 0.187 −9.98 −20.11 −10.93
1029 − 140 0.086 RQQ 46.03 −9.44201 9.08 4.4422 10.67 0.097 −11.48 −21.61 −12.43
1116 + 215 0.177 RQQ 46.02 −8.57201 8.21 3.5722 8.94 0.179 −10.67 −20.80 −11.62
1202 + 281 0.165 RQQ 45.39 −8.65201 8.29 3.6522 9.73 0.173 −10.74 −20.87 −11.69
1309 + 355 0.184 RQQ 45.39 −8.36201 8.00 3.3622 8.91 0.186 −10.34 −20.47 −11.29
1402 + 261 0.164 RQQ 45.13 −7.65201 7.29 2.6522 7.99 0.165 −8.98 −19.11 −9.93
1444 + 407 0.267 RQQ 45.93 −8.42201 8.06 3.4222 8.73 0.268 −10.84 −20.97 −11.79
1635 + 119 0.146 RQQ 45.13 −8.46201 8.10 3.4622 9.61 0.155 −10.28 −20.41 −11.23
0022 − 297 0.406 RLQ 44.98 −8.27201 7.91 3.2722 9.38 0.414 −11.05 −21.18 −12.00
0024 + 348 0.333 RLQ 45.31 −6.73201 6.37 1.7322 5.97 0.333 −8.13 −18.26 −9.08
0056 − 001 0.717 RLQ 46.54 −9.07201 8.71 4.0722 9.42 0.718 −13.13 −23.26 −14.08
0110 + 495 0.395 RLQ 45.78 −8.70201 8.34 3.7022 9.44 0.399 −11.77 −21.90 −12.72
0114 + 074 0.343 RLQ 44.02 −7.16201 6.80 2.1622 8.12 0.349 −8.91 −19.04 −9.86
0119 + 041 0.637 RLQ 45.57 −8.74201 8.38 3.7422 9.73 0.643 −12.41 −22.54 −13.36
0133 + 207 0.425 RLQ 45.83 −9.88201 9.52 4.8822 11.75 0.474 −13.92 −24.05 −14.87
0133 + 476 0.859 RLQ 46.69 −9.09201 8.73 4.0922 9.31 0.860 −13.40 −23.53 −14.35
0134 + 329 0.367 RLQ 46.44 −9.10201 8.74 4.1022 9.58 0.369 −12.38 −22.52 −13.33
0135 − 247 0.831 RLQ 46.64 −9.49201 9.13 4.4922 10.16 0.834 −14.06 −24.19 −15.01
0137 + 012 0.258 RLQ 45.22 −8.93201 8.57 3.9322 10.46 0.280 −11.70 −21.83 −12.65
0153 − 410 0.226 RLQ 44.74 −7.92201 7.56 2.9222 8.92 0.233 −9.79 −19.92 −10.74
0159 − 117 0.669 RLQ 46.84 −9.63201 9.27 4.6322 10.24 0.672 −14.03 −24.16 −14.98
0210 + 860 0.186 RLQ 44.92 −6.90201 6.54 1.9022 6.70 0.186 −7.80 −17.93 −8.75
0221 + 067 0.510 RLQ 44.94 −7.65201 7.29 2.6522 8.18 0.512 −10.23 −20.36 −11.18
0237 − 233 2.224 RLQ 47.72 −8.88201 8.52 3.8822 7.86 2.224 −14.39 −24.52 −15.34
0327 − 241 0.888 RLQ 46.01 −8.96201 8.60 3.9622 9.73 0.892 −13.22 −23.35 −14.17
0336 − 019 0.852 RLQ 46.32 −9.34201 8.98 4.3422 10.18 0.857 −13.83 −23.96 −14.78
0403 − 132 0.571 RLQ 46.47 −9.43201 9.07 4.4322 10.21 0.575 −13.48 −23.61 −14.43
0405 − 123 0.574 RLQ 47.40 −9.83201 9.47 4.8322 10.08 0.575 −14.19 −24.32 −15.14
0420 − 014 0.915 RLQ 47.00 −9.39201 9.03 4.3922 9.60 0.916 −14.01 −24.14 −14.96
0437 + 785 0.454 RLQ 46.15 −9.15201 8.79 4.1522 9.97 0.458 −12.72 −22.85 −13.67
0444 + 634 0.781 RLQ 46.12 −8.89201 8.53 3.8922 9.48 0.784 −12.93 −23.06 −13.88
0454 − 810 0.444 RLQ 45.32 −8.49201 8.13 3.4922 9.48 0.450 −11.54 −21.67 −12.49
0454 + 066 0.405 RLQ 45.12 −7.78201 7.42 2.7822 8.26 0.407 −10.19 −20.32 −11.14
0502 + 049 0.954 RLQ 46.36 −9.24201 8.88 4.2422 9.94 0.957 −13.80 −23.93 −14.75
0514 − 459 0.194 RLQ 45.36 −7.91201 7.55 2.9122 8.28 0.196 −9.61 −19.74 −10.56
0518 + 165 0.759 RLQ 46.34 −8.89201 8.53 3.8922 9.26 0.761 −12.89 −23.02 −13.84
0538 + 498 0.545 RLQ 46.43 −9.94201 9.58 4.9422 11.27 0.559 −14.32 −24.45 −15.27
0602 − 319 0.452 RLQ 45.69 −9.38201 9.02 4.3822 10.89 0.473 −13.11 −23.25 −14.07
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Table 3: Continued.
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0607 − 157 0.324 RLQ 46.30 −9.04201 8.68 4.0422 9.60 0.326 −12.14 −22.27 −13.09
0637 − 752 0.654 RLQ 47.16 −9.77201 9.41 4.7722 10.20 0.656 −14.24 −24.37 −15.19
0646 + 600 0.455 RLQ 45.58 −9.10201 8.74 4.1022 10.44 0.469 −12.63 −22.76 −13.58
0723 + 679 0.846 RLQ 46.41 −9.03201 8.67 4.0322 9.47 0.848 −13.27 −23.41 −14.23
0736 + 017 0.191 RLQ 46.41 −8.36201 8.00 3.3622 8.57 0.192 −10.38 −20.51 −11.33
0738 + 313 0.631 RLQ 46.94 −9.76201 9.40 4.7622 10.40 0.634 −14.18 −24.31 −15.13
0809 + 483 0.871 RLQ 46.54 −8.32201 7.96 3.3222 7.92 0.871 −12.07 −22.20 −13.02
0838 + 133 0.684 RLQ 46.23 −8.88201 8.52 3.8822 9.35 0.686 −12.74 −22.87 −13.69
0906 + 430 0.668 RLQ 45.99 −8.26201 7.90 3.2622 8.35 0.669 −11.63 −21.76 −12.58
0912 + 029 0.427 RLQ 45.26 −8.08201 7.72 3.0822 8.72 0.430 −10.77 −20.90 −11.72
0921 − 213 0.052 RLQ 44.63 −8.50201 8.14 3.5022 10.19 0.084 −9.36 −19.50 −10.32
0923 + 392 0.698 RLQ 46.26 −9.64201 9.28 4.6422 10.84 0.708 −14.10 −24.23 −15.05
0925 − 203 0.348 RLQ 46.35 −8.82201 8.46 3.8222 9.11 0.349 −11.83 −21.97 −12.78
0953 + 254 0.712 RLQ 46.59 −9.36201 9.00 4.3622 9.95 0.715 −13.63 −23.76 −14.58
0954 + 556 0.901 RLQ 46.54 −8.43201 8.07 3.4322 8.14 0.901 −12.31 −22.44 −13.26
1004 + 130 0.240 RLQ 46.21 −9.46201 9.10 4.4622 10.53 0.248 −12.55 −22.68 −13.50
1007 + 417 0.612 RLQ 46.71 −9.15201 8.79 4.1522 9.41 0.613 −13.08 −23.21 −14.03
1016 − 311 0.794 RLQ 46.63 −9.25201 8.89 4.2522 9.69 0.796 −13.58 −23.71 −14.53
1020 − 103 0.197 RLQ 44.87 −8.72201 8.36 3.7222 10.39 0.228 −11.04 −21.18 −11.99
1034 − 293 0.312 RLQ 46.20 −9.11201 8.75 4.1122 9.84 0.316 −12.22 −22.35 −13.17
1036 − 154 0.525 RLQ 44.55 −8.16201 7.80 3.1622 9.59 0.543 −11.16 −21.29 −12.11
1045 − 188 0.595 RLQ 45.80 −7.19201 6.83 2.1922 6.40 0.595 −9.61 −19.74 −10.56
1100 + 772 0.311 RLQ 46.49 −9.67201 9.31 4.6722 10.67 0.318 −13.20 −23.33 −14.15
1101 − 325 0.355 RLQ 46.33 −8.97201 8.61 3.9722 9.43 0.357 −12.12 −22.25 −13.07
1106 + 023 0.157 RLQ 44.97 −7.86201 7.50 2.8622 8.57 0.160 −9.31 −19.44 −10.26
1107 − 187 0.497 RLQ 44.25 −7.26201 6.90 2.2622 8.09 0.501 −9.52 −19.65 −10.47
1111 + 408 0.734 RLQ 46.26 −10.18201 9.82 5.1822 11.92 0.770 −15.11 −25.24 −16.06
1128 − 047 0.266 RLQ 44.08 −7.08201 6.72 2.0822 7.90 0.270 −8.49 −18.62 −9.44
1136 − 135 0.554 RLQ 46.78 −9.14201 8.78 4.1422 9.32 0.555 −12.94 −23.07 −13.89
1137 + 660 0.656 RLQ 46.85 −9.72201 9.36 4.7222 10.41 0.659 −14.16 −24.29 −15.11
1150 + 497 0.334 RLQ 45.98 −9.09201 8.73 4.0922 10.02 0.340 −12.26 −22.39 −13.21
1151 − 348 0.258 RLQ 45.56 −9.38201 9.02 4.3822 11.02 0.287 −12.26 −22.39 −13.21
1200 − 051 0.381 RLQ 46.41 −8.77201 8.41 3.7722 8.95 0.382 −12.26 −22.39 −13.21
1202 − 262 0.789 RLQ 45.81 −9.36201 9.00 4.3622 10.73 0.804 −13.76 −23.89 −14.71
1217 + 023 0.240 RLQ 45.83 −8.77201 8.41 3.7722 9.53 0.244 −11.34 −21.47 −12.29
1237 − 101 0.751 RLQ 46.63 −9.64201 9.28 4.6422 10.47 0.755 −14.19 −24.32 −15.14
1244 − 255 0.633 RLQ 46.48 −9.40201 9.04 4.4022 10.14 0.637 −13.55 −23.69 −14.51
1250 + 568 0.321 RLQ 45.61 −8.78201 8.42 3.7822 9.77 0.327 −11.67 −21.81 −12.62
1253 − 055 0.536 RLQ 46.10 −8.79201 8.43 3.7922 9.30 0.538 −12.28 −22.42 −13.24
1254 − 333 0.190 RLQ 45.52 −9.19201 8.83 4.1922 10.68 0.210 −11.83 −21.96 −12.78
1302 − 102 0.286 RLQ 45.86 −8.66201 8.30 3.6622 9.28 0.289 −11.34 −21.47 −12.29
1352 − 104 0.332 RLQ 45.81 −8.51201 8.15 3.5122 9.03 0.334 −11.24 −21.37 −12.19
1354 + 195 0.720 RLQ 47.11 −9.80201 9.44 4.8022 10.31 0.722 −14.42 −24.55 −15.37
1355 − 416 0.313 RLQ 46.48 −10.09201 9.73 5.0922 11.52 0.331 −13.94 −24.07 −14.89
1359 − 281 0.803 RLQ 46.19 −8.43201 8.07 3.4322 8.49 0.804 −12.16 −22.29 −13.11
1450 − 338 0.368 RLQ 43.94 −6.82201 6.46 1.8222 7.52 0.371 −8.40 −18.53 −9.35
1451 − 375 0.314 RLQ 46.16 −9.18201 8.82 4.1822 10.02 0.319 −12.35 −22.48 −13.30
1458 + 718 0.905 RLQ 46.93 −9.34201 8.98 4.3422 9.57 0.906 −13.91 −24.04 −14.86
1509 + 022 0.219 RLQ 44.54 −8.35201 7.99 3.3522 9.98 0.247 −10.51 −20.64 −11.46
1510 − 089 0.361 RLQ 46.38 −9.01201 8.65 4.0122 9.46 0.363 −12.21 −22.34 −13.16
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Table 3: Continued.
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1545 + 210 0.266 RLQ 45.86 −9.29201 8.93 4.2922 10.54 0.278 −12.36 −22.49 −13.31
1546 + 027 0.412 RLQ 46.00 −9.08201 8.72 4.0822 9.98 0.417 −12.48 −22.61 −13.43
1555 − 140 0.097 RLQ 44.94 −7.61201 7.25 2.6122 8.10 0.099 −8.39 −18.53 −9.34
1611 + 343 1.401 RLQ 46.99 −9.93201 9.57 4.9322 10.69 1.405 −15.54 −25.67 −16.49
1634 + 628 0.988 RLQ 45.47 −7.64201 7.28 2.6422 7.63 0.989 −11.05 −21.18 −12.00
1637 + 574 0.750 RLQ 46.68 −9.54201 9.18 4.5422 10.22 0.753 −14.01 −24.14 −14.96
1641 + 399 0.594 RLQ 46.89 −9.78201 9.42 4.7822 10.49 0.597 −14.14 −24.27 −15.09
1642 + 690 0.751 RLQ 45.78 −8.12201 7.76 3.1222 8.28 0.752 −11.53 −21.66 −12.48
1656 + 053 0.879 RLQ 47.21 −9.98201 9.62 4.9822 10.57 0.882 −14.99 −25.12 −15.94
1706 + 006 0.449 RLQ 44.01 −6.99210 6.63 2.9922 7.79 0.453 −8.92 −19.06 −9.87
1721 + 343 0.206 RLQ 45.63 −8.40201 8.04 3.4022 8.99 0.209 −10.53 −20.66 −11.48
1725 + 044 0.293 RLQ 46.07 −8.43201 8.07 3.4322 8.61 0.294 −10.96 −21.09 −11.91

spacetime deformation theory [82] by new investigation of
building up the distortion-complex of spacetime continuum
and showing how it restores the world-deformation tensor,
which still has been put in by hand. We extend neces-
sary geometrical ideas of spacetime deformation in concise
form, without going into the subtleties, as applied to the
gravitation theory which underlies the MTBH framework. I
have attempted to maintain a balance between being overly
detailed and overly schematic. Therefore the text in the
appendices should resemble a “hybrid” of a new investigation
and some issues of proposed gravitation theory.

