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We present a notion of framemultiresolution analysis on local fields of positive characteristic based on the theory of shift-invariant
spaces. In contrast to the standard setting, the associated subspace 𝑉

0
of 𝐿2(𝐾) has a frame, a collection of translates of the scaling

function 𝜑 of the form {𝜑(⋅ − 𝑢(𝑘)) : 𝑘 ∈ N
0
}, where N

0
is the set of nonnegative integers. We investigate certain properties of

multiresolution subspaces which provides the quantitative criteria for the construction of frame multiresolution analysis (FMRA)
on local fields of positive characteristic. Finally, we provide a characterization of wavelet frames associated with FMRA on local
field𝐾 of positive characteristic using the shift-invariant space theory.

1. Introduction

Multiresolution analysis is considered as the heart of wavelet
theory. The concept of multiresolution analysis provides
a natural framework for understanding and constructing
discrete wavelet systems. A multiresolution analysis is an
increasing family of closed subspaces {𝑉

𝑗
: 𝑗 ∈ Z} of 𝐿2(R)

such that⋂
𝑗∈Z 𝑉
𝑗
= {0} and⋃

𝑗∈Z 𝑉
𝑗
is dense in 𝐿

2
(R) which

satisfies 𝑓 ∈ 𝑉
𝑗
if and only if 𝑓(2⋅) ∈ 𝑉

𝑗+1
. Furthermore,

there exists an element 𝜑 ∈ 𝑉
0
such that the collection of

integer translates of function 𝜑, {𝜑(⋅ − 𝑘) : 𝑘 ∈ Z}, represents
a complete orthonormal system for 𝑉

0
. The function 𝜑 is

called the scaling function or the father wavelet. The concept
ofmultiresolution analysis has been extended in various ways
in recent years. These concepts are generalized to 𝐿

2
(R𝑑),

to lattices different from Z𝑑, allowing the subspaces of
multiresolution analysis to be generated byRiesz basis instead
of orthonormal basis, admitting a finite number of scaling
functions, replacing the dilation factor 2 by an integer𝑀 ≥ 2

or by an expansive matrix 𝐴 ∈ 𝐺𝐿
𝑑
(R) as long as 𝐴 ⊂ 𝐴Z𝑑

(see [1, 2]).
On the other hand, this elegant tool for the construc-

tion of wavelet bases has been extensively studied by sev-
eral authors on the various spaces, namely, Cantor dyadic
groups [3], locally compact Abelian groups [4], 𝑝-adic fields

[5], zero-dimensional groups [6], and Vilenkin groups [7].
Recently, R. L. Benedetto and J. J. Benedetto [8] developed a
wavelet theory for local fields and related groups.Theydid not
develop the multiresolution analysis (MRA) approach; their
method is based on the theory of wavelet sets.The local fields
are essentially of two types: zero and positive characteristic
(excluding the connected local fields R and C). Examples of
local fields of characteristic zero include the 𝑝-adic field Q

𝑝

whereas local fields of positive characteristic are the Cantor
dyadic group and the Vilenkin 𝑝-groups. The structures and
metrics of the local fields of zero and positive characteristic
are similar, but their wavelet and MRA theory are quite
different. The concept of multiresolution analysis on a local
field𝐾 of positive characteristic was introduced by Jiang et al.
[9]. They pointed out a method for constructing orthogonal
wavelets on local field𝐾with a constant generating sequence.
Subsequently, tight wavelet frames on local fields of positive
characteristic were constructed by Shah and Debnath [10]
using extension principles. As far as the characterization of
wavelets on local fields is concerned, Behera and Jahan [11]
have given the characterization of all wavelets associated with
multiresolution analysis on local field 𝐾 based on results on
affine and quasiaffine frames. Recently, Shah and Abdullah
[12] have introduced the notion of nonuniform multiresolu-
tion analysis on local field 𝐾 of positive characteristic and
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obtained the necessary and sufficient condition for a function
𝜑 to generate a nonuniformmultiresolution analysis on local
fields. More results in this direction can also be found in
[13, 14] and the references therein.

Since the use of multiresolution analysis has proven to be
a very efficient tool in wavelet theory mainly because of its
simplicity, it is of interest to try to generalize this notion as
much as possiblewhile preserving its connectionwithwavelet
analysis. In this connection, Benedetto and Li [15] considered
the dyadic semiorthogonal frame multiresolution analysis of
𝐿
2
(R) with a single scaling function and successfully applied

the theory in the analysis of narrow band signals. The
characterization of the dyadic semiorthogonal frame mul-
tiresolution analysis with a single scaling function admitting
a single frame wavelet whose dyadic dilations of the integer
translates forma frame for𝐿2(R)was obtained independently
by Benedetto and Treiber by a direct method [16] and by Kim
and Lim by using the theory of shift-invariant spaces [17].
Later on, Yu [18] extended the results of Benedetto and Li’s
theory of FMRA to higher dimensions with arbitrary integral
expansive matrix dilations and has established the necessary
and sufficient conditions to characterize semiorthogonal
multiresolution analysis frames for 𝐿2(R𝑛).

In this paper, we introduce the notion of frame multire-
solution analysis (FMRA) on local field 𝐾 of positive char-
acteristic by extending the above describedmethods.We first
investigate the properties ofmultiresolution subspaces, which
will provide the quantitative criteria for the construction
of FMRA on local fields of positive characteristic. We also
show that the scaling property of an FMRA also holds
for the wavelet subspaces and that the space 𝐿

2
(𝐾) can

be decomposed into the orthogonal sum of these wavelet
subspaces. Finally, we study the characterization of wavelet
frames associated with FMRA on local field 𝐾 of positive
characteristic using the shift-invariant space theory.

The paper is organized as follows. In Section 2, we
discuss some preliminary facts about local fields of positive
characteristic including the definition of a frame. The notion
of frame multiresolution analysis of 𝐿2(𝐾) is introduced in
Section 3 and its quantitative criteria are given by means of
Theorem 12. In Section 4, we establish a complete charac-
terization of wavelet frames generated by a finite number of
mother wavelets on local field𝐾 of positive characteristic.

2. Preliminaries on Local Fields

Let 𝐾 be a field and a topological space. Then, 𝐾 is called
a local field if both 𝐾

+ and 𝐾
∗ are locally compact Abelian

groups, where𝐾+ and𝐾
∗ denote the additive andmultiplica-

tive groups of𝐾, respectively. If𝐾 is any field and is endowed
with the discrete topology, then𝐾 is a local field. Further, if𝐾
is connected, then 𝐾 is either R or C. If 𝐾 is not connected,
then it is totally disconnected.Hence, by a local field, wemean
a field 𝐾 which is locally compact, nondiscrete, and totally
disconnected. The 𝑝-adic fields are examples of local fields.
More details are referred to in [19, 20]. In the rest of this
paper, we use N,N

0
, and Z to denote the sets of natural and

nonnegative integers and integers, respectively.

Let𝐾 be a fixed local field.Then, there is an integer 𝑞 = p𝑟,
where p is a fixed prime element of 𝐾 and 𝑟 is a positive
integer, and a norm | ⋅ | on 𝐾 such that for all 𝑥 ∈ 𝐾 we have
|𝑥| ≥ 0 and for each 𝑥 ∈ 𝐾 \ {0} we get |𝑥| = 𝑞

𝑘 for some
integer 𝑘. This norm is non-Archimedean; that is, |𝑥 + 𝑦| ≤

max{|𝑥|, |𝑦|} for all 𝑥, 𝑦 ∈ 𝐾 and |𝑥 + 𝑦| = max{|𝑥|, |𝑦|}
whenever |𝑥| ̸= |𝑦|. Let 𝑑𝑥 be the Haar measure on the
locally compact, topological group (𝐾, +). This measure is
normalized so that ∫

D
𝑑𝑥 = 1, whereD = {𝑥 ∈ 𝐾 : |𝑥| ≤ 1} is

the ring of integers in𝐾. DefineB = {𝑥 ∈ 𝐾 : |𝑥| < 1}.The set
B is called the prime ideal in 𝐾. The prime ideal in 𝐾 is the
unique maximal ideal in D, and hence as a result B is both
principal and prime. Therefore, for such an idealB inD, we
haveB = ⟨p⟩ = pD.

Let D∗ = D \ B = {𝑥 ∈ 𝐾 : |𝑥| = 1}. Then, it is easy to
verify thatD∗ is a group of units in 𝐾

∗ and if 𝑥 ̸= 0, then we
may write 𝑥 = p𝑘𝑥󸀠, 𝑥󸀠 ∈ D∗. Moreover, each B𝑘 = p𝑘D =

{𝑥 ∈ 𝐾 : |𝑥| < 𝑞
−𝑘

} is a compact subgroup of𝐾+ and is known
as the fractional ideals of𝐾+ (see [19]). LetU = {𝑎

𝑖
}
𝑞−1

𝑖=0
be any

fixed full set of coset representatives of B in D; then, every
element 𝑥 ∈ 𝐾 can be expressed uniquely as 𝑥 = ∑

∞

ℓ=𝑘
𝑐
ℓ
pℓ

with 𝑐
ℓ
∈ U. Let 𝜒 be a fixed character on𝐾

+ that is trivial on
D but is nontrivial onB−1. Therefore, 𝜒 is constant on cosets
of D, implying that if 𝑦 ∈ B𝑘, then 𝜒

𝑦
(𝑥) = 𝜒(𝑦𝑥) for 𝑥 ∈

𝐾. Suppose that 𝜒
𝑢
is any character on 𝐾

+; then, clearly the
restriction 𝜒

𝑢
|D is also a character onD. Therefore, if {𝑢(𝑛) :

𝑛 ∈ N
0
} is a complete list of distinct coset representatives of

D in𝐾
+, then, as it was proved in [20], the set {𝜒

𝑢(𝑛)
: 𝑛 ∈ N

0
}

of distinct characters onD is a complete orthonormal system
onD.

The Fourier transform 𝑓 of a function 𝑓 ∈ 𝐿
1
(𝐾)∩𝐿

2
(𝐾)

is defined by

𝑓 (𝜉) = ∫
𝐾

𝑓 (𝑥) 𝜒
𝜉
(𝑥)𝑑𝑥. (1)

It is noted that

𝑓 (𝜉) = ∫
𝐾

𝑓 (𝑥) 𝜒
𝜉
(𝑥)𝑑𝑥 = ∫

𝐾

𝑓 (𝑥) 𝜒 (−𝜉𝑥) 𝑑𝑥. (2)

Furthermore, the properties of Fourier transform on local
field are much similar to those on the real line. In particular,
Fourier transform is unitary on 𝐿

2
(𝐾).