A.1. A First Glance at Spacetime Deformation. Consider a
smooth deformation map Ω : 𝑀

4
→ M̃

4
, written

in terms of the world-deformation tensor (Ω), the general
(M̃

4
), and flat (𝑀

4
) smooth differential 4D-manifolds. The

following notational conventions will be used throughout
the appendices. All magnitudes related to the space, M̃

4
,

will be denoted by an over “̃”. We use the Greek alphabet
(𝜇, ], 𝜌, . . . = 0, 1, 2, 3) to denote the holonomic world
indices related to M̃

4
and the second half of Latin alphabet

(𝑙, 𝑚, 𝑘, . . . = 0, 1, 2, 3) to denote the world indices related to
𝑀

4
.The tensor,Ω, can be written in the formΩ = �̃��̃� (Ω𝑚

𝑙
=

�̃�
𝑚

𝜇
�̃�
𝜇

𝑙
), where the DC-members are the invertible distortion

matrix �̃�(�̃�𝑚

𝜇
) and the tensor �̃�(�̃�𝜇

𝑙
≡ 𝜕

𝑙
�̃�
𝜇 and 𝜕

𝑙
= 𝜕/𝜕𝑥

𝑙).
The principle foundation of theworld-deformation tensor (Ω)
comprises the following two steps: (1) the basis vectors 𝑒

𝑚
at

given point (𝑝 ∈ 𝑀
4
) undergo the distortion transformations

by means of �̃�; and (2) the diffeomorphism �̃�𝜇(𝑥) : 𝑀
4
→

�̃�
4
is constructed by seeking new holonomic coordinates

�̃�
𝜇
(𝑥) as the solutions of the first-order partial differential

equations. Namely,

�̃�
𝜇
= �̃�

𝑙

𝜇
𝑒
𝑙
, �̃�

𝜇
�̃�
𝜇

𝑙
= Ω

𝑚

𝑙
𝑒
𝑚
, (A.1)

where the conditions of integrability, 𝜕
𝑘
𝜓
𝜇

𝑙
= 𝜕

𝑙
𝜓
𝜇

𝑘
, and

nondegeneracy, ‖𝜓‖ ̸= 0, necessarily hold [83, 84]. For
reasons that will become clear in the sequel, next we write
the norm 𝑑�̃� ≡ 𝑖�̃� (see Appendix B) of the infinitesimal

displacement 𝑑�̃�𝜇 on the M̃
4
in terms of the spacetime

structures of𝑀
4

𝑖�̃� = �̃��̃� = �̃�
𝜇
⊗ �̃�

𝜇

= Ω
𝑚

𝑙
𝑒
𝑚
⊗ 𝜗

𝑙
∈ M̃

4
. (A.2)

A deformation Ω : 𝑀
4
→ M̃

4
comprises the following

two 4D deformations
∘

Ω : 𝑀
4
→ 𝑉

4
and Ω̆ : 𝑉

4
→

�̃�
4
, where 𝑉

4
is the semi-Riemannian space and

∘

Ω and
Ω̆ are the corresponding world deformation tensors. The
key points of the theory of spacetime deformation are
outlined further in Appendix B. Finally, to complete this
theory we need to determine �̃� and �̃�, figured in (A.1). In
the standard theory of gravitation they can be determined
from the standard field equations by means of the general
linear frames (C.10). However, it should be emphasized that
the standard Riemannian space interacting quantum field
theory cannot be a satisfactory ground for addressing the
most important processes of rearrangement of vacuum state
and gauge symmetry breaking in gravity at huge energies.
The difficulties arise there because Riemannian geometry,
in general, does not admit a group of isometries, and it
is impossible to define energy-momentum as Noether local
currents related to exact symmetries. This, in turn, posed
severe problem of nonuniqueness of the physical vacuum and
the associated Fock space. A definition of positive frequency
modes cannot, in general, be unambiguously fixed in the past
and future, which leads to |in⟩ ̸= |out⟩, because the state |in⟩
is unstable against decay intomany particle |out⟩ states due to
interaction processes allowed by lack of Poincaré invariance.
A nontrivial Bogolubov transformation between past and
future positive frequency modes implies that particles are
created from the vacuum and this is one of the reasons for
|in⟩ ̸= |out⟩.

A.2. General Gauge Principle. Keeping in mind the aforesaid,
we develop the alternative framework of the general gauge
principle (GGP), which is the distortion gauge induced fiber-
bundle formulation of gravitation. As this principle was in
use as a guide in constructing our theory, we briefly discuss
its general implications in Appendix D.The interested reader
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Table 4: Seed black hole intermediate masses, preradiation times, redshifts, and neutrino fluxes from observed stellar velocity dispersions.
Columns: (1) name, (2) redshift, (3) AGN type: SY2: Seyfert 2, (4) log of the bolometric luminosity (ergs−1), (5) log of the radius of protomatter
core in special unit 𝑟OV = 13.68 km, (6) log of the black hole mass in solar masses, (7) log of the seed black hole intermediate mass in
solar masses, (8) log of the neutrino preradiation time (yrs), (9) redshift of seed black hole, (10) 𝐽𝑖=𝑞, (11) 𝐽𝑖=URCA, and (12) 𝐽𝑖=𝜋, where
𝐽
𝑖
≡ log(𝐽𝑖V𝜀/𝜀𝑑 erg cm

−2 s−1 sr−1).

Name 𝑧 Type log 𝐿bol log(
𝑅
𝑑

𝑟ov
) log(𝑀BH

𝑀
⊙

) log(
𝑀

Seed
BH

𝑀
⊙

) log𝑇BH 𝑧
Seed

𝐽
𝑞

𝐽
URCA

𝐽
𝜋

NGC 1566 0.005 SY1 44.45 −7.28201 6.92 2.2822 7.93 0.008 −5.15 −15.28 −6.10
NGC 2841 0.002 SY1 43.67 −8.57201 8.21 3.5722 11.29 0.347 −6.60 −16.74 −7.55
NGC 3982 0.004 SY1 43.54 −6.45201 6.09 1.45220 7.18 0.008 −3.50 −13.63 −4.45
NGC 3998 0.003 SY1 43.54 −9.31201 8.95 4.3122 12.90 2.561 −8.25 −18.38 −9.20
Mrk 10 0.029 SY1 44.61 −7.83291 7.47 4.7908 8.87 0.036 −7.66 −17.79 −8.61
UGC 3223 0.016 SY1 44.27 −7.38201 7.02 2.3822 8.31 0.022 −6.34 −16.47 −7.29
NGC 513 0.002 SY2 42.52 −8.01201 7.65 3.0122 11.32 1.345 −5.62 −15.76 −6.57
NGC 788 0.014 SY2 44.33 −7.87201 7.51 2.8722 9.23 0.029 −7.08 −17.21 −8.03
NGC 1052 0.005 SY2 43.84 −8.55201 8.19 3.5522 11.08 0.228 −7.37 −17.50 −8.32
NGC 1275 0.018 SY2 45.04 −8.87201 8.51 3.8722 10.52 0.047 −9.05 −19.19 −10.01
NGC 1320 0.009 SY2 44.02 −7.54201 7.18 2.5422 8.88 0.023 −6.12 −16.25 −7.07
NGC 1358 0.013 SY2 44.37 −8.24201 7.88 3.2422 9.93 0.045 −7.66 −17.80 −8.62
NGC 1386 0.003 SY2 43.38 −7.60201 7.24 2.6022 9.64 0.075 −0.020 −15.39 −6.21
NGC 1667 0.015 SY2 44.69 −8.24201 7.88 3.2422 9.61 0.030 −7.79 −17.92 −8.74
NGC 2110 0.008 SY2 44.10 −8.66201 8.30 3.6622 11.04 0.166 −7.97 −18.10 −8.92
NGC 2273 0.006 SY2 44.05 −7.66201 7.30 2.6622 9.09 0.024 −5.97 −16.10 −6.92
NGC 2992 0.008 SY2 43.92 −8.08201 7.72 3.0822 10.06 0.071 −6.96 −17.09 −7.91
NGC 3185 0.004 SY2 43.08 −6.42201 6.06 1.4222 7.58 0.014 −3.45 −13.58 −4.40
NGC 3362 0.028 SY2 44.27 −7.13201 6.77 2.1322 7.81 0.031 −6.40 −16.54 −7.36
NGC 3786 0.009 SY2 43.47 −7.89201 7.53 2.8922 10.13 0.123 −6.73 −16.86 −7.68
NGC 4117 0.003 SY2 43.64 −7.19201 6.83 2.1922 8.56 0.018 −4.54 −14.67 −5.49
NGC 4339 0.004 SY2 43.38 −7.76201 7.40 2.7622 9.96 0.108 −5.79 −15.92 −6.74
NGC 5194 0.002 SY2 43.79 −7.31201 6.95 2.3122 8.65 0.016 −4.40 −14.53 −5.35
NGC 5252 0.023 SY2 45.39 −8.40201 8.04 3.4022 9.23 0.027 −8.45 −18.58 −9.40
NGC 5273 0.004 SY2 43.03 −6.87201 6.51 1.8722 8.53 0.034 −4.23 −14.36 −5.18
NGC 5347 0.008 SY2 43.81 −7.15201 6.79 2.1522 8.31 0.018 −5.33 −15.46 −6.28
NGC 5427 0.009 SY2 44.12 −6.75201 6.39 1.7522 7.20 0.011 −4.73 −14.86 −5.68
NGC 5929 0.008 SY2 43.04 −7.61201 7.25 2.6122 10.00 0.169 −6.13 −16.27 −7.09
NGC 5953 0.007 SY2 44.05 −7.30201 6.94 2.3022 8.37 0.015 −5.48 −15.61 −6.43
NGC 6104 0.028 SY2 43.60 −7.96201 7.60 2.9622 10.14 0.128 −7.86 −17.99 −8.81
NGC 7213 0.006 SY2 44.30 −8.35201 7.99 3.3522 10.22 0.055 −7.18 −17.31 −8.13
NGC 7319 0.023 SY2 44.19 −7.74201 7.38 2.7422 9.11 0.038 −7.30 −17.43 −8.25
NGC 7603 0.030 SY2 44.66 −8.44201 8.08 3.4422 10.04 0.056 −8.76 −18.89 −9.71
NGC 7672 0.013 SY2 43.86 −7.24201 6.88 2.2422 8.44 0.023 −5.91 −16.05 −6.87
NGC 7682 0.017 SY2 43.93 −7.64201 7.28 2.6422 9.17 0.039 −6.85 −16.98 −7.80
NGC 7743 0.006 SY2 43.60 −6.95201 6.59 1.9522 8.12 0.016 −4.73 −14.86 −5.68
Mrk 1 0.016 SY2 44.20 −7.52201 7.16 2.5222 8.66 0.025 −6.59 −16.72 −7.54
Mrk 3 0.014 SY2 44.54 −9.01201 8.65 4.0122 11.30 0.142 −9.08 −19.21 −10.03
Mrk 78 0.037 SY2 44.59 −8.23201 7.87 3.2322 9.69 0.056 −8.58 −18.71 −9.53
Mrk 270 0.010 SY2 43.37 −7.96201 7.60 2.9622 10.37 0.179 −6.94 −17.07 −7.89
Mrk 348 0.015 SY2 44.27 −7.57201 7.21 2.5722 8.69 0.024 −6.62 −16.75 −7.57
Mrk 533 0.029 SY2 45.15 −7.92201 7.56 2.9222 8.51 0.032 −7.82 −17.95 −8.77
Mrk 573 0.017 SY2 44.44 −7.64201 7.28 2.6422 8.66 0.024 −6.85 −16.98 −7.80
Mrk 622 0.023 SY2 44.52 −7.28201 6.92 2.2822 7.86 0.026 −6.49 −16.62 −7.44
Mrk 686 0.014 SY2 44.11 −7.92201 7.56 2.9222 9.55 0.042 −7.17 −17.30 −8.12
Mrk 917 0.024 SY2 44.75 −7.98201 7.62 2.9822 9.03 0.031 −7.75 −17.89 −8.70
Mrk 1018 0.042 SY2 44.39 −8.45201 8.09 3.4522 10.33 0.092 −9.08 −19.21 −10.03
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Table 4: Continued.