We now impose a natural order on the sequence {𝑢(𝑛) :

𝑛 ∈ N
0
}. SinceD/B ≅ 𝐺𝐹(𝑞), where𝐺𝐹(𝑞) is a 𝑐-dimensional

vector space over the field 𝐺𝐹(𝑞) (see [20]), we choose a set
{1 = 𝜁

0
, 𝜁
1
, 𝜁
2
, . . . , 𝜁

𝑐−1
} ⊂ D∗ such that span {𝜁

𝑗
}
𝑐−1

𝑗=0
≅ 𝐺𝐹(𝑞).

For 𝑛 ∈ N
0
such that 0 ≤ 𝑛 < 𝑞, we have

𝑛 = 𝑎
0
+ 𝑎
1
𝑝 + ⋅ ⋅ ⋅ + 𝑎

𝑐−1
𝑝
𝑐−1

, 0 ≤ 𝑎
𝑘
< 𝑝,

𝑘 = 0, 1, . . . , 𝑐 − 1.

(3)

Define

𝑢 (𝑛) = (𝑎
0
+ 𝑎
1
𝜁
1
+ ⋅ ⋅ ⋅ + 𝑎

𝑐−1
𝜁
𝑐−1

) p
−1

. (4)

For 𝑛 ∈ N
0
and 0 ≤ 𝑏

𝑘
< 𝑞, 𝑘 = 0, 1, 2, . . . , 𝑠, we write

𝑛 = 𝑏
0
+ 𝑏
1
𝑞 + 𝑏
2
𝑞
2
+ ⋅ ⋅ ⋅ + 𝑏

𝑠
𝑞
𝑠
, (5)
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such that

𝑢 (𝑛) = 𝑢 (𝑏
0
) + 𝑢 (𝑏

1
) p
−1

+ ⋅ ⋅ ⋅ + 𝑢 (𝑏
𝑠
) p
−𝑠
. (6)

Also, for 𝑟, 𝑘 ∈ N
0
and 0 ≤ 𝑠 < 𝑞

𝑘, we have

𝑢 (𝑟𝑞
𝑘
+ 𝑠) = 𝑢 (𝑟) p

−𝑘
+ 𝑢 (𝑠) . (7)

Further, it is easy to verify that 𝑢(𝑛) = 0 if and only if 𝑛 = 0

and {𝑢(ℓ) + 𝑢(𝑘) : 𝑘 ∈ N
0
} = {𝑢(𝑘) : 𝑘 ∈ N

0
} for a fixed

ℓ ∈ N
0
. Hereafter, we use the notation 𝜒

𝑛
:= 𝜒
𝑢(𝑛)

, 𝑛 ≥ 0.
Let the local field 𝐾 be of characteristic 𝑝 > 0 and let

𝜁
0
, 𝜁
1
, 𝜁
2
, . . . , 𝜁

𝑐−1
be as above. We define a character 𝜒 on 𝐾

as follows:

𝜒 (𝜁
𝜇
p
−𝑗
) =

{

{

{

exp(
2𝜋𝑖

𝑝
) , 𝜇 = 0, 𝑗 = 1,

1, 𝜇 = 1, . . . , 𝑐 − 1 or 𝑗 ̸= 1.

(8)

Definition 1. Let H be a separable Hilbert space. A sequence
{𝑓
𝑘

: 𝑘 ∈ N
0
} in H is called a 𝑓𝑟𝑎𝑚𝑒 for H if there exist

constants 𝐴 and 𝐵 with 0 < 𝐴 ≤ 𝐵 < ∞ such that

𝐴
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

2

2
≤ ∑

𝑘∈N0

󵄨󵄨󵄨󵄨⟨𝑓, 𝑓𝑘⟩
󵄨󵄨󵄨󵄨

2
≤ 𝐵

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

2
, ∀𝑓 ∈ H. (9)

The largest constant 𝐴 and the smallest constant 𝐵 satisfying
(9) are called the upper and the lower frame bound, respec-
tively. A frame is said to be tight if it is possible to choose
𝐴 = 𝐵 and a frame is said to be exact if it ceases to be a frame
when any one of its elements is removed. An exact frame is
also known as a Riesz basis.

The following theorem gives us an elementary character-
ization of frames.

Theorem 2 (see [15]). A sequence {𝑓
𝑘
: 𝑘 ∈ N

0
} in a Hilbert

space H is a frame for H if and only if there exists a sequence
𝑎 = {𝑎

𝑘
} ∈ 𝑙
2
(N
0
) with ‖𝑎‖

𝑙
2
(N0)

≤ 𝐶‖𝑓‖, 𝐶 > 0, such that

𝑓 = ∑

𝑘∈N0

𝑎
𝑘
𝑓
𝑘
, (10)

and ∑
𝑘∈N0

|⟨𝑓, 𝑓
𝑘
⟩|
2
< ∞, for every 𝑓 ∈ H.