Name 𝑧 Type log 𝐿bol log(
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𝐽
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𝐽
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Mrk 1040 0.017 SY2 44.53 −8.00201 7.64 3.0022 9.29 0.030 −7.48 −17.61 −8.43
Mrk 1066 0.012 SY2 44.55 −7.37201 7.01 2.3722 8.01 0.015 −6.07 −16.20 −7.02
Mrk 1157 0.015 SY2 44.27 −7.19201 6.83 2.1922 7.93 0.019 −5.95 −16.08 −6.90
Akn 79 0.018 SY2 45.24 −7.90201 7.54 2.9022 8.38 0.020 −7.36 −17.49 −8.31
Akn 347 0.023 SY2 44.84 −8.36201 8.00 3.3622 9.70 0.037 −8.38 −18.51 −9.33
IC 5063 0.011 SY2 44.53 −8.10201 7.74 3.1022 9.49 0.027 −7.27 −17.40 −8.22
II ZW55 0.025 SY2 44.54 −8.59201 8.23 3.5922 10.46 0.074 −8.86 −18.99 −9.81
F 341 0.016 SY2 44.13 −7.51201 7.15 2.5122 8.71 0.026 −6.57 −16.70 −7.52
UGC 3995 0.016 SY2 44.39 −8.05201 7.69 3.0522 9.53 0.036 −7.52 −17.65 −8.47
UGC 6100 0.029 SY2 44.48 −8.06201 7.70 3.0622 9.46 0.046 −8.06 −18.20 −9.01
1ES 1959 + 65 0.048 BLL — −10.39501 8.09 3.4522 7.79 0.052 −9.20 −19.34 −10.15
Mrk 180 0.045 BLL — −10.51501 8.21 3.5722 7.91 0.051 −9.35 −19.49 −10.31
Mrk 421 0.031 BLL — −10.59501 8.29 3.6522 7.99 0.038 −9.16 −19.29 −10.11
Mrk 501 0.034 BLL — −11.51501 9.21 4.5722 8.91 0.092 −10.85 −20.98 −11.80
I Zw 187 0.055 BLL — −10.16501 7.86 3.2222 7.56 0.058 −8.93 −19.06 −9.88
3C 371 0.051 BLL — −10.81501 8.51 3.8722 8.21 0.063 −9.99 −20.13 −10.95
1514 − 241 0.049 BLL — −10.40501 8.10 3.4622 7.80 0.054 −9.24 −19.37 −10.19
0521 − 365 0.055 BLL — −10.95501 8.65 4.0122 8.35 0.071 −10.31 −20.44 −11.26
0548 − 322 0.069 BLL — −10.45501 8.15 3.5122 7.85 0.074 −9.65 −19.78 −10.60
0706 + 591 0.125 BLL — −10.56501 8.26 3.6222 7.96 0.132 −10.41 −20.54 −11.36
2201 + 044 0.027 BLL — −10.40501 8.10 3.4622 7.80 0.032 −8.70 −18.83 −9.65
2344 + 514 0.044 BLL — −11.10501 8.80 4.1622 8.50 0.067 −10.37 −20.50 −11.32
3C 29 0.045 RG — −10.50501 8.20 3.5622 7.90 0.051 −9.34 −19.47 −10.29
3C 31 0.017 RG — −10.80501 8.50 3.8622 8.20 0.028 −8.99 −19.12 −9.94
3C 33 0.059 RG — −10.68501 8.38 3.7422 8.08 0.068 −9.90 −20.03 −10.85
3C 40 0.018 RG — −10.16501 7.86 3.2222 7.56 0.021 −7.92 −18.05 −8.87
3C 62 0.148 RG — −10.97501 8.67 4.0322 8.37 0.165 −11.29 −21.43 −12.25
3C 76.1 0.032 RG — −10.43501 8.13 3.4922 7.83 0.037 −8.90 −19.04 −9.86
3C 78 0.029 RG — −10.90501 8.60 3.9622 8.30 0.043 −9.64 −19.77 −10.59
3C 84 0.017 RG — −10.79501 8.49 3.8522 8.19 0.028 −8.97 −19.10 −9.92
3C 88 0.030 RG — −10.33501 8.03 3.3922 7.73 0.034 −8.67 −18.80 −9.62
3C 89 0.139 RG — −10.82501 8.52 3.8822 8.22 0.151 −10.97 −21.10 −11.92
3C 98 0.031 RG — −10.18501 7.88 3.2422 7.58 0.034 −8.44 −18.57 −9.39
3C 120 0.033 RG — −10.43501 8.13 3.4922 7.83 0.038 −8.93 −19.06 −9.88
3C 192 0.060 RG — −10.36501 8.06 3.4222 7.76 0.064 −9.36 −19.49 −10.31
3C 196.1 0.198 RG — −10.51501 8.21 3.5722 7.91 0.204 −10.79 −20.92 −11.74
3C 223 0.137 RG — −10.45501 8.15 3.5122 7.85 0.142 −10.31 −20.44 −11.26
3C 293 0.045 RG — −10.29501 7.99 3.3522 7.69 0.048 −8.97 −19.10 −9.92
3C 305 0.041 RG — −10.22501 7.92 3.2822 7.62 0.044 −8.76 −18.89 −9.71
3C 338 0.030 RG — −11.08501 8.78 4.1422 8.48 0.052 −9.98 −20.12 −10.93
3C 388 0.091 RG — −11.48501 9.18 4.5422 8.88 0.145 −11.71 −21.84 −12.66
3C 444 0.153 RG — −9.98501 7.68 3.0422 7.38 0.155 −9.60 −19.73 −10.55
3C 449 0.017 RG — −10.63501 8.33 3.6922 8.03 0.025 −8.69 −18.82 −9.64
gin 116 0.033 RG — −11.05501 8.75 4.1122 8.45 0.053 −10.02 −20.15 −10.97
NGC 315 0.017 RG — −11.20501 8.90 4.2622 8.60 0.045 −9.69 −19.82 −10.64
NGC 507 0.017 RG — −11.30501 9.00 4.3622 8.70 0.053 −9.86 −19.99 −10.81
NGC 708 0.016 RG — −10.76501 8.46 3.8222 8.16 0.026 −8.86 −18.99 −9.81
NGC 741 0.018 RG — −11.02501 8.72 4.0822 8.42 0.037 −9.42 −19.55 −10.37
NGC 4839 0.023 RG — −10.78501 8.48 3.8422 8.18 0.034 −9.22 −19.35 −10.17
NGC 4869 0.023 RG — −10.42501 8.12 3.4822 7.82 0.028 −8.59 −18.72 −9.54
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Table 4: Continued.

Name 𝑧 Type log 𝐿bol log(
𝑅
𝑑

𝑟ov
) log(𝑀BH

𝑀
⊙

) log(
𝑀

Seed
BH

𝑀
⊙

) log𝑇BH 𝑧
Seed

𝐽
𝑞

𝐽
URCA

𝐽
𝜋

NGC 4874 0.024 RG — −10.93501 8.63 3.9922 8.33 0.039 −9.52 −19.65 −10.47
NGC 6086 0.032 RG — −11.26501 8.96 4.3222 8.66 0.065 −10.36 −20.49 −11.31
NGC 6137 0.031 RG — −11.11501 8.81 4.1722 8.51 0.054 −10.07 −20.20 −11.02
NGC 7626 0.025 RG — −11.27501 8.97 4.3322 8.67 0.058 −10.15 −20.28 −11.10
0039 − 095 0.000 RG — −11.02501 8.72 4.0822 8.42 0.019 −2.89 −13.02 −3.84
0053 − 015 0.038 RG — −11.12501 8.82 4.1822 8.52 0.062 −10.27 −20.40 −11.22
0053 − 016 0.043 RG — −10.81501 8.51 3.8722 8.21 0.055 −9.84 −19.97 −10.79
0055 − 016 0.045 RG — −11.15501 8.85 4.2122 8.55 0.070 −10.47 −20.61 −11.43
0110 + 152 0.044 RG — −10.39501 8.09 3.4522 7.79 0.048 −9.12 −19.26 −10.07
0112 − 000 0.045 RG — −10.83501 8.53 3.8922 8.23 0.057 −9.91 −20.05 −10.87
0112 + 084 0.000 RG — −11.48501 9.18 4.5422 8.88 0.054 −3.70 −13.83 −4.65
0147 + 360 0.018 RG — −10.76501 8.46 3.8222 8.16 0.028 −3.70 −13.83 −4.65
0131 − 360 0.030 RG — −10.83501 8.53 3.8922 8.23 0.042 −9.55 −19.68 −10.50
0257 − 398 0.066 RG — −10.59501 8.29 3.6522 7.99 0.073 −9.85 −19.98 −10.80
0306 + 237 0.000 RG — −10.81501 8.51 3.8722 8.21 0.012 −2.52 −12.66 −3.48
0312 − 343 0.067 RG — −10.87501 8.57 3.9322 8.27 0.080 −10.35 −20.48 −11.30
0325 + 024 0.030 RG — −10.59501 8.29 3.6522 7.99 0.037 −9.13 −19.26 −10.08
0431 − 133 0.033 RG — −10.95501 8.65 4.0122 8.35 0.049 −9.84 −19.97 −10.79
0431 − 134 0.035 RG — −10.61501 8.31 3.6722 8.01 0.042 −9.30 −19.43 −10.25
0449 − 175 0.031 RG — −10.02501 7.72 3.0822 7.42 0.033 −8.16 −18.29 −9.11
0546 − 329 0.037 RG — −11.59501 9.29 4.6522 8.99 0.107 −11.07 −21.20 −12.02
0548 − 317 0.034 RG — −9.58501 7.28 2.6422 6.98 0.035 −7.47 −17.60 −8.42
0634 − 206 0.056 RG — −10.39501 8.09 3.4522 7.79 0.060 −9.35 −19.48 −10.30
0718 − 340 0.029 RG — −11.31501 9.01 4.3722 8.71 0.066 −10.36 −20.49 −11.31
0915 − 118 0.054 RG — −10.99501 8.69 4.0522 8.39 0.072 −10.36 −20.49 −11.31
0940 − 304 0.038 RG — −11.59501 9.29 4.6522 8.99 0.108 −11.09 −21.22 −12.04
1043 − 290 0.060 RG — −10.67501 8.37 3.7322 8.07 0.068 −9.90 −20.03 −10.85
1107 − 372 0.010 RG — −11.11501 8.81 4.1722 8.51 0.033 −9.06 −19.19 −10.01
1123 − 351 0.032 RG — −11.83501 9.53 4.8922 9.23 0.153 −11.35 −21.49 −12.31
1258 − 321 0.015 RG — −10.91501 8.61 3.9722 8.31 0.030 −9.07 −19.20 −10.02
1333 − 337 0.013 RG — −11.07501 8.77 4.1322 8.47 0.034 −9.22 −19.35 −10.17
1400 − 337 0.014 RG — −11.19501 8.89 4.2522 8.59 0.042 −9.50 −19.63 −10.45
1404 − 267 0.022 RG — −11.11505 8.81 4.8798 8.51 0.045 −9.76 −19.89 −10.71
1510 + 076 0.053 RG — −11.33501 9.03 4.3922 8.73 0.091 −10.94 −21.07 −11.89
1514 + 072 0.035 RG — −10.95501 8.65 4.0122 8.35 0.051 −9.90 −20.03 −10.85
1520 + 087 0.034 RG — −10.59501 8.29 3.6522 7.99 0.041 −9.24 −19.37 −10.19
1521 − 300 0.020 RG — −10.10501 7.80 3.1622 7.50 0.022 −7.91 −18.04 −8.86
1602 + 178 0.041 RG — −10.54501 8.24 3.6022 7.94 0.047 −9.32 −19.45 −10.27
1610 + 296 0.032 RG — −11.26501 8.96 4.3222 8.66 0.065 −10.36 −20.49 −11.31
2236 − 176 0.070 RG — −10.79501 8.49 3.8522 8.19 0.081 −10.25 −20.39 −11.20
2322 + 143 0.045 RG — −10.47501 8.17 3.5322 7.87 0.050 −9.28 −19.42 −10.24
2322 − 122 0.082 RG — −10.63501 8.33 3.6922 8.03 0.090 −10.12 −20.25 −11.07
2333 − 327 0.052 RG — −10.95501 8.65 4.0122 8.35 0.068 −10.26 −20.39 −11.21
2335 + 267 0.030 RG — −11.38501 9.08 4.4422 8.78 0.073 −10.51 −20.64 −11.46

is invited to consult the original paper [74] for details.
In this, we restrict ourselves to consider only the simplest
spacetime deformation map, Ω̃ : 𝑀

4
→ 𝑉

4
(Ω̆

𝜇

] ≡

𝛿
𝜇

] ). This theory accounts for the gravitation gauge group
𝐺
𝑉
generated by the hidden local internal symmetry 𝑈loc.

We assume that a distortion massless gauge field 𝑎(𝑥) (≡
𝑎
𝑛
(𝑥)) has to act on the external spacetime groups. This

field takes values in the Lie algebra of the abelian group
𝑈

loc. We pursue a principle goal of building up the world-
deformation tensor, Ω̃(𝐹) = �̃�(𝑎)�̃�(𝑎), where 𝐹 is the
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Table 5: Seed black hole intermediate masses, preradiation times, redshifts, and neutrino fluxes from fundamental plane-derived velocity
dispersions. Columns: (1) name, (2) redshift, (3) AGN type: SY2: Seyfert 2, (4) log of the bolometric luminosity (ergs−1), (5) log of the radius
of protomatter core in special unit 𝑟OV = 13.68 km, (6) log of the black hole mass in solar masses, (7) log of the seed black hole intermediate
mass in solar masses, (8) log of the neutrino preradiation time (yrs), (9) redshift of seed black hole, (10) 𝐽𝑖=𝑞, (11) 𝐽𝑖=URCA, and (12) 𝐽𝑖=𝜋, where
𝐽
𝑖
≡ log(𝐽𝑖V𝜀/𝜀𝑑 erg cm

−2 s−1 sr−1).

Name 𝑧 Type log(
𝑅
𝑑

𝑟ov
) log(𝑀BH

𝑀
⊙

) log(
𝑀

Seed
BH

𝑀
⊙

) log𝑇BH 𝑧
Seed

𝐽
𝑞

𝐽
URCA

𝐽
𝜋

0122 + 090 0.339 BLL −11.12501 8.82 4.1822 8.52 0.363 −12.43 −22.57 −13.39
0145 + 138 0.124 BLL −10.72501 8.42 3.7822 8.12 0.133 −10.68 −20.81 −11.63
0158 + 001 0.229 BLL −10.38501 8.08 3.4422 7.78 0.233 −10.71 −20.84 −11.66
0229 + 200 0.139 BLL −11.54501 9.24 4.6022 8.94 0.201 −12.23 −22.36 −13.18
0257 + 342 0.247 BLL −10.96501 8.66 4.0222 8.36 0.263 −11.81 −21.94 −12.76
0317 + 183 0.190 BLL −10.25501 7.95 3.3122 7.65 0.193 −10.29 −20.42 −11.24
0331 − 362 0.308 BLL −11.05501 8.75 4.1122 8.45 0.328 −12.21 −22.34 −13.16
0347 − 121 0.188 BLL −10.95501 8.65 4.0122 8.35 0.204 −11.50 −21.63 −12.45
0350 − 371 0.165 BLL −11.12501 8.82 4.1822 8.52 0.189 −11.67 −21.80 −12.62
0414 + 009 0.287 BLL −10.86501 8.56 3.9222 8.26 0.300 −11.80 −21.93 −12.75
0419 + 194 0.512 BLL −10.91501 8.61 3.9722 8.31 0.527 −12.54 −22.68 −13.50
0506 − 039 0.304 BLL −11.05501 8.75 4.1122 8.45 0.324 −12.19 −22.32 −13.14
0525 + 713 0.249 BLL −11.33501 9.03 4.3922 8.73 0.287 −12.46 −22.60 −13.41
0607 + 710 0.267 BLL −10.95501 8.65 4.0122 8.35 0.283 −12.46 −22.60 −13.41
0737 + 744 0.315 BLL −11.24501 8.94 4.3022 8.64 0.346 −12.56 −22.69 −13.51
0922 + 749 0.638 BLL −11.91501 9.61 4.9722 9.31 0.784 −14.56 −24.69 −15.51
0927 + 500 0.188 BLL −10.64501 8.34 3.7022 8.04 0.196 −10.96 −21.09 −11.91
0958 + 210 0.344 BLL −11.33501 9.03 4.3922 8.73 0.382 −12.82 −22.95 −13.77
1104 + 384 0.031 BLL −11.69501 9.39 4.7522 9.09 0.119 −11.08 −21.21 −12.03
1133 + 161 0.460 BLL −10.62501 8.32 3.6822 8.02 0.467 −11.91 −22.04 −12.86
1136 + 704 0.045 BLL −11.25501 8.95 4.3122 8.65 0.077 −10.65 −20.78 −11.60
1207 + 394 0.615 BLL −11.40501 9.10 4.4622 8.80 0.660 −13.62 −23.76 −14.58
1212 + 078 0.136 BLL −11.29501 8.99 4.3522 8.69 0.171 −11.77 −21.90 −12.72
1215 + 303 0.130 BLL −10.42501 8.12 3.4822 7.82 0.135 −10.20 −20.33 −11.15
1218 + 304 0.182 BLL −10.88501 8.58 3.9422 8.28 0.196 −11.35 −21.48 −12.30
1221 + 245 0.218 BLL −10.27501 7.97 3.3322 7.67 0.221 −10.47 −20.60 −11.42
1229 + 643 0.164 BLL −11.71501 9.41 4.7722 9.11 0.256 −12.69 −22.82 −13.64
1248 − 296 0.370 BLL −11.31501 9.01 4.3722 8.71 0.407 −12.87 −23.00 −13.82
1255 + 244 0.141 BLL −10.88501 8.58 3.9422 8.28 0.155 −11.09 −21.22 −12.04
1407 + 595 0.495 BLL −11.60501 9.30 4.6622 9.00 0.566 −13.71 −23.84 −14.66
1418 + 546 0.152 BLL −11.33501 9.03 4.3922 8.73 0.190 −11.95 −22.08 −12.90
1426 + 428 0.129 BLL −11.43501 9.13 4.4922 8.83 0.177 −11.96 −22.09 −12.91
1440 + 122 0.162 BLL −10.74501 8.44 3.8022 8.14 0.172 −10.98 −21.11 −11.93
1534 + 014 0.312 BLL −11.10501 8.80 4.1622 8.50 0.335 −12.31 −22.44 −13.26
1704 + 604 0.280 BLL −11.07501 8.77 4.1322 8.47 0.301 −12.14 −22.27 −13.09
1728 + 502 0.055 BLL −10.43501 8.13 3.4922 7.83 0.060 −9.40 −19.53 −10.35
1757 + 703 0.407 BLL −11.05501 8.75 4.1122 8.45 0.427 −12.52 −22.65 −13.47
1807 + 698 0.051 BLL −12.40501 10.10 5.4622 9.80 0.502 −12.78 −22.91 −13.73
1853 + 671 0.212 BLL −10.53501 8.23 3.5922 7.93 0.218 −10.89 −21.02 −11.84
2005 − 489 0.071 BLL −11.33501 9.03 4.3922 8.73 0.109 −11.21 −21.34 −12.16
2143 + 070 0.237 BLL −10.76501 8.46 3.8222 8.16 0.247 −11.41 −21.54 −12.36
2200 + 420 0.069 BLL −10.53501 8.23 3.5922 7.93 0.075 −9.79 −19.92 −10.74
2254 + 074 0.190 BLL −10.92501 8.62 3.9822 8.32 0.205 −11.46 −21.59 −12.41
2326 + 174 0.213 BLL −11.04501 8.74 4.1022 8.44 0.233 −11.79 −21.92 −12.74
2356 − 309 0.165 BLL −10.90501 8.60 3.9622 8.30 0.179 −11.28 −21.41 −12.23
0230 − 027 0.239 RG −10.27501 7.97 3.3322 7.67 0.242 −10.56 −20.70 −11.52
0307 + 169 0.256 RG −10.96501 8.66 4.0222 8.36 0.272 −11.85 −21.98 −12.80
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Table 5: Continued.

Name 𝑧 Type log(
𝑅
𝑑

𝑟ov
) log(𝑀BH

𝑀
⊙

) log(
𝑀

Seed
BH

𝑀
⊙

) log𝑇BH 𝑧
Seed

𝐽
𝑞

𝐽
URCA

𝐽
𝜋

0345 + 337 0.244 RG −9.42501 7.12 2.4822 6.82 0.244 −9.10 −19.23 −10.05
0917 + 459 0.174 RG −10.51501 8.21 3.5722 7.91 0.180 −10.65 −20.78 −11.60
0958 + 291 0.185 RG −10.23501 7.93 3.2922 7.63 0.188 −10.23 −20.36 −11.18
1215 − 033 0.184 RG −10.23501 7.93 3.2922 7.63 0.187 −10.22 −20.35 −11.17
1215 + 013 0.118 RG −10.50501 8.20 3.5622 7.90 0.124 −10.25 −20.38 −11.20
1330 + 022 0.215 RG −10.12501 7.82 3.1822 7.52 0.217 −10.19 −20.32 −11.14
1342 − 016 0.167 RG −10.71501 8.41 3.7722 8.11 0.176 −10.96 −21.09 −11.91
2141 + 279 0.215 RG −10.12501 7.82 3.1822 7.52 0.217 −10.19 −20.32 −11.14
0257 + 024 0.115 RQQ −11.05501 8.75 4.1122 8.45 0.135 −11.18 −21.32 −12.13
1549 + 203 0.250 RQQ −9.22501 6.92 2.2822 6.62 0.250 −8.78 −18.91 −9.73
2215 − 037 0.241 RQQ −10.50501 8.20 3.5622 7.90 0.247 −10.98 −21.11 −11.93
2344 + 184 0.138 RQQ −9.37501 7.07 2.4322 6.77 0.138 −8.42 −18.56 −9.38
0958 + 291 0.185 RG −10.23501 7.93 3.2922 7.63 0.188 −10.23 −20.36 −11.18
1215 − 033 0.184 RG −10.23501 7.93 3.2922 7.63 0.187 −10.22 −20.35 −11.17
1215 + 013 0.118 RG −10.50501 8.20 3.5622 7.90 0.124 −10.25 −20.38 −11.20
1330 + 022 0.215 RG −10.12501 7.82 3.1822 7.52 0.217 −10.19 −20.32 −11.14
1342 − 016 0.167 RG −10.71501 8.41 3.7722 8.11 0.176 −10.96 −21.09 −11.91
2141 + 279 0.215 RG −10.12501 7.82 3.1822 7.52 0.217 −10.19 −20.32 −11.14
0257 + 024 0.115 RQQ −11.05501 8.75 4.1122 8.45 0.135 −11.18 −21.32 −12.13
1549 + 203 0.250 RQQ −9.22501 6.92 2.2822 6.62 0.250 −8.78 −18.91 −9.73
2215 − 037 0.241 RQQ −10.50501 8.20 3.5622 7.90 0.247 −10.98 −21.11 −11.93
2344 + 184 0.138 RQQ −9.37501 7.07 2.4322 6.77 0.138 −8.42 −18.56 −9.38

differential form of gauge field 𝐹 = (1/2)𝐹
𝑛𝑚
𝜗
𝑛
∧ 𝜗

𝑚. We
connect the structure group 𝐺

𝑉
, further, to the nonlinear

realization of the Lie group𝐺
𝐷
of distortion of extended space

𝑀
6
(→ �̃�

6
) (E.1), underlying the𝑀

4
.This extension appears

to be indispensable for such a realization. In using the 6D
language, we will be able to make a necessary reduction to
the conventional 4D space. The laws guiding this redaction
are given in Appendix E.The nonlinear realization technique
or the method of phenomenological Lagrangians [85–91]
provides a way to determine the transformation properties of
fields defined on the quotient space. In accordance, we treat
the distortion group 𝐺

𝐷
and its stationary subgroup 𝐻 =

𝑆𝑂(3), respectively, as the dynamical group and its algebraic
subgroup. The fundamental field is distortion gauge field
(a) and, thus, all the fundamental gravitational structures in
fact—the metric as much as the coframes and connections—
acquire a distortion-gauge induced theoretical interpretation.
We study the geometrical structure of the space of parameters
in terms of Cartan’s calculus of exterior forms and derive
the Maurer-Cartan structure equations, where the distortion
fields (a) are treated as the Goldstone fields.

A.3. A Rearrangement of Vacuum State. Addressing the
rearrangement of vacuum state, in realization of the group
𝐺
𝑉
we implement the abelian local group [74]

𝑈
loc
= 𝑈 (1)

𝑌
× 𝑈 (1) ≡ 𝑈 (1)

𝑌
× diag [𝑆𝑈 (2)] , (A.3)

on the space 𝑀
6
(spanned by the coordinates 𝜂), with

the group elements of exp[𝑖(𝑌/2)𝜃
𝑌
(𝜂)] of 𝑈(1)

𝑌
and

exp[𝑖𝑇3𝜃
3
(𝜂)] of𝑈(1).This group leads to the renormalizable

theory, because gauge invariance gives a conservation of
charge, and it also ensures the cancelation of quantum
corrections that would otherwise result in infinitely large
amplitudes. This has two generators, the third component
𝑇
3 of isospin �⃗� related to the Pauli spin matrix �⃗�/2, and

hypercharge 𝑌 implying 𝑄𝑑
= 𝑇

3
+ 𝑌/2, where 𝑄𝑑 is

the distortion charge operator assigning the number −1 to
particles, but +1 to antiparticles. The group (A.3) entails two
neutral gauge bosons of 𝑈(1), or that coupled to 𝑇3, and of
𝑈(1)

𝑌
, or that coupled to the hypercharge 𝑌. Spontaneous

symmetry breaking can be achieved by introducing the
neutral complex scalar Higgs field. Minimization of the
vacuum energy fixes the nonvanishing vacuum expectation
value (VEV), which spontaneously breaks the theory, leaving
the 𝑈(1)

𝑑
subgroup intact, that is, leaving one Goldstone

boson. Consequently, the left Goldstone boson is gauged
away from the scalar sector, but it essentially reappears in
the gauge sector providing the longitudinally polarized spin
state of one of gauge bosons which acquires mass through
its coupling to Higgs scalar. Thus, the two neutral gauge
bosons were mixed to form two physical orthogonal states
of the massless component of distortion field, (𝑎) (𝑀

𝑎
= 0),

which is responsible for gravitational interactions, and its
massive component, (𝑎) (𝑀

𝑎
̸= 0), which is responsible for

the ID-regime. Hence, a substantial change of the properties
of the spacetime continuum besides the curvature may arise
at huge energies.This theory is renormalizable, because gauge
invariance gives conservation of charge and also ensures the
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cancelation of quantum corrections that would otherwise
result in infinitely large amplitudes. Without careful thought
we expect that in this framework the renormalizability of the
theory will not be spoiled in curved space-time too, because
the infinities arise from ultraviolet properties of Feynman
integrals in momentum space which, in coordinate space, are
short distance properties, and locally (over short distances)
all the curved spaces look like maximally symmetric (flat)
space.

A.4. Model Building: Field Equations. The field equations
follow at once from the total gauge invariant Lagrangian
in terms of Euler-Lagrange variations, respectively, on both
curved and flat spaces. The Lagrangian of distortion gauge
field (𝑎) defined on the flat space is undegenerated Killing
form on the Lie algebra of the group 𝑈loc in adjoint repre-
sentation, which yields the equation of distortion field (F.1).
We are interested in the case of a spherical-symmetric grav-
itational field 𝑎

0
(𝑟) in presence of one-dimensional space-

like ID-field 𝑎 (F.6). In the case at hand, one has the group
of motions 𝑆𝑂(3) with 2D space-like orbits 𝑆2 where the
standard coordinates are �̃� and �̃�. The stationary subgroup of
𝑆𝑂(3) acts isotropically upon the tangent space at the point of
sphere 𝑆2 of radius �̃�. So, the bundle𝑝 : 𝑉

4
→ �̃�

2 has the fiber
𝑆
2
= 𝑝

−1
(�̃�), �̃� ∈ 𝑉

4
, with a trivial connection on it, where �̃�2

is the quotient-space 𝑉
4
/𝑆𝑂(3). Considering the equilibrium

configurations of degenerate barionic matter, we assume an
absence of transversal stresses and the transference of masses
in 𝑉

4

𝑇
1

1
= 𝑇

2

2
= 𝑇

3

3
= −�̃� (�̃�) , 𝑇

0

0
= −�̃� (�̃�) , (A.4)

where �̃�(�̃�) and �̃�(�̃�) (�̃� ∈ �̃�
3

) are taken to denote the
internal pressure and macroscopic density of energy defined
in proper frame of reference that is being used.The equations
of gravitation (𝑎

0
) and ID (𝑎) fields can be given in Feynman

gauge [71] as

Δ𝑎
0
=
1

2
{�̃�

00

𝜕�̃�
00

𝜕𝑎
0

�̃� (�̃�)

− [�̃�
33

𝜕�̃�
33

𝜕𝑎
0

+ �̃�
11

𝜕�̃�
11

𝜕𝑎
0

+ �̃�
22

𝜕�̃�
22

𝜕𝑎
0

] �̃� (�̃�)} ,

(Δ − 𝜆
−2

𝑎
) 𝑎 =

1

2
{�̃�

00

𝜕�̃�
00

𝜕𝑎
�̃� (�̃�)

− [�̃�
33

𝜕�̃�
33

𝜕𝑎
+�̃�

11

𝜕�̃�
11

𝜕𝑎
+�̃�

22

𝜕�̃�
22

𝜕𝑎
] �̃� (�̃�)}

× 𝜃 (𝜆
𝑎
− �̃�

−1/3
) ,

(A.5)

where �̃� is the concentration of particles and 𝜆
𝑎
= ℎ/𝑚

𝑎
𝑐 ≃

0.4 fm is the Compton lenghth of the ID-field (but substantial
ID-effects occur far below it), and a diffeomorphism �̃�(𝑟) :
𝑀

4
→ 𝑉

4
is given as 𝑟 = �̃� − 𝑅

𝑔
/4. A distortion of the

basis �̃� in the ID regime, in turn, yields the transformations
of Poincaré generators of translations. Given an explicit form
of distorted basis vectors (F.7), it is straightforward to derive
the laws of phase transition for individual particle found in
the ID-region (𝑥

0
= 0, 𝑥 ̸= 0) of the space-time continuum

tan �̃�
3
= −𝑥, �̃�

1
= �̃�

1
= 0. The Poincaré generators 𝑃

𝜇
of

translations are transformed as follows [71]:

�̃� = 𝐸, �̃�
1,2
= 𝑃

1,2
cos �̃�

3
,

�̃�
3
= 𝑃

3
− tan �̃�

3
𝑚𝑐,

�̃� =



(𝑚 − tan �̃�
3

𝑃
3

𝑐
)

2

+sin2�̃�
3

𝑃
2

1
+ 𝑃

2

2

𝑐2
− tan2�̃�

3

𝐸
2

𝑐4



1/2

,

(A.6)

where 𝐸, �⃗�, and𝑚 and �̃�, ̃⃗𝑃, and �̃� are ordinary and distorted
energy, momentum, andmass at rest. Hence thematter found
in the ID-region (𝑎 ̸= 0) of space-time continuum has
undergone phase transition of II-kind; that is, each particle
goes off from the mass shell—a shift of mass and energy-
momentum spectra occurs upwards along the energy scale.
The matter in this state is called protomatter with the ther-
modynamics differing strongly from the thermodynamics of
ordinary compressed matter. The resulting deformed metric
on 𝑉

4
in holonomic coordinate basis takes the form

�̃�
00
= (1 − 𝑥

0
)
2

+ 𝑥
2
, �̃�

𝜇] = 0 (𝜇 ̸= ]) ,

�̃�
33
= − [(1 + 𝑥

0
)
2

+ 𝑥
2
] , �̃�

11
= −�̃�

2
,

�̃�
22
= −�̃�

2sin2�̃�.

(A.7)

As a workingmodel we assume the SPC-configurations given
in Appendix G, which are composed of spherical-symmetric
distribution of matter in many-phase stratified states. This
is quick to estimate the main characteristics of the equi-
librium degenerate barionic configurations and will guide
us toward first look at some of the associated physics. The
simulations confirm in brief the following scenario [71]: the
energy density and internal pressure have sharply increased
in protomatter core of SPC-configuration (with respect to
corresponding central values of neutron star) proportional
to gravitational forces of compression. This counteracts the
collapse and equilibrium holds even for the masses ∼109𝑀

⊙
.

This feature can be seen, for example, from Figure 7 where
the state equation of the II-class SPCII configuration, with the
quark protomatter core, is plotted.