For 𝑗 ∈ Z and 𝑦 ∈ 𝐾, we define the dilation operator 𝛿
𝑗

and the translation operator 𝜏
𝑦
as follows:

𝛿
𝑗
𝑓 (𝑥) = 𝑞

𝑗/2
𝑓 (p
−𝑗
𝑥) , 𝜏

𝑦
𝑓 (𝑥) = 𝑓 (𝑥 − 𝑦) ,

𝑓 ∈ 𝐿
2
(𝐾) .

(11)

Our study uses the theory of shift-invariant spaces developed
in [21, 22] and the references therein. A closed subspace 𝑆 of
𝐿
2
(𝐾) is said to be shift-invariant if 𝜏

𝑘
𝑓 ∈ 𝑆 whenever 𝑓 ∈ 𝑆

and 𝑘 ∈ N
0
. A closed shift-invariant subspace 𝑆 of 𝐿2(𝐾) is

said to be generated by Φ ⊂ 𝐿
2
(𝐾) if 𝑆 = span{𝜏

𝑘
𝜑(𝑥) :=

𝜑(𝑥 − 𝑢(𝑘)) : 𝑘 ∈ N
0
, 𝜑 ∈ Φ}. The cardinality of the

smallest generating set Φ for 𝑆 is called the length of 𝑆 which
is denoted by |𝑆|. If |𝑆| = finite, then 𝑆 is called a finite shift-
invariant space (FSI) and if |𝑆| = 1, then 𝑆 is called a principal

shift-invariant space (PSI). Moreover, the spectrum of a shift-
invariant space is defined to be

𝜎 (𝑆) = {𝜉 ∈ D : 𝑆 (𝜉) ̸= {0}} , (12)

where 𝑆(𝜉) = {𝑓(𝜉 + 𝑢(𝑘)) ∈ 𝑙
2
(N
0
) : 𝑓 ∈ 𝑆, 𝑘 ∈ N

0
}.

3. Frame Multiresolution Analysis
on Local Fields

We first introduce the notion of a frame multiresolution anal-
ysis (FMRA) of 𝐿2(𝐾).

Definition 3. Let 𝐾 be a local field of positive characteristic
𝑝 > 0 and let p be a prime element of 𝐾. A frame multire-
solution analysis of 𝐿2(𝐾) is a sequence of closed subspaces
{𝑉
𝑗
: 𝑗 ∈ Z} of 𝐿2(𝐾) satisfying the following properties:

(a) 𝑉
𝑗
⊂ 𝑉
𝑗+1

for all 𝑗 ∈ Z;

(b) ⋃
𝑗∈Z 𝑉
𝑗
is dense in 𝐿

2
(𝐾) and⋂

𝑗∈Z 𝑉
𝑗
= {0};

(c) 𝑓(⋅) ∈ 𝑉
𝑗
if and only if 𝑓(p−1⋅) ∈ 𝑉

𝑗+1
for all 𝑗 ∈ Z;

(d) the function 𝑓 lying in 𝑉
0
implies that the collection

𝑓(⋅ − 𝑢(𝑘)) ∈ 𝑉
0
, for all 𝑘 ∈ N

0
;

(e) the sequence {𝜏
𝑘
𝜑 := 𝜑(⋅ − 𝑢(𝑘)) : 𝑘 ∈ N

0
} is a frame

for the subspace 𝑉
0
.

The function 𝜑 is known as the scaling function while the
subspaces 𝑉

𝑗
’s are known as approximation spaces or mul-

tiresolution subspaces. A frame multiresolution analysis is
said to be nonexact and, respectively, exact if the frame for
the subspace 𝑉

0
is nonexact and, respectively, exact. In mul-

tiresolution analysis studied in [9], the frame condition is
replaced by that of an orthonormal basis or an exact frame.

Next, we establish several properties of multiresolution
subspaces that will help in the construction of frame mul-
tiresolution analysis on local field𝐾 of positive characteristic.
The following proposition shows that, for every 𝑗 ∈ Z, the
sequence {𝜑

𝑗,𝑘
: 𝑘 ∈ N

0
}, where

𝜑
𝑗,𝑘 (𝑥) = 𝑞

𝑗/2
𝜑 (p
−𝑗
𝑥 − 𝑢 (𝑘)) , (13)

is a frame for 𝑉
𝑗
.

Proposition 4. Let {𝜏
𝑘
𝜑 : 𝑘 ∈ N

0
} be a frame for 𝑉

0
=

span{𝜏
𝑘
𝜑 : 𝑘 ∈ N

0
} and

𝑉
𝑗
= {𝑓 ∈ 𝐿

2
(𝐾) : 𝑓 (p

𝑗
⋅) ∈ 𝑉

0
} , 𝑗 ∈ Z. (14)

Then, the sequence {𝜑
𝑗,𝑘

: 𝑘 ∈ N
0
} defined in (13) is a frame for

𝑉
𝑗
with the same bounds as those for 𝑉

0
.
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Proof. For any 𝑓 ∈ 𝑉
𝑗
, we have

∑

𝑘∈N0

󵄨󵄨󵄨󵄨󵄨
⟨𝛿
−𝑗
𝑓, 𝜏
𝑘
𝜑⟩

󵄨󵄨󵄨󵄨󵄨

2

= ∑

𝑘∈N0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐾

𝑞
−𝑗/2

𝑓(p
𝑗
𝑥)𝜑(𝑥 − 𝑢(𝑘))𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

(15)