B. A Hard Look at Spacetime Deformation

The holonomic metric on M̃
4
can be recast in the form

�̃� = �̃�
𝜇]�̃�

𝜇

⊗ �̃�
]
= �̃�(�̃�

𝜇
, �̃�])�̃�

𝜇

⊗ �̃�
]
, with components

�̃�
𝜇] = �̃�(�̃�𝜇, �̃�]) in dual holonomic base {�̃�

𝜇

≡ 𝑑�̃�
𝜇
}. In order

to relate local Lorentz symmetry to more general deformed
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Figure 7: The state equation of SPCII on logarithmic scales, where
𝑃 and 𝜌 are the internal pressure and density, given in special units
𝑃OV = 6.469 × 10

36
[erg cm−3

] and 𝜌OV = 7.194 × 10
15
[g cm−3

],
respectively.

spacetime, there is, however, a need to introduce the soldering
tools, which are the linear frames and forms in tangent fiber-
bundles to the external smooth differential manifold, whose
components are so-called tetrad (vierbein) fields. The M̃

4

has at each point a tangent space, �̃�
�̃�
�̃�

4
, spanned by the

anholonomic orthonormal frame field, �̃�, as a shorthand for
the collection of the 4-tuplet (�̃�

0
, . . . , �̃�

3
), where �̃�

𝑎
= �̃�

𝑎

𝜇
�̃�
𝜇
.

We use the first half of Latin alphabet (𝑎, 𝑏, 𝑐, . . . = 0, 1, 2, 3) to
denote the anholonomic indices related to the tangent space.
The frame field, �̃�, then defines a dual vector, �̃�, of differential

forms, �̃� = (
�̃�
0

.

.

.

�̃�
3

), as a shorthand for the collection of the

�̃�
𝑏

= �̃�
𝑏

𝜇
𝑑�̃�

𝜇, whose values at every point form the dual

basis, such that �̃�
𝑎
⌋�̃�

𝑏

= 𝛿
𝑏

𝑎
, where ⌋ denotes the interior

product; namely, this is a 𝐶∞-bilinear map ⌋: Ω1
→ Ω

0

withΩ𝑝 denoting the 𝐶∞-modulo of differential 𝑝-forms on
M̃

4
. In components, we have �̃�

𝑎

𝜇
�̃�
𝑏

𝜇
= 𝛿

𝑏

𝑎
. On the manifold,

M̃
4
, the tautological tensor field, 𝑖�̃�, of type (1, 1) can be

definedwhich assigns to each tangent space the identity linear
transformation. Thus, for any point �̃� ∈ M̃

4
and any vector

�̃� ∈ �̃�
�̃�
M̃

4
, one has 𝑖�̃�(�̃�) = �̃�. In terms of the frame field, the

�̃�
𝑎

give the expression for 𝑖�̃� as 𝑖�̃� = �̃��̃� = �̃�
0
⊗ �̃�

0

+ ⋅ ⋅ ⋅ �̃�
3
⊗ �̃�

3

,
in the sense that both sides yield �̃� when applied to any
tangent vector �̃� in the domain of definition of the frame field.
One can also consider general transformations of the linear
group, 𝐺𝐿(4, 𝑅), taking any base into any other set of four
linearly independent fields.Thenotation, {�̃�

𝑎
, �̃�

𝑏

}, will be used
below for general linear frames. Let us introduce so-called

first deformation matrices, (𝜋(𝑥)𝑚
𝑘
and �̃�𝑎

𝑙
(�̃�)) ∈ 𝐺𝐿(4, �̃�)

for all �̃�, as follows:

�̃�
𝑚

𝜇
= �̃�

𝜇

𝑘
𝜋
𝑚

𝑘
, �̃�

𝜇

𝑙
= �̃�

𝜇

𝑘
𝜋
𝑘

𝑙
,

�̃�
𝜇

𝑘
�̃�
𝜇

𝑚
= 𝛿

𝑘

𝑚
, �̃�

𝑎

𝑚
= �̃�

𝑎

𝜇
�̃�

𝑚

𝜇
,

�̃�
𝑎

𝑙
= �̃�

𝑎

𝜇
�̃�
𝜇

𝑙
,

(B.1)

where �̃�
𝜇]�̃�𝑘

𝜇
�̃�
𝑠

]
= 𝜂

𝑘𝑠
; 𝜂

𝑘𝑠
is themetric on𝑀

4
. A deformation

tensor,Ω𝑚

𝑙
= 𝜋

𝑚

𝑘
𝜋
𝑘

𝑙
, yields local tetrad deformations

�̃�
𝑎
= �̃�

𝑎

𝑚
𝑒
𝑚
, �̃�

𝑎

= �̃�
𝑎

𝑙
𝜗
𝑙
,

𝑒
𝑘
= 𝜋

𝑚

𝑘
𝑒
𝑚
, 𝜗

𝑘

= 𝜋
𝑘

𝑙
𝜗
𝑙
,

(B.2)

and 𝑖�̃� = �̃�
𝑎
⊗�̃�

𝑎

= 𝑒
𝑘
⊗𝜗

𝑘

∈ M̃
4
.The first deformationmatrices

𝜋 and �̃�, in general, give rise to the right cosets of the Lorentz
group; that is, they are the elements of the quotient group
𝐺𝐿(4, �̃�)/𝑆𝑂(3, 1). If we deform the cotetrad according to
(B.2), we have two choices to recast metric as follows: either
writing the deformation of the metric in the space of tetrads
or deforming the tetrad field:

�̃� = 𝑜
𝑎𝑏
�̃�
𝑎

⊗ �̃�
𝑏

= 𝑜
𝑎𝑏
�̃�
𝑎

𝑙
�̃�
𝑏

𝑚
𝜗
𝑙
⊗ 𝜗

𝑚

= 𝛾
𝑙𝑚
𝜗
𝑙
⊗ 𝜗

𝑚
,

(B.3)

where the second deformation matrix, 𝛾
𝑙𝑚
, reads 𝛾

𝑙𝑚
=

𝑜
𝑎𝑏
�̃�
𝑎

𝑙
�̃�
𝑏

𝑚
. The deformed metric splits as

�̃�
𝜇] = Υ

2
𝜂
𝜇] + �̃�𝜇], (B.4)

provided that Υ = �̃�𝑎
𝑎
= 𝜋

𝑘

𝑘
and

�̃�
𝜇] = (𝛾𝑎𝑙 − Υ

2
𝑜
𝑎𝑙
) �̃�

𝑎

𝜇
�̃�
𝑙

V

= (𝛾
𝑘𝑠
− Υ

2
𝜂
𝑘𝑠
) �̃�

𝑘

𝜇
�̃�
𝑠

V.

(B.5)

The anholonomic orthonormal frame field, �̃�, relates �̃� to
the tangent space metric, 𝑜

𝑎𝑏
= diag(+ − −−), by 𝑜

𝑎𝑏
=

�̃�(�̃�
𝑎
, �̃�

𝑏
) = �̃�

𝜇]�̃�𝑎
𝜇
�̃�
𝑏

], which has the converse �̃�
𝜇] = 𝑜𝑎𝑏�̃�

𝑎

𝜇
�̃�
𝑏

]
because �̃�

𝑎

𝜇
�̃�
𝑎

] = 𝛿
𝜇

] .With this provision, we build up aworld-
deformation tensorΩ yielding a deformation of the flat space
𝑀

4
. The 𝛾

𝑙𝑚
can be decomposed in terms of symmetric �̃�

(𝑎𝑙)

and antisymmetric �̃�
[𝑎𝑙]

parts of the matrix �̃�
𝑎𝑙
= 𝑜

𝑎𝑐
�̃�
𝑐

𝑙
(or,

resp., in terms of 𝜋
(𝑘𝑙)

and 𝜋
[𝑘𝑙]

, where 𝜋
𝑘𝑙
= 𝜂

𝑘𝑠
𝜋
𝑠

𝑙
) as

𝛾
𝑎𝑙
= Υ̃

2

𝑜
𝑎𝑙
+ 2Υ̃Θ̃

𝑎𝑙
+ 𝑜

𝑐𝑑
Θ̃

𝑐

𝑎
Θ̃

𝑑

𝑙

+ 𝑜
𝑐𝑑
(Θ̃

𝑐

𝑎
�̃�
𝑑

𝑙
+ �̃�

𝑐

𝑎
Θ̃

𝑑

𝑙
) + 𝑜

𝑐𝑑
�̃�
𝑐

𝑎
�̃�
𝑑

𝑙
,

(B.6)

where

�̃�
𝑎𝑙
= Υ̃𝑜

𝑎𝑙
+ Θ̃

𝑎𝑙
+ �̃�

𝑎𝑙
, (B.7)

Υ̃ = �̃�
𝑎

𝑎
, Θ̃

𝑎𝑙
is the traceless symmetric part, and �̃�

𝑎𝑙
is

the skew symmetric part of the first deformation matrix.
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The anholonomy objects defined on the tangent space, �̃�
�̃�
�̃�

4
,

read

�̃�
𝑎

:= 𝑑�̃�
𝑎

=
1

2
�̃�
𝑎

𝑏𝑐
�̃�
𝑏

∧ �̃�
𝑐

, (B.8)

where the anholonomy coefficients, �̃�𝑎
𝑏𝑐
, which represent the

curls of the base members, are

�̃�
𝑐

𝑎𝑏
= −�̃�

𝑐

([�̃�
𝑎
, �̃�

𝑏
]) = �̃�

𝑎

𝜇
�̃�
𝑏

]
(�̃�

𝜇
�̃�
𝑐

] − �̃�]�̃�
𝑐

𝜇
)

= −�̃�
𝑐

𝜇
[�̃�

𝑎
(�̃�

𝑏

𝜇
) − �̃�

𝑏
(�̃�

𝑎

𝜇
)]

= 2𝜋
𝑐

𝑙
�̃�
𝑚

𝜇
(𝜋

−1𝑚

[𝑎
�̃�
𝜇
𝜋
−1𝑙

𝑏]
) .

(B.9)

In particular case of constant metric in the tetradic space, the
deformed connection can be written as

Γ̃
𝑎

𝑏𝑐
=
1

2
(�̃�

𝑎

𝑏𝑐
− 𝑜

𝑎𝑎


𝑜
𝑏𝑏
 �̃�

𝑏


𝑎

𝑐
− 𝑜

𝑎𝑎


𝑜
𝑐𝑐
 �̃�

𝑐


𝑎

𝑏
) . (B.10)

All magnitudes related to the 𝑉
4
will be denoted by an over

“ ∘”. According to (A.1), we have
∘

Ω

𝑚

𝑙
=
∘

𝐷

𝑚

𝜇

∘

𝜓
𝜇

𝑙
and Ω̆

𝜇

] =

�̆�
𝜇

𝜌
�̆�
𝜌

] , provided

∘

𝑒
𝜇
=
∘

𝐷

𝑙

𝜇
𝑒
𝑙
,

∘

𝑒
𝜇

∘

𝜓
𝜇

𝑙
=
∘

Ω

𝑚

𝑙
𝑒
𝑚
,

�̃�
𝜌
= �̆�

𝜇

𝜌

∘

𝑒
𝜇
, �̃�

𝜌
�̆�
𝜌

] = Ω̆
𝜇

V
∘

𝑒
𝜇
.

(B.11)

In analogy with (B.1), the following relations hold:
∘

𝐷

𝑚

𝜇
=
∘

𝑒
𝜇

𝑘 ∘

𝜋
𝑚

𝑘
,

∘

𝜓
𝜇

𝑙
=
∘

𝑒
𝜇

𝑘

∘

𝜋
𝑘

𝑙
,

∘

𝑒
𝜇

𝑘 ∘

𝑒
𝜇

𝑚
= 𝛿

𝑘

𝑚
,

∘

𝜋
𝑎

𝑚

=
∘

𝑒
𝑎

𝜇 ∘

𝐷

𝑚

𝜇
,

∘

𝜋
𝑎

𝑙
=
∘

𝑒
𝑎

𝜇

∘

𝜓
𝜇

𝑙
,

(B.12)

where
∘

Ω

𝑚

𝑙
=
∘

𝜋
𝑚

𝜌

∘

𝜋
𝜌

𝑙
and Ω̆

𝜇

] = �̆�
𝜇

𝜌
�̆�
𝜌

]. We also have
∘

𝑔
𝜇]
∘

𝑒
𝑘

𝜇 ∘

𝑒
𝑠

]
= 𝜂

𝑘𝑠
and

�̆�
𝜇

𝜌
= ̆𝑒]

𝜇
�̆�
]
𝜌
, �̆�

𝜌

] = ̆𝑒
𝜌

𝜇
�̆�
𝜇

],

̆𝑒]
𝜇
̆𝑒
]
𝜌
= 𝛿

𝜇

𝜌
, �̆�

𝑎

𝜇
= ̆𝑒

𝑎

𝜌
�̆�

𝜇

𝜌
,

�̆�
𝑎

] = ̆𝑒
𝑎

𝜌
�̆�
𝜌

] .

(B.13)

The norm 𝑑 ∘𝑠 ≡ 𝑖
∘

𝑑 of the displacement 𝑑 ∘𝑥𝜇 on 𝑉
4
can be

written in terms of the spacetime structures of𝑀
4
as

𝑖

∘

𝑑 =
∘

𝑒

∘

𝜗 =
∘

Ω

𝑚

𝑙
𝑒
𝑚
⊗ 𝜗

𝑙
∈ 𝑉

4
. (B.14)

The holonomic metric can be recast in the form
∘

𝑔 =
∘

𝑔
𝜇]
∘

𝜗

𝜇

⊗

∘

𝜗

]
=
∘

𝑔 (
∘

𝑒
𝜇
,
∘

𝑒])
∘

𝜗

𝜇

⊗

∘

𝜗

]
. (B.15)

The anholonomy objects defined on the tangent space,
∘

𝑇 ∘
𝑥
𝑉
4
,

read
∘

𝐶

𝑎

:= 𝑑

∘

𝜗

𝑎

=
1

2

∘

𝐶

𝑎

𝑏𝑐

∘

𝜗

𝑏

∧

∘

𝜗

𝑐

, (B.16)

where the anholonomy coefficients,
∘

𝐶
𝑎

𝑏𝑐
, which represent the

curls of the base members, are
∘

𝐶

𝑐

𝑏𝑐
= −

∘

𝜗

𝑐

([
∘

𝑒
𝑎
,
∘

𝑒
𝑏
])

=
∘

𝑒
𝑎

𝜇 ∘

𝑒
𝑏

]
(

∘

𝜕
𝜇

∘

𝑒
𝑐

] −
∘

𝜕]
∘

𝑒
𝑐

𝜇
)

= −
∘

𝑒
𝑐

𝜇
[
∘

𝑒
𝑎
(
∘

𝑒
𝑏

𝜇

) −
∘

𝑒
𝑏
(
∘

𝑒
𝑎

𝜇

)] .