= ∑

𝑘∈N0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐾

𝑓(𝑥)𝑞
𝑗/2

𝜑(p−𝑗𝑥 − 𝑢(𝑘))𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

(16)

= ∑

𝑘∈N0

󵄨󵄨󵄨󵄨󵄨
⟨𝑓, 𝜑
𝑗,𝑘

⟩
󵄨󵄨󵄨󵄨󵄨

2

. (17)

Since {𝜏
𝑘
𝜑 : 𝑘 ∈ N

0
} is a frame for 𝑉

0
, therefore we have

𝐴
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

2

2
= 𝐴

󵄩󵄩󵄩󵄩󵄩
𝛿
−𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩

2

2
≤ ∑

𝑘∈N0

󵄨󵄨󵄨󵄨󵄨
⟨𝑓, 𝜑
𝑗,𝑘

⟩
󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐵
󵄩󵄩󵄩󵄩󵄩
𝛿
−𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩

2

2

= 𝐵
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

2

2
.

(18)

This completes the proof of the proposition.

We now characterize all functions of FSI space by virtue
of its Fourier transforms.

Proposition 5. Let {𝜏
𝑘
𝜑 : 𝑘 ∈ N

0
, 𝜑 ∈ Φ} be a frame for

its closed linear span𝑉, where Φ = {𝜑
1
, 𝜑
2
, . . . , 𝜑

𝐿
} ⊂ 𝐿
2
(𝐾).

Then, 𝑓 ∈ 𝐿
2
(𝐾) lies in 𝑉 if and only if there exist integral

periodic functions ℎ
ℓ
∈ 𝐿
2
(D), ℓ = 1, . . . , 𝐿, such that

𝑓 (𝜉) =

𝐿

∑

ℓ=1

ℎ
ℓ (𝜉) 𝜑ℓ (𝜉) . (19)

Proof. Since the system {𝜏
𝑘
𝜑 : 𝑘 ∈ N

0
, 𝜑 ∈ Φ} is a frame for

𝑉, then, by Theorem 2, there exists a sequence {𝑎
ℓ

𝑘
} ∈ 𝑙
2
(N
0
),

for ℓ = 1, . . . , 𝐿, such that

𝑓 (𝑥) =

𝐿

∑

ℓ=1

∑

𝑘∈N0

𝑎
ℓ

𝑘
𝜑
ℓ
(𝑥 − 𝑢 (𝑘)) . (20)

Taking Fourier transform on both sides of (20), we obtain

𝑓 (𝜉) =

𝐿

∑

ℓ=1

ℎ
ℓ (𝜉) 𝜑ℓ (𝜉) , (21)

where ℎ
ℓ
(𝜉) = ∑

𝑘∈N0
𝑎
ℓ

𝑘
𝜒
𝑘
(𝜉) are the integral periodic

functions in 𝐿
2
(D). The converse is established by taking ℎ

ℓ

as above and applying the inverse Fourier transform on both
sides of (19).

We now study some properties of the multiresolution
subspaces 𝑉

𝑗
of the form (14) by means of the Fourier

transform.

Proposition 6. Let {𝜏
𝑘
𝜑 : 𝑘 ∈ N

0
} be a frame for 𝑉

0
=

span {𝜏
𝑘
𝜑 : 𝑘 ∈ N

0
} and, for 𝑗 ∈ Z, define𝑉

𝑗
by (14).Then, for

any function 𝜓 ∈ 𝑉
1
, there exists periodic function 𝐺 ∈ 𝐿

2
(D)

such that

𝜓̂ (p
−1

𝜉) = 𝑞
1/2

𝐺 (𝜉) 𝜑 (𝜉) . (22)

Proof. By the definition of 𝑉
𝑗
, it follows that 𝜓(p⋅) ∈ 𝑉

0
. By

Proposition 5, there exists a periodic function 𝐺 ∈ 𝐿
2
(D)

such that (𝜓(p⋅))
∧

= 𝜓̂(p−1𝜉) = 𝑞
1/2

𝐺(𝜉)𝜑(𝜉) lies in 𝐿
2
(𝐾).

The following theorem establishes a sufficient condition
to ensure that the nesting property holds for the subspaces
𝑉
𝑗
’s.

Theorem 7. Let {𝜏
𝑘
𝜑 : 𝑘 ∈ N

0
} be a frame for 𝑉

0
=

span {𝜏
𝑘
𝜑 : 𝑘 ∈ N

0
} and, for 𝑗 ∈ Z, define 𝑉

𝑗
by (14). Assume

that there exists a periodic function 𝐻 ∈ 𝐿
∞
(D) such that

𝜑 (𝜉) = 𝑞
1/2

𝐻(p𝜉) 𝜑 (p𝜉) . (23)

Then, 𝑉
𝑗
⊆ 𝑉
𝑗+1

, for every 𝑗 ∈ Z.

Proof. Given any 𝑓 ∈ 𝑉
𝑗
, there exists a sequence {𝑎

𝑘
}
𝑘∈N0

∈

𝑙
2
(N
0
) such that

𝑓 (𝑥) = 𝑞
𝑗/2

∑

𝑘∈N0

𝑎
𝑘
𝜑 (p
−𝑗
𝑥 − 𝑢 (𝑘)) . (24)

Let 𝑚
0
(𝜉) = ∑

𝑘∈N0
𝑎
𝑘
𝜒
𝑘
(𝜉) ∈ 𝐿

2
(D) and let 𝑚

1
(p𝜉) =

𝑚
0
(𝜉)𝐻(p𝜉). Then, clearly 𝑚

1
lies in 𝐿

2
(D) as 𝐻 lies in

𝐿
∞
(D). Therefore, by Parseval’s identity, there exists a

sequence {𝑏
𝑘
}
𝑘∈N0

∈ 𝑙
2
(N
0
) such that 𝑚

1
(𝜉) = ∑

𝑘∈N0
𝑏
𝑘
𝜒
𝑘
(𝜉)

lies in 𝐿
2
(𝐾).

Taking Fourier transform of (24) and using assumption
(23), we obtain

𝑓 (𝜉) = 𝑞
𝑗/2

𝑚
0
(p
𝑗
𝜉) 𝜑 (p

𝑗
𝜉)

= 𝑞
(𝑗+1)/2

𝑚
0
(p
𝑗
𝜉)𝐻 (p

𝑗+1
𝜉) 𝜑 (p

𝑗+1
𝜉)

= 𝑞
(𝑗+1)/2

𝑚
1
(p
𝑗+1

𝜉) 𝜑 (p
𝑗+1

𝜉) .

(25)

By implementing inverse Fourier transform to (25), we have

𝑓 (𝑥) = 𝑞
(𝑗+1)/2

∑

𝑘∈N0

𝑏
𝑘
𝜑 (p
−𝑗−1

𝑥 − 𝑢 (𝑘)) . (26)

Using Proposition 4, we observe that 𝑓 ∈ 𝑉
𝑗+1

. Moreover, it
is easy to verify that the function𝐻 in (23) is not unique.

The following theorem is the converse to Theorem 7.

Theorem 8. Let {𝜏
𝑘
𝜑 : 𝑘 ∈ N

0
} be a frame for 𝑉

0
=

span {𝜏
𝑘
𝜑 : 𝑘 ∈ N

0
} and, for 𝑗 ∈ Z, define 𝑉

𝑗
by (14). Assume

that 𝑉
0
⊆ 𝑉
1
andΦ(𝜉) = ‖𝜑(𝜉 − 𝑢(𝑘))‖

2

𝑙
2
(N0)

. Then, there exists
periodic function 𝐻 ∈ 𝐿

∞
(D) such that (23) holds.

Proof. Since {𝜏
𝑘
𝜑 : 𝑘 ∈ N

0
} is a frame for 𝑉

0
, therefore there

exist positive constants 𝐴 and 𝐵 such that

𝐴 ≤ Φ (𝜉) ≤ 𝐵 a.e. on 𝜎 (𝑉
0
) . (27)

Since 𝑉
0
⊆ 𝑉
1
, we have 𝜑 ∈ 𝑉

1
. By Proposition 6, there exists

a periodic function𝐻
0
∈ 𝐿
2
(D) such that

𝜑 (p
−1

𝜉) = 𝑞
1/2

𝐻
0 (𝜉) 𝜑 (𝜉) . (28)
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Therefore, we have

󵄨󵄨󵄨󵄨𝜑 (𝜉)
󵄨󵄨󵄨󵄨

2
= 𝑞

󵄨󵄨󵄨󵄨𝐻0(p𝜉)
󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝜑(p𝜉)
󵄨󵄨󵄨󵄨

2 a.e. (29)

Let S = B \ 𝜎(𝑉
0
) and 𝐻 ∈ 𝐿

2
(D) be a periodic function

such that𝐻 = 𝐻
0
, a.e. on 𝜎(𝑉

0
), and𝐻 is bounded onS by a

positive constant 𝐶. Then, it follows from the above fact that
𝐻 is not unique so that (29) also holds for𝐻; that is,

󵄨󵄨󵄨󵄨𝜑 (𝜉)
󵄨󵄨󵄨󵄨

2
= 𝑞

󵄨󵄨󵄨󵄨𝐻 (p𝜉)
󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝜑 (p𝜉)
󵄨󵄨󵄨󵄨

2 a.e. (30)

Taking 𝑛 = 𝑘𝑝 + 𝑟, where 𝑘 ∈ N
0
and 𝑟 = 0, 1, . . . , 𝑞 − 1, we

have
󵄨󵄨󵄨󵄨𝜑(𝜉 + 𝑢(𝑛))

󵄨󵄨󵄨󵄨

2

= 𝑞
󵄨󵄨󵄨󵄨𝐻(p𝜉 + p𝑢(𝑟))

󵄨󵄨󵄨󵄨

2
|𝜑 (p𝜉 + p𝑢 (𝑟) + 𝑢 (𝑘)

󵄨󵄨󵄨󵄨

2 a.e.
(31)