(B.17)

The (anholonomic) Levi-Civita (or Christoffel) connection
can be written as

∘

Γ
𝑎𝑏
:=
∘

𝑒
[𝑎
⌋𝑑

∘

𝜗
𝑏]
−
1

2
(
∘

𝑒
𝑎
⌋
∘

𝑒
𝑏
⌋𝑑

∘

𝜗
𝑐
) ∧

∘

𝜗

𝑐

, (B.18)

where
∘

𝜗
𝑐
is understood as the down indexed 1-form

∘

𝜗
𝑐
=

𝑜
𝑐𝑏

∘

𝜗

𝑏

. The norm 𝑖�̃� (A.2) can then be written in terms of the
spacetime structures of 𝑉

4
and𝑀

4
as

𝑖�̃� = �̃��̃� = �̃�
𝜌
⊗ �̃�

𝜌

= �̃�
𝑎
⊗ �̃�

𝑎

= Ω̆
𝜇

]
∘

𝑒
𝜇
⊗

∘

𝜗

]

= Ω̆
𝑎

𝑏
̆𝑒
𝑎
�̆�
𝑏

= Ω
𝑚

𝑙
𝑒
𝑚
⊗ 𝜗

𝑙
∈ M̃

4
,

(B.19)

provided

Ω̆
𝑎

𝑏
= �̆�

𝑎

𝑐
�̆�
𝑐

𝑏
= Ω̆

𝜇

]
∘

𝑒
𝑎

𝜇

∘

𝑒
𝑏

]
, �̃�

𝜌
= �̆�

]
𝜌

∘

𝑒],

�̃�
𝜌

= �̆�
𝜇

𝜌
∘

𝜗

𝜇

, �̃�
𝑐
= �̆�

𝑐

𝑎 ∘

𝑒
𝑎
, �̃�

𝑐

= �̆�
𝑐

𝑏

∘

𝜗

𝑏

.

(B.20)

Under a local tetrad deformation (B.20), a general spin
connection transforms according to

�̃�
𝑎

𝑏𝜇
= �̆�

𝑐

𝑎 ∘

𝜔
𝑐

𝑑𝜇
�̆�
𝑑

𝑏
+ �̆�

𝑐

𝑎
�̃�
𝜇
�̆�
𝑐

𝑏
= 𝜋

𝑙

𝑎
�̃�
𝜇
𝜋
𝑙

𝑏
. (B.21)

We have then two choices to recast metric as follows:

�̃� = 𝑜
𝑎𝑏
�̃�
𝑎

⊗ �̃�
𝑏

= 𝑜
𝑎𝑏
�̆�
𝑎

𝑐
�̆�
𝑏

𝑑

∘

𝜗

𝑐

⊗

∘

𝜗

𝑑

= �̆�
𝑐𝑑

∘

𝜗

𝑐

⊗

∘

𝜗

𝑑

.

(B.22)

In the first case, the contribution of the Christoffel symbols
constructed by the metric �̆�

𝑎𝑏
= 𝑜

𝑐𝑑
�̆�
𝑐

𝑎
�̆�
𝑑

𝑏
reads

Γ̃
𝑎

𝑏𝑐
=
1

2
(
∘

𝐶

𝑎

𝑏𝑐
− �̆�

𝑎𝑎


�̆�
𝑏𝑏


∘

𝐶

𝑏


𝑎

𝑐
− �̆�

𝑎𝑎


�̆�
𝑐𝑐


∘

𝐶

𝑐


𝑎

𝑏
)

+
1

2
�̆�
𝑎𝑎
(
∘

𝑒
𝑐
⌋𝑑�̆�

𝑏𝑎
 −
∘

𝑒
𝑏
⌋𝑑�̆�

𝑐𝑎
 −
∘

𝑒
𝑎
⌋𝑑�̆�

𝑏𝑐
) .

(B.23)

As before, the second deformation matrix, �̆�
𝑎𝑏
, can be

decomposed in terms of symmetric, �̆�
(𝑎𝑏)

, and antisymmetric,
�̆�
[𝑎𝑏]

, parts of the matrix �̆�
𝑎𝑏
= 𝑜

𝑎𝑐
�̆�
𝑐

𝑏
. So,

�̆�
𝑎𝑏
= Ῠ𝑜

𝑎𝑏
+ Θ̆

𝑎𝑏
+ �̆�

𝑎𝑏
, (B.24)

where Ῠ = �̆�𝑎
𝑎
, Θ̆

𝑎𝑏
is the traceless symmetric part, and �̆�

𝑎𝑏

is the skew symmetric part of the first deformationmatrix. In
analogy with (B.4), the deformed metric can then be split as

�̃�
𝜇] (�̆�) = Ῠ

2

(�̆�)
∘

𝑔
𝜇] + �̆�𝜇] (�̆�) , (B.25)
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where

�̆�
𝜇] (�̆�) = [�̆�𝑎𝑏 − Ῠ

2

𝑜
𝑎𝑏
]
∘

𝑒
𝑎

𝜇

∘

𝑒
𝑏

]. (B.26)

The inverse deformed metric reads

�̃�
𝜇]
(�̆�) = 𝑜

𝑐𝑑
�̆�
−1𝑎

𝑐
�̆�
−1𝑏

𝑑

∘

𝑒
𝑎

𝜇 ∘

𝑒
𝑏

]
, (B.27)

where �̆�−1𝑎
𝑐
�̆�
𝑐

𝑏
= �̆�

𝑐

𝑏
�̆�
−1𝑎

𝑐
= 𝛿

𝑎

𝑏
. The (anholonomic) Levi-

Civita (or Christoffel) connection is

Γ̃
𝑎𝑏
:= �̃�

[𝑎
⌋𝑑�̃�

𝑏]
−
1

2
(�̃�

𝑎
⌋�̃�

𝑏
⌋𝑑�̃�

𝑐
) ∧ �̃�

𝑐

, (B.28)

where �̃�
𝑐
is understood as the down indexed 1-form �̃�

𝑐
=

𝑜
𝑐𝑏
�̃�
𝑏

. Hence, the usual Levi-Civita connection is related to
the original connection by the relation

Γ̃
𝜇

𝜌𝜎
= Γ̆

𝜇

𝜌𝜎
+ Π̆

𝜇

𝜌𝜎
, (B.29)

provided

Π
𝜇

𝜌𝜎
= 2�̃�

𝜇]
�̆�] (𝜌
∇̆
𝜎)
Ῠ − �̆�

𝜌𝜎
𝑔
𝜇]
∇̆]Ῠ

+
1

2
�̃�
𝜇]
(∇̆

𝜌
�̆�]𝜎 + ∇̆𝜎�̆�𝜌] − ∇̆]�̆�𝜌𝜎) ,

(B.30)

where ∇̆ is the covariant derivative. The contravariant
deformed metric, �̃�]𝜌, is defined as the inverse of �̃�

𝜇], such
that �̃�

𝜇]�̃�
]𝜌
= 𝛿

𝜌

𝜇
. Hence, the connection deformation Π𝜇

𝜌𝜎

acts like a force that deviates the test particles from the
geodesic motion in the space, 𝑉

4
. A metric-affine space

(�̃�
4
, �̃�, Γ̃) is defined to have a metric and a linear connection

that need not be dependent on each other. In general, the lift-
ing of the constraints of metric-compatibility and symmetry
yields the new geometrical property of the spacetime, which
are the nonmetricity 1-form �̃�

𝑎𝑏
and the affine torsion 2-form

�̃�
𝑎

representing a translational misfit (for a comprehensive
discussion see [92–95]).These, together with the curvature 2-
form �̃�

𝑎

𝑏, symbolically can be presented as [96, 97]

(�̃�
𝑎𝑏
, �̃�

𝑎

, �̃�
𝑎

𝑏

) ∼ D̃ (�̃�
𝑎𝑏
, �̃�

𝑎

, Γ̃
𝑎

𝑏

) , (B.31)

where D̃ is the covariant exterior derivative. If the nonmetric-
ity tensor �̃�

𝜆𝜇] = −D̃𝜆
�̃�
𝜇] ≡ −�̃�𝜇] ; 𝜆 does not vanish,

the general formula for the affine connection written in the
spacetime components is

Γ̃
𝜌

𝜇] =
∘

Γ

𝜌

𝜇] + �̃�
𝜌

𝜇] − �̃�
𝜌

𝜇] +
1

2
�̃�

𝜌

(𝜇]), (B.32)

where
∘

Γ

𝜌

𝜇] is the Riemann part and �̃�𝜌

𝜇] := 2�̃�(𝜇])
𝜌

+ �̃�
𝜌

𝜇]
is the non-Riemann part, the affine contortion tensor. The
torsion, �̃�𝜌

𝜇] = (1/2)�̃�
𝜌

𝜇] = Γ̃
𝜌

[𝜇]] given with respect
to a holonomic frame, 𝑑�̃�

𝜌

= 0, is the third-rank tensor,
antisymmetric in the first two indices, with 24 independent
components. In a presence of curvature and torsion, the

coupling prescription of a general field carrying an arbitrary
representation of the Lorentz group will be

�̃�
𝜇
→ D̃

𝜇
= �̃�

𝜇
−
𝑖

2
(�̃�

𝑎𝑏

𝜇
− �̃�

𝑎𝑏

𝜇
) 𝐽

𝑎𝑏
, (B.33)

with 𝐽
𝑎𝑏

denoting the corresponding Lorentz generator.
The Riemann-Cartan manifold, 𝑈

4
, is a particular case of

the general metric-affine manifold M̃
4
, restricted by the

metricity condition �̃�
𝜆𝜇] = 0, when a nonsymmetric linear

connection is said to be metric compatible. The Lorentz and
diffeomorphism invariant scalar curvature, �̃�, becomes either
a function of �̃�𝑎

𝜇
only, or �̃�

𝜇]:

�̃� (�̃�) ≡ �̃�
𝑎

𝜇
�̃�
𝑏

]
�̃�
𝜇]

𝑎𝑏

(�̃�) = �̃� (�̃�, Γ̃)

≡ �̃�
𝜌]
�̃�
𝜇

𝜌𝜇] (Γ̃) .

(B.34)

C. Determination of �̃� and �̃� in Standard
Theory of Gravitation

Let �̃�𝑎𝑏 = �̃�
𝑎𝑏

𝜇
∧ 𝑑�̃�

𝜇 be the 1-forms of corresponding
connections assuming values in the Lorentz Lie algebra. The
action for gravitational field can be written in the form

�̃�
𝑔
=
∘

𝑆 + �̃�
𝑄
, (C.1)

where the integral

∘

𝑆 = −
1

4æ
∫⋆

∘

𝑅 = −
1

4æ
∫⋆

∘

𝑅
𝑐𝑑
∧ �̃�

𝑐

∧ �̃�
𝑑

= −
1

2æ
∫
∘

𝑅√−�̃�𝑑Ω

(C.2)

is the usual Einstein action, with the coupling constant relat-
ing to the Newton gravitational constant æ = 8𝜋𝐺

𝑁
/𝑐

4, 𝑆
𝑄
is

the phenomenological action of the spin-torsion interaction,
and ⋆ denotes the Hodge dual. This is a 𝐶∞-linear map ⋆ :
Ω

𝑝
→ Ω

𝑛−𝑝, which acts on the wedge product monomials of
the basis 1-forms as ⋆(�̃�

𝑎1 ⋅⋅⋅𝑎𝑝

) = 𝜀
𝑎1 ⋅⋅⋅𝑎𝑛 �̃�

𝑎𝑝+1 ⋅⋅⋅𝑎𝑛
. Here we used

the abbreviated notations for the wedge product monomials,
�̃�
𝑎1 ⋅⋅⋅𝑎𝑝

= �̃�
𝑎1

∧ �̃�
𝑎2

∧ ⋅ ⋅ ⋅ ∧ �̃�
𝑎𝑝 , defined on the 𝑈

4
space, the

�̃�
𝑎𝑖
(𝑖 = 𝑝 + 1, . . . , 𝑛) are understood as the down indexed

1-forms �̃�
𝑎𝑖
= 𝑜

𝑎𝑖𝑏
�̃�
𝑏

, and 𝜀𝑎1 ⋅⋅⋅𝑎𝑛 is the total antisymmetric
pseudotensor. The variation of the connection 1-form �̃�𝑎𝑏
yields

𝛿�̃�
𝑄
=
1

æ
∫⋆T̃

𝑎𝑏
∧ 𝛿�̃�

𝑎𝑏
, (C.3)

where

⋆ T̃
𝑎𝑏
:=
1

2
⋆ (�̃�

𝑎
∧ �̃�

𝑏
) = �̃�

𝑐

∧ �̃�
𝑑

𝜀
𝑐𝑑𝑎𝑏

=
1

2
�̃�

𝑐

𝜇] ∧ �̃�
𝑑

𝛼
𝜀
𝑎𝑏𝑐𝑑
�̃�
𝜇]𝛼
,

(C.4)
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and also

�̃�
𝑎

= �̃��̃�
𝑎

= 𝑑�̃�
𝑎

+ �̃�
𝑎

𝑏
∧ �̃�

𝑏

. (C.5)

The variation of the action describing themacroscopicmatter
sources �̃�

𝑚
with respect to the coframe 𝜗𝑎 and connection 1-

form �̃�𝑎𝑏 reads

𝛿�̃�
𝑚
= ∫𝛿�̃�

𝑚

= ∫(− ⋆ �̃�
𝑎
∧ 𝛿�̃�

𝑎

+
1

2
⋆ Σ̃

𝑎𝑏
∧ 𝛿�̃�

𝑎𝑏
) ,

(C.6)

where⋆�̃�
𝑎
is the dual 3-form relating to the canonical energy-

momentum tensor, �̃�
𝜇

𝑎
, by

⋆�̃�
𝑎
=
1

3!
�̃�
𝜇

𝑎
𝜀
𝜇]𝛼𝛽�̃�

]𝛼𝛽
(C.7)

and ⋆Σ̃
𝑎𝑏
= − ⋆ Σ̃

𝑏𝑎
is the dual 3-form corresponding to the

canonical spin tensor, which is identical with the dynamical
spin tensor �̃�

𝑎𝑏𝑐
; namely,

⋆Σ̃
𝑎𝑏
= �̃�

𝜇

𝑎𝑏
𝜀
𝜇]𝛼𝛽�̃�

]𝛼𝛽
. (C.8)

The variation of the total action, �̃� = �̃�
𝑔
+ �̃�

𝑚
, with respect to

the �̃�
𝑎
, �̃�𝑎𝑏 and Φ̃ gives the following field equations:

(1)
1

2

∘

𝑅
𝑐𝑑
∧ �̃�

𝑐

= æ�̃�
𝑑
= 0,

(2) ⋆ T̃
𝑎𝑏
= −
1

2
æ ⋆ Σ̃

𝑎𝑏
,

(3)
𝛿�̃�

𝑚

𝛿Φ̃

= 0,
𝛿�̃�

𝑚

𝛿Φ̃

= 0.