Summing up (31) for all 𝑘 ∈ N
0
and 𝑟 = 0, 1, . . . , 𝑞 − 1, we

have

∑

𝑛∈N0

󵄨󵄨󵄨󵄨𝜑 (𝜉 + 𝑢 (𝑛))
󵄨󵄨󵄨󵄨

2

=𝑞

𝑞−1

∑

𝑟=0

󵄨󵄨󵄨󵄨𝐻 (p𝜉 + p𝑢 (𝑟))
󵄨󵄨󵄨󵄨

2
∑

𝑘∈N0

|𝜑 (p𝜉 + p𝑢 (𝑟) +𝑢 (𝑘)
󵄨󵄨󵄨󵄨

2 a.e.,

(32)

which is equivalent to

Φ (𝜉) = 𝑞

𝑞−1

∑

𝑟=0

󵄨󵄨󵄨󵄨𝐻 (p𝜉 + p𝑢 (𝑟))
󵄨󵄨󵄨󵄨

2
Φ (p𝜉 + p𝑢 (𝑟)) a.e. (33)

or

Φ(p
−1

𝜉) = 𝑞

𝑞−1

∑

𝑟=0

󵄨󵄨󵄨󵄨𝐻(𝜉 + p𝑢(𝑟))
󵄨󵄨󵄨󵄨

2
Φ (𝜉 + p𝑢 (𝑟)) a.e. (34)

Note that Φ(p−1𝜉) ≤ 𝐵 a.e. and, hence, (34) becomes

𝑞−1

∑

𝑟=0

󵄨󵄨󵄨󵄨𝐻 (𝜉 + p𝑢 (𝑟))
󵄨󵄨󵄨󵄨

2
Φ (𝜉 + p𝑢 (𝑟)) ≤ 𝑞𝐵 a.e. (35)

This implies that, for almost every 𝜉 ∈ B−1 and 𝑟 = 0, 1, . . . ,

𝑞 − 1, we have

󵄨󵄨󵄨󵄨𝐻(𝜉 + p𝑢(𝑟))
󵄨󵄨󵄨󵄨

2
Φ (𝜉 + p𝑢 (𝑟)) ≤ 𝑞𝐵. (36)

Also, if Φ(𝜉 + p𝑢(𝑟)) = 0, then |𝐻(𝜉 + p𝑢(𝑟))| ≤ 𝐶 and if
Φ(𝜉+p𝑢(𝑟)) > 0, thenwemay assume that𝐴 ≤ Φ(𝜉+p𝑢(𝑟)) ≤

𝐵. Thus, for almost every 𝜉 ∈ B−1 and 𝑟 = 0, 1, . . . , 𝑞 − 1, we
have

󵄨󵄨󵄨󵄨𝐻(𝜉 + p𝑢(𝑟))
󵄨󵄨󵄨󵄨

2
≤ max {𝐶

2
, 𝑞𝐵𝐴
−1

} . (37)

Hence, 𝐻 is essentially bounded on D. This proves the
theorem completely.

The following two propositions are proved in [23].

Proposition 9. Suppose 𝑉
0
= span {𝜏

𝑘
𝜑 : 𝑘 ∈ N

0
} and, for

each 𝑗 ∈ Z, define 𝑉
𝑗
by (14) such that 𝑉

0
⊆ 𝑉
1
. Assume that

|𝜑| > 0, 𝑎.𝑒 on a neighborhood of zero.Then, the union⋃
𝑗∈Z𝑉𝑗

is dense in 𝐿
2
(𝐾).

Proposition 10. Let 𝜑 ∈ 𝐿
2
(𝐾) and define 𝑉

0
= span {𝜏

𝑘
𝜑 :

𝑘 ∈ N
0
}. For each 𝑗 ∈ Z, define 𝑉

𝑗
by (14). Then, one has

⋂
𝑗∈Z 𝑉
𝑗
= {0}.

Lemma 11. Let 𝑉
𝑗
be the family of subspaces defined by (14)

with𝑉
𝑗
⊆ 𝑉
𝑗+1

, for each 𝑗 ∈ Z. Suppose 𝜑 ∈ 𝐿
2
(𝐾) is a nonzero

function with 𝑉
0
= span {𝜏

𝑘
𝜑 : 𝑘 ∈ N

0
}. Then, for every 𝑗 ∈

Z, 𝑉
𝑗
is a proper subspace of 𝑉

𝑗+1
.

Proof. Suppose that 𝑉
ℓ
= 𝑉
ℓ+1

for some ℓ ∈ Z. Let 𝑓 ∈ 𝑉
𝑗+1

;
then, for any given 𝑗 ∈ Z, we have 𝑓(p𝑗+1−ℓ−1𝑥) ∈ 𝑉

𝑗+1
. Since

𝑓(p𝑗−ℓ𝑥) ∈ 𝑉
ℓ
, therefore 𝑓 lies in 𝑉

𝑗
and 𝑉

𝑗
= 𝑉
𝑗+1

. Hence,
⋂
𝑗∈Z 𝑉
𝑗

= 𝑉
0
. By Proposition 10, it follows that 𝑉

𝑗
= {0},

which is a contradiction.

Combining all our results so far, we have the following
theorem.