(C.9)

In the sequel, the DC-members �̃� and �̃� can readily be
determined as follows:

�̃�
𝑙

𝑎
= 𝜂

𝑙𝑚
⟨�̃�

𝑎
, 𝑒

𝑚
⟩ , �̃�

𝑎

𝑙
= 𝜂

𝑙𝑚
�̃�
𝑎

(𝜗
−1
)
𝑚

. (C.10)

D. The GGP in More Detail

Note that an invariance of the Lagrangian 𝐿
Φ̃

under the
infinite-parameter group of general covariance (A.5) in 𝑉

4

implies an invariance of 𝐿
Φ̃
under the 𝐺

𝑉
group and vice

versa if and only if the generalized local gauge transforma-
tions of the fields Φ̃(�̃�) and their covariant derivative ∇̃

𝜇
Φ̃(�̃�)

are introduced by finite local𝑈
𝑉
∈ 𝐺

𝑉
gauge transformations:

Φ̃


(�̃�) = 𝑈
𝑉
(�̃�) Φ̃ (�̃�) ,

[�̃�
𝜇
(�̃�) ∇̃

𝜇
Φ̃ (�̃�)]



= 𝑈
𝑉
(�̃�) [�̃�

𝜇
(�̃�) ∇̃

𝜇
Φ̃ (�̃�)] .

(D.1)

Here ∇̃
𝜇
denotes the covariant derivative agreeing with the

metric, �̃�𝜇] = (1/2)(�̃�𝜇�̃�] + �̃�]�̃�𝜇) : ∇̃
𝜇
= �̃�

𝜇
+ Γ̃

𝜇
, where

Γ̃
𝜇
(�̃�) = (1/2)𝐽

𝑎𝑏
�̃�
𝑎

]
(�̃�)�̃�

𝜇
�̃�
𝑏](�̃�) is the connection and 𝐽

𝑎𝑏
are

the generators of Lorentz group Λ. The tetrad components
�̃�
𝑎

𝜇
(�̃�) associate with the chosen representation 𝐷(Λ) by

which the Φ̃(�̃�) is transformed as [𝐷(Λ)]𝑙

⋅⋅⋅𝑘


𝑙⋅⋅⋅𝑘
Φ̃(�̃�), where

𝐷(Λ) = 𝐼+ (1/2)�̃�
𝑎𝑏
𝐽
𝑎𝑏
, �̃�

𝑎𝑏
= −�̃�

𝑏𝑎
are the parameters of the

Lorentz group. One has, for example, to set �̃�𝜇(�̃�) → �̃�
𝜇
(�̃�)

for the fields of spin (𝑗 = 0, 1); for vector field [𝐽
𝑎𝑏
]
𝑙

𝑘
=

𝛿
𝑙

𝑎
𝜂
𝑏𝑘
− 𝛿

𝑙

𝑏
𝜂
𝑎𝑘
; but �̃�𝜇(�̃�) = �̃�

𝑎

𝜇
(�̃�)𝛾

𝑎 and 𝐽
𝑎𝑏
= −(1/4)[𝛾

𝑎
, 𝛾

𝑏
]

for the spinor field (𝑗 = 1/2), where 𝛾𝑎 are the Diracmatrices.
Given the principal fiber bundle �̃�(𝑉

4
, 𝐺

𝑉
; �̃�) with the

structure group 𝐺
𝑉
, the local coordinates �̃� ∈ �̃� are �̃� =

(�̃�, 𝑈
𝑉
), where �̃� ∈ 𝑉

4
and 𝑈

𝑉
∈ 𝐺

𝑉
, the total bundle space

�̃� is a smooth manifold, and the surjection �̃� is a smooth
map �̃� : �̃� → 𝑉

4
. A set of open coverings {Ũ

𝑖
} of 𝑉

4
with

�̃� ∈ {Ũ
𝑖
} ⊂ 𝑉

4
satisfy ⋃

𝛼
Ũ

𝛼
= 𝑉

4
. The collection of matter

fields of arbitrary spins Φ̃(�̃�) take values in standard fiber over
�̃� : �̃�

−1
(Ũ

𝑖
) = Ũ

𝑖
× �̃�

�̃�
. The fibration is given as ⋃

�̃�
�̃�
−1
(�̃�) =

�̃�. The local gauge will be the diffeomorphism map �̃�
𝑖
:

Ũ
𝑖
×

𝑉4
𝐺
𝑉
→ �̃�

−1
(Ũ

𝑖
) ∈ �̃�, since �̃�−1

𝑖
maps �̃�−1(Ũ

𝑖
) onto

the direct (Cartesian) product Ũ
𝑖
×

𝑉4
𝐺
𝑉
. Here ×

𝑉4
represents

the fiber product of elements defined over space 𝑉
4
such that

�̃�(�̃�
𝑖
(�̃�, 𝑈

𝑉
)) = �̃� and �̃�

𝑖
(�̃�, 𝑈

𝑉
) = �̃�

𝑖
(�̃�, (𝑖𝑑)

𝐺𝑉
)𝑈

𝑉
= �̃�

𝑖
(�̃�)𝑈

𝑉

for all �̃� ∈ {Ũ
𝑖
}, where (𝑖𝑑)

𝐺𝑉
is the identity element of the

group 𝐺
𝑉
. The fiber �̃�−1 at �̃� ∈ 𝑉

4
is diffeomorphic to �̃�,

where �̃� is the fiber space, such that �̃�−1(�̃�) ≡ �̃�
�̃�
≈ �̃�. The

action of the structure group𝐺
𝑉
on �̃�defines an isomorphism

of the Lie algebra g̃ of 𝐺
𝑉
onto the Lie algebra of vertical

vector fields on �̃� tangent to the fiber at each �̃� ∈ �̃� called
fundamental. To involve a drastic revision of the role of gauge
fields in the physical concept of the spacetime deformation,
we generalize the standard gauge scheme by exploring a new
special type of distortion gauge field, (𝑎), which is assumed to
act on the external spacetime groups. Then, we also consider
the principle fiber bundle, 𝑃(𝑀

4
, 𝑈

loc
; 𝑠), with the base space

𝑀
4
, the structure group𝑈loc, and the surjection 𝑠.Thematter

fields Φ(𝑥) take values in the standard fiber which is the
Hilbert vector space where a linear representation 𝑈(𝑥) of
group 𝑈loc is given. This space can be regarded as the Lie
algebra of the group 𝑈loc upon which the Lie algebra acts
according to the law of the adjoint representation: 𝑎 ↔
ad 𝑎Φ → [𝑎,Φ].

The GGP accounts for the gravitation gauge group 𝐺
𝑉

generated by the hidden local internal symmetry 𝑈loc. The
physical system of the fields Φ̃(�̃�) defined on 𝑉

4
must be

invariant under the finite local gauge transformations𝑈
𝑉
(D.1)

of the Lie group of gravitation𝐺
𝑉
(see Scheme 1), where 𝑅

𝜓
(𝑎)

is the matrix of unitary map:

𝑅
𝜓
(𝑎) : Φ → Φ̃,

𝑆 (𝑎) 𝑅
𝜓
(𝑎) : (𝛾

𝑘
𝐷

𝑘
Φ) → (�̃�

]
(�̃�) ∇]Φ̃) .

(D.2)
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Φ

(̃̃ x) =UVΦ̃(x̃)

R
𝜓(x̃, x)

Uloc
Φ

(x) =U

loc
Φ(x)

UV = R
𝜓U

locR−1
𝜓

Φ̃(x̃)

Φ(x)

R𝜓(x̃, x)

Scheme 1: The GGP.

Here 𝑆(𝐹) is the gauge invariant scalar function 𝑆(𝐹) ≡
(1/4)�̃�

−1
(𝐹) = (1/4)�̃�

𝑙

𝜇
�̃�

𝜇

𝑙
,𝐷

𝑘
= 𝜕

𝑘
− 𝑖æ, 𝑎

𝑘
. In an illustration

of the point at issue, the (D.2) explicitly may read

Φ̃
𝜇⋅⋅⋅𝛿

(�̃�) = �̃�
𝜇

𝑙
⋅ ⋅ ⋅ �̃�

𝛿

𝑚
𝑅 (𝑎)Φ

𝑙⋅⋅⋅𝑚
(𝑥)

≡ (𝑅
𝜓
)
𝜇⋅⋅⋅𝛿

𝑙⋅⋅⋅𝑚
Φ

𝑙⋅⋅⋅𝑚
(𝑥) ,

(D.3)

and also

�̃�
]
(�̃�) ∇]Φ̃

𝜇⋅⋅⋅𝛿

(�̃�)

= 𝑆 (𝐹) �̃�
𝜇

𝑙
⋅ ⋅ ⋅ �̃�

𝛿

𝑚
𝑅 (𝑎) 𝛾

𝑘
𝐷

𝑘
Φ

𝑙⋅⋅⋅𝑚
(𝑥) .

(D.4)

In case of zero curvature, one has 𝜓𝜇
𝑙
= 𝐷

𝜇

𝑙
= 𝑒

𝜇

𝑙
=

(𝜕𝑥
𝜇
/𝜕𝑋

𝑙
), ‖𝐷‖ ̸= 0, where 𝑋𝑙 are the inertial coordinates.

In this, the conventional gauge theory given on the 𝑀
4

is restored in both curvilinear and inertial coordinates.
Although the distortion gauge field (𝑎

𝐴
) is a vector field,

only the gravitational attraction is presented in the proposed
theory of gravitation.

E. A Lie Group of Distortion

The extended space𝑀
6
reads 0

𝑀
6
= 𝑅

3

+
⊕ 𝑅

3

−
= 𝑅

3
⊕ 𝑇

3
,

sgn (𝑅3) = (+ + +) , sgn (𝑇3) = (− − −) .
(E.1)

The 𝑒
(𝜆𝛼)

= 𝑂
𝜆
× 𝜎

𝛼
(𝜆 = ±, 𝛼 = 1, 2, 3) are linearly

independent unit basis vectors at the point (p) of interest of
the given three-dimensional space 𝑅3

𝜆
. The unit vectors 𝑂

𝜆

and 𝜎
𝛼
imply

⟨𝑂
𝜆
, 𝑂

𝜏
⟩ =

∗
𝛿
𝜆𝜏
, ⟨𝜎

𝛼
, 𝜎

𝛽
⟩ = 𝛿

𝛼𝛽
, (E.2)

where 𝛿
𝛼𝛽

is the Kronecker symbol and ∗

𝛿
𝜆𝜏
= 1 − 𝛿

𝜆𝜏
.

Three spatial 𝑒
𝛼
= 𝜉 × 𝜎

𝛼
and three temporal 𝑒

0𝛼
= 𝜉

0
× 𝜎

𝛼

components are the basis vectors, respectively, in spaces 𝑅3

and 𝑇3, where𝑂
±
= (1/√2)(𝜉

0
± 𝜉), 𝜉2

0
= −𝜉

2
= 1, ⟨𝜉

0
, 𝜉⟩ = 0.

The 3D space 𝑅3
±
is spanned by the coordinates 𝜂

(±𝛼)
. In using

this language it is important to consider a reduction to the
space𝑀

4
which can be achieved in the following way.

(1) In case of free flat space 𝑀
6
, the subspace 𝑇3 is

isotropic. And in so far it contributes in line element
just only by the square of the moduli 𝑡 = |x0|, x0 ∈ 𝑇3,
then, the reduction 𝑀

6
→ 𝑀

4
= 𝑅

3
⊕ 𝑇

1 can be
readily achieved if we use 𝑡 = |x0| for conventional
time.

(2) In case of curved space, the reduction 𝑉
6
→ 𝑉

4
can

be achieved if we use the projection ( ̆𝑒
0
) of the tem-

poral component ( ̆𝑒
0𝛼
) of basis six-vector ̆𝑒( ̆𝑒

𝛼
, ̆𝑒

0𝛼
) on

the given universal direction ( ̆𝑒
0𝛼
→ ̆𝑒

0
). By this we

choose the time coordinate. Actually, the Lagrangian
of physical fields defined on 𝑅

6
is a function of scalars

such that 𝐴
(𝜆𝛼)
𝐵
(𝜆𝛼)
= 𝐴

𝛼
𝐵
𝛼
+ 𝐴

0𝛼
𝐵
0𝛼; then upon

the reduction of temporal components of six-vectors
𝐴

0𝛼
𝐵
0𝛼
= 𝐴

0𝛼
⟨ ̆𝑒

0𝛼
, ̆𝑒

0𝛽
⟩𝐵

0𝛽
= 𝐴

0
⟨ ̆𝑒

0
, ̆𝑒

0
⟩𝐵

0
= 𝐴

0
𝐵
0

we may fulfill a reduction to 𝑉
4
.

A distortion of the basis (E.2) comprises the following two
steps. We, at first, consider distortion transformations of the
ingredient unit vectors 𝑂

𝜏
under the distortion gauge field

(𝑎):

�̆�
(+𝛼)
(𝑎) = Q

𝜏

(+𝛼)
(𝑎) 𝑂

𝜏
= 𝑂

+
+ æ𝑎

(+𝛼)
𝑂
−
,

�̆�
(−𝛼)
(𝑎) = Q

𝜏

(−𝛼)
(𝑎) 𝑂

𝜏
= 𝑂

−
+ æ𝑎

(−𝛼)
𝑂
+
,

(E.3)

where Q (=Q𝜏

(𝜆𝛼)
(𝑎)) is an element of the group 𝑄. This

induces the distortion transformations of the ingredient unit
vectors 𝜎

𝛽
, which, in turn, undergo the rotations, �̆�

(𝜆𝛼)
(𝜃) =

R
𝛽

(𝜆𝛼)
(𝜃)𝜎

𝛽
, whereR(𝜃) ∈ 𝑆𝑂(3) is the element of the group

of rotations of planes involving two arbitrary axes around the
orthogonal third axis in the given ingredient space𝑅3

𝜆
. In fact,

distortion transformations of basis vectors (𝑂) and (𝜎) are
not independent but rather are governed by the spontaneous
breaking of the distortion symmetry (for more details see
[74]). To avoid a further proliferation of indices, hereafter we
will use uppercase Latin (𝐴) in indexing (𝜆𝛼), and so forth.
The infinitesimal transformations then read

𝛿Q
𝜏

𝐴
(𝑎) = æ𝛿𝑎

𝐴
𝑋

𝜏

𝜆
∈ 𝑄,

𝛿R (𝜃) = −
𝑖

2
𝑀

𝛼𝛽
𝛿𝜔

𝛼𝛽
∈ 𝑆𝑂 (3) ,

(E.4)

provided by the generators 𝑋𝜏

𝜆
=
∗
𝛿
𝜏

𝜆
and 𝐼

𝑖
= 𝜎

𝑖
/2, where 𝜎

𝑖

are the Paulimatrices,𝑀
𝛼𝛽
= 𝜀

𝛼𝛽𝛾
𝐼
𝛾
, and𝛿𝜔𝛼𝛽 = 𝜀

𝛼𝛽𝛾
𝛿𝜃

𝛾
.The

transformation matrix 𝐷(𝑎, 𝜃) = Q(𝑎) ×R(𝜃) is an element
of the distortion group 𝐺

𝐷
= 𝑄 × 𝑆𝑂(3):

𝐷
(𝑑𝑎
𝐴
,𝑑𝜃
𝐴
)
= 𝐼 + 𝑑𝐷

(𝑎
𝐴
,𝜃
𝐴
)
,

𝑑𝐷
(𝑎
𝐴
,𝜃
𝐴
)
= 𝑖 [𝑑𝑎

𝐴
𝑋

𝐴
+ 𝑑𝜃

𝐴
𝐼
𝐴
] ,

(E.5)

where 𝐼
𝐴
≡ 𝐼

𝛼
at given𝜆.The generators𝑋

𝐴
(E.4) of the group

𝑄 do not complete the group𝐻 to the dynamical group 𝐺
𝐷
,

and therefore they cannot be interpreted as the generators
of the quotien space 𝐺

𝐷
/𝐻, and the distortion fields 𝑎

𝐴

cannot be identified directly with the Goldstone fields arising
in spontaneous breaking of the distortion symmetry 𝐺

𝐷
.

These objections, however, can be circumvented, because,
as it is shown by [74], the distortion group 𝐺

𝐷
= 𝑄 ×

𝑆𝑂(3) can be mapped in a one-to-one manner onto the
group 𝐺

𝐷
= 𝑆𝑂(3) × 𝑆𝑂(3), which is isomorphic to the

chiral group 𝑆𝑈(2) × 𝑆𝑈(2), in case of which the method of
phenomenological Lagrangians is well known. In aftermath,
we arrive at the key relation

tan 𝜃
𝐴
= −æ𝑎

𝐴
. (E.6)
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Given the distortion field 𝑎
𝐴
, the relation (E.6) uniquely

determines six angles 𝜃
𝐴
of rotations around each of six (𝐴)

axes. In pursuing our goal further, we are necessarily led to
extending a whole framework of GGP now for the base 12D
smooth differentiable manifold:

𝑀
12
= 𝑀

6
⊕𝑀

6
. (E.7)

Here the𝑀
6
is related to the spacetime continuum (E.1), but

the 𝑀
6
is displayed as a space of inner degrees of freedom.

The

𝑒
(𝜆,𝜇,𝛼)

= 𝑂
𝜆,𝜇
⊗ 𝜎

𝛼
(𝜆, 𝜇 = 1, 2; 𝛼 = 1, 2, 3) (E.8)

are basis vectors at the point 𝑝(𝜁) of𝑀
12
:

⟨𝑂
𝜆,𝜇
, 𝑂

𝜏,]⟩=
∗
𝛿
𝜆,𝜏

∗
𝛿
𝜇,], 𝑂

𝜆,𝜇
= 𝑂

𝜆
⊗ 𝑂

𝜇
,

𝑂
𝜆,𝜇
←→

∗
𝑅
4
=
∗
𝑅
2
⊗
∗
𝑅
2
, 𝜎

𝛼
←→ 𝑅

3
,

(E.9)

where 𝜁 = (𝜂, 𝑢) ∈ 𝑀
12
(𝜂 ∈ 𝑀

6
and 𝑢 ∈ 𝑀

6
). So, the

decomposition (E.1), together with

𝑀
6
= 𝑅

3

+
⊕ 𝑅

3

−
= 𝑇

3

⊕ 𝑃
3

,

sgn (𝑇
3

) = (+ + +) , sgn (𝑃3) = (− − −) ,
(E.10)

holds. The 12-dimensional basis (𝑒) transforms under the
distortion gauge field 𝑎(𝜁) (𝜁 ∈ 𝑀

12
):

�̃� = 𝐷 (𝑎) 𝑒, (E.11)

where the distortion matrix 𝐷(𝑎) reads 𝐷(𝑎) = 𝐶(𝑎) ⊗ 𝑅(𝑎),
provided

�̃� = 𝐶 (𝑎)𝑂, �̃� = 𝑅 (𝑎) 𝜎. (E.12)

The matrices 𝐶(𝑎) generate the group of distortion transfor-
mations of the bi-pseudo-vectors:

𝐶
𝜏,]
(𝜆𝜇𝛼)

(𝑎) = 𝛿
𝜏

𝜆
𝛿
]
𝜇
+ æ𝑎

(𝜆,𝜇,𝛼)

∗
𝛿
𝜏

𝜆

∗

𝛿
]
𝜇
, (E.13)

but 𝑅(𝑎) ∈ 𝑆𝑂(3)
𝜆𝜇
—the group of ordinary rotations of

the planes involving two arbitrary bases of the spaces 𝑅3
𝜆𝜇

around the orthogonal third axes. The angles of rotations
are determined according to (E.6), but now for the extended
indices 𝐴 = (𝜆, 𝜇, 𝛼) and so forth.

F. Field Equations at Spherical Symmetry

The extended field equations followed at once in terms of
Euler-Lagrange variations, respectively, on the spaces 𝑀

12

and �̃�
12
[74]. In accordance, the equation of distortion gauge

field 𝑎
𝐴
= (𝑎

(𝜆𝛼)
, 𝑎

(𝜏𝛽)
) reads

𝜕
𝐵
𝜕
𝐵
𝑎
𝐴
− (1 − 𝜁

−1

0
) 𝜕

𝐴
𝜕
𝐵
𝑎
𝐵

= 𝐽
𝐴
= −
1

2
√𝑔
𝜕𝑔

𝐵𝐶

𝜕𝑎
𝐴

𝑇
𝐵𝐶
,

(F.1)

where 𝑇
𝐵𝐶

is the energy-momentum tensor and 𝜁
0
is the

gauge fixing parameter. To render our discussion here more
transparent, below we clarify the relation between gravita-
tional and coupling constants. To assist in obtaining actual
solutions from the field equations, wemay consider theweak-
field limit and will envisage that the right-hand side of (F.1)
should be in the form

−
1

2
(4𝜋𝐺

𝑁
)√𝑔 (𝑥)

𝜕𝑔
𝐵𝐶
(𝑥)

𝜕𝑥
𝐴

�̃�
𝐵𝐶
. (F.2)

Hence, we may assign to Newton’s gravitational constant 𝐺
𝑁

the value

𝐺
𝑁
=
æ2

4𝜋
. (F.3)

The curvature of manifold 𝑀
6
→ 𝑀

6
is the familiar

distortion induced by the extended field components

𝑎
(1,1,𝛼)

= 𝑎
(2,1,𝛼)

≡
1

√2

𝑎
(+𝛼)
,

𝑎
(1,2,𝛼)

= 𝑎
(2,2,𝛼)

≡
1

√2

𝑎
(−𝛼)
.

(F.4)

The other regime of ID presents at

𝑎
(1,1,𝛼)

= −𝑎
(2,1,𝛼)

≡
1

√2

𝑎
(+𝛼)
,

𝑎
(1,2,𝛼)

= −𝑎
(2,2,𝛼)

≡
1

√2

𝑎
(−𝛼)
.

(F.5)

To obtain a feeling for this point we may consider physical
systems which are static as well as spherically symmetrical.
We are interested in the case of a spherical-symmetric gravi-
tational field 𝑎

0
(𝑟) in presence of one-dimensional space-like

ID-field 𝑎:

𝑎
(1,1,3)

= 𝑎
(2,2,3)

= 𝑎
(+3)
=
1

2
(−𝑎

0
+ 𝑎) ,

𝑎
(1,2,3)

= 𝑎
(2,1,3)

= 𝑎
(−3)
=
1

2
(−𝑎

0
− 𝑎) ,

𝑎
(𝜆,𝜇,1)

= 𝑎
(𝜆,𝜇,2)

= 0, 𝜆, 𝜇 = 1, 2.

(F.6)

One can then easily determine the basis vectors (𝑒
𝜆𝛼
, 𝑒

𝜏𝛽
),

where tan 𝜃
(±3)
= æ(−𝑎

0
± 𝑎). Passing back from the �̃�

6
to

𝑉
4
, the basis vectors read

�̃�
0
= 𝑒

0
(1 − 𝑥

0
) + 𝑒

3
𝑥,

�̃�
3
= 𝑒

3
(1 + 𝑥

0
) − 𝑒

03
𝑥,
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�̃�
1
=
1

2
{(cos 𝜃

(+3)
+ cos 𝜃

(−3)
) 𝑒

1

+ (sin 𝜃
(+3)
+ sin 𝜃

(−3)
) 𝑒

2

+ (cos 𝜃
(+3)
− cos 𝜃

(−3)
) 𝑒

01

+ (sin 𝜃
(+3)
− sin 𝜃

(−3)
) 𝑒

02
} ,

�̃�
2
=
1

2
{(cos 𝜃

(+3)
+ cos 𝜃

(−3)
) 𝑒

2

− (sin 𝜃
(+3)
+ sin 𝜃

(−3)
) 𝑒

1

+ (cos 𝜃
(+3)
− cos 𝜃

(−3)
) 𝑒

02

− (sin 𝜃
(+3)
− sin 𝜃

(−3)
) 𝑒

01
} ,

(F.7)
where 𝑥

0
≡ æ𝑎

0
, 𝑥 ≡ æ𝑎.

G. SPC-Configurations

The equations describing the equilibrium SPC include the
gravitational and ID field equations (A.2), the hydrostatic
equilibrium equation, and the state equation specified for
each domain of many layered configurations. The resulting
stable SPC is formed, which consists of the protomatter
core and the outer layers of ordinary matter. A layering of
configurations is a consequence of the onset of different
regimes in equation of state. In the density range 𝜌 <

4.54 × 10
12 g cm−3, one uses for both configurations the

simple semiempirical formula of state equation given by
Harrison and Wheeler, see for example [98]. Above the
density 𝜌 > 4.54 × 1012 g cm−3, for the simplicity, the I-
class SPCI configuration is thought to be composed of regular
n-p-e (neutron-proton-electron) gas (in absence of ID) in
intermediate density domain 4.54 × 1012 g cm−3

≤ 𝜌 <

𝜌
𝑑
and of the n-p-e protomatter in presence of ID at 𝜌 >

𝜌
𝑑
. For the II-class SPCII configuration above the density
𝜌
𝑓𝑙
= 4.09 × 10

14 g cm−3 one considers an onset of melting
down of hadrons when nuclear matter consequently turns
to quark matter, found in string flip-flop regime. In domain
𝜌
𝑓𝑙
≤ 𝜌 < 𝜌

𝑑
, to which the distances 0.4 fm < 𝑟

𝑁𝑁
≤

1.6 fm correspond, one has the regular (ID is absent) string
flip-flop regime. This is a kind of tunneling effect when the
strings joining the quarks stretch themselves violating energy
conservation and after touching each other they switch on to
the other configuration [71]. The basic technique adopted for
calculation of transition matrix element �̃� is the instanton
technique (semiclassical treatment). During the quantum
transition from a state 𝜓

1
of energy �̃�

1
to another one 𝜓

2

of energy �̃�
2
, the lowering of energy of system takes place

and the quark matter acquires Δ�̃� correction to the classical
string energy such that the flip-flop energy lowers the energy
of quark matter, consequently by lowering the critical density
or critical Fermi momentum. If one, for example, looks for
the string flip-flop transition amplitude of simple system of

𝑞𝑞𝑞𝑞 described by the Hamiltonian �̃� and invariant action �̃�,
then one has

[d�̃�]e−S̃⟩,⟨ =|e−H̃T| ⟨∫⟩ (G.1)

where 𝑇 is an imaginary time interval and [𝑑�̃�] is the
integration over all the possible string motion.The action �̃� is
proportional to the area �̃� of the surface swept by the strings
in the finite region of ID-region of 𝑅

4
.The strings are initially

in the -configuration and finally in the -configuration.
The maximal contribution to the path integral comes from
the surface 𝜎

0
of the minimum surface area “instanton”. A

computation of the transition amplitude is straightforward by
summing over all the small vibrations around 𝜎

0
. In domain

𝜌
𝑑
≤ 𝜌 < 𝜌

𝑎𝑠
, one has the string flip-flop regime in presence

of ID, at distances 0.25 fm < 𝑟
𝑁𝑁
≤ 0.4 fm.That is, the system

is made of quark protomatter in complete 𝛽-equilibrium
with rearrangement of string connections joining them. In
final domain 𝜌 > 𝜌

𝑎𝑠
, the system is made of quarks

in one bag in complete 𝛽-equilibrium at presence of ID.
The quarks are under the weak interactions and gluons,
including the effects of QCD-perturbative interactions. The
QCD vacuum has a complicated structure, which is inti-
mately connected to the gluon-gluon interaction. In most
applications, sufficient accuracy is obtained by assuming
that all the quarks are almost massless inside a bag. The
latter is regarded as noninteracting Fermi gas found in the
ID-region of the space-time continuum, at short distances
𝑟
𝑁𝑁
≤ 0.25 fm. Each configuration is defined by the two free

parameters of central values of particle concentration �̃�(0)
and dimensionless potential of space-like ID-field 𝑥(0). The
interior gravitational potential 𝑥int

0
(𝑟) matches the exterior

one 𝑥ext
0
(𝑟) at the surface of the configuration. The central

value of the gravitational potential 𝑥
0
(0) can be found by

reiterating integrations when the sewing condition of the
interior and exterior potentials holds. The key question of
stability of SPC was studied in [72]. In the relativistic case
the total mass-energy of SPC is the extremum in equilibrium
for all configurations with the same total number of baryons.
While the extrema of �̃� and 𝑁 occur at the same point in
a one-parameter equilibrium sequence, one can look for the
extremum of �̃� = �̃�𝑐2 − �̃�

𝐵
𝑁 on equal footing. Minimizing

the energy will give the equilibrium configuration, and the
second derivative of �̃� will give stability information. Recall
that, for spherical configurations of matter, instantaneously
at rest, small radial deviations from equilibrium are governed
by a Sturm-Liouville linear eigenvalue equation [98], with the
imposition of suitable boundary conditions on normalmodes
with time dependence 𝜉𝑖(�⃗�, 𝑡) = 𝜉𝑖(�⃗�)𝑒𝑖𝜔𝑡. A necessary and
sufficient condition for stability is that the potential energy
be positive defined for all initial data of 𝜉𝑖(�⃗�, 0), namely,
in first order approximation when one does not take into
account the rotation and magnetic field, if the square of
frequency of normal mode of small perturbations is positive.
A relativity tends to destabilize configurations. However,
numerical integrations of the stability equations of SPC [72]
give for the pressure-averaged value of the adiabatic index
Γ
1
= (𝜕 ln �̃�/𝜕 ln �̃�)

𝑠
the following values: Γ

1
≈ 2.216 for
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the SPCI and Γ1 ≈ 2.4 for SPCII configurations. This clearly
proves the stability of resulting SPC. Note that the SPC is
always found inside the event horizon sphere, and therefore
it could be observed only in presence of accreting matter.
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