Theorem 12. Let 𝜑 ∈ 𝐿
2
(𝐾) and define 𝑉

0
= span {𝜏

𝑘
𝜑 : 𝑘 ∈

N
0
}. For each 𝑗 ∈ Z, define 𝑉

𝑗
by (14) and Φ(𝜉) = ‖𝜑(𝜉 −

𝑢(𝑘))‖
2

𝑙
2
(N0)

. Suppose that the following hold:

(i) 𝐴 ≤ Φ(𝜉) ≤ 𝐵 a.e. on 𝜎(𝑉
0
),

(ii) there exists a periodic function 𝐻 ∈ 𝐿
∞
(D) such that

𝜑 (𝜉) = 𝑞
1/2

𝐻(p𝜉) 𝜑 (p𝜉) , a.e. (38)

(iii) |𝜑| > 0, a.e. on a neighborhood of zero.

Then, {𝑉
𝑗
: 𝑗 ∈ Z} defines a frame multiresolution analysis

of 𝐿2(𝐾).

Proof. Since 𝑉
0
is a shift-invariant subspace of 𝐿2(𝐾), there-

fore the system {𝜏
𝑘
𝜑 : 𝑘 ∈ N

0
} forms a frame for𝑉

0
with frame

bounds 𝐴 and 𝐵. ByTheorem 7 and Lemma 11, it follows that
𝑉
𝑗
⊂ 𝑉
𝑗+1

, for every 𝑗 ∈ Z. Hence, by the definition of 𝑉
𝑗
, 𝑓

lies in 𝑉
𝑗
if and only if 𝑓(p𝑗.) lies in 𝑉

0
, while 𝑓(p−1⋅) lies in

𝑉
𝑗+1

if and only if 𝑓(p𝑗+1⋅) lies in 𝑉
0
. Thus, 𝑓 lies in 𝑉

𝑗
if and

only if 𝑓(p−1⋅) lies in 𝑉
𝑗+1

. Moreover, by assumption (iii) and
Proposition 10, it follows that ⋃

𝑗∈Z𝑉𝑗 is dense in 𝐿
2
(𝐾) and

⋂
𝑗∈Z 𝑉
𝑗

= {0}. Thus, the sequence {𝑉
𝑗

: 𝑗 ∈ Z} satisfies
all the conditions to be a frame multiresolution analysis of
𝐿
2
(𝐾).

In order to constructwavelet frames associatedwith frame
multiresolution analysis on local fields 𝐾 of positive charac-
teristic, we introduce the orthogonal complement subspaces
{𝑊
𝑗
: 𝑗 ∈ Z} of𝑉

𝑗
in𝑉
𝑗+1

. It is easy to verify that the sequence
of subspaces {𝑊

𝑗
: 𝑗 ∈ Z} also satisfies the scaling property;

that is,

𝑊
𝑗
= {𝑓 ∈ 𝐿

2
(𝐾) : 𝑓 (p

𝑗
⋅) ∈ 𝑊

0
} , 𝑗 ∈ Z. (39)
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Theorem 13. Let {𝑉
𝑗

: 𝑗 ∈ Z} be an increasing sequence of
closed subspaces of 𝐿2(𝐾) such that ⋃

𝑗∈Z𝑉𝑗 is dense in 𝐿
2
(𝐾)

and ⋂
𝑗∈Z 𝑉
𝑗
= {0}. Let 𝑊

𝑗
be the orthogonal complement of

𝑉
𝑗
in𝑉
𝑗+1

, for each 𝑗 ∈ Z. Then, the subspaces𝑊
𝑗
are pairwise

orthogonal and

𝐿
2
(𝐾) = ⨁

𝑗∈Z

𝑊
𝑗
. (40)

Proof. Assume that 𝑖 < 𝑗; then, ⟨𝑓
𝑖
, 𝑓
𝑗
⟩ = 0, for any𝑓

𝑖
∈ 𝑊
𝑗
as

𝑊
𝑖
⊂ 𝑉
𝑖+1

⊂ 𝑉
𝑗
. Let 𝑃

𝑗
be the orthogonal projection operators

from 𝐿
2
(𝐾) onto 𝑉

𝑗
; then, lim

𝑗→∞
𝑃
𝑗
𝑓 = 𝑓, lim

𝑗→−∞
𝑃
𝑗
𝑓 =

0, and 𝑊
𝑗

= {𝑓 − 𝑃
𝑗
𝑓 : 𝑓 ∈ 𝑉

𝑗+1
}. Therefore, for any 𝑓 ∈

𝐿
2
(𝐾), we have

𝑓 = ∑

𝑗∈Z

(𝑃
𝑗+1

𝑓 − 𝑃
𝑗
𝑓) . (41)

Thus, the result of the direct sum follows since 𝑃
𝑗+1

−𝑃
𝑗
is the

orthogonal projector from 𝐿
2
(𝐾) onto𝑊

𝑗
.

4. Characterization of Wavelet Frames
on Local Fields

In this section, we give the characterization of wavelet frames
associated with frame multiresolution analysis on local fields
of positive characteristic. First, we will characterize the
existence of a function 𝜓 in 𝑊

0
, where 𝑊

0
is the orthogonal

complement of𝑉
0
in𝑉
1
, by virtue of the analysis filters 𝐺 and

𝐻, defined as in Section 3.

Theorem 14. Let 𝐻 be a periodic function associated with the
frame multiresolution analysis {𝑉

𝑗
: 𝑗 ∈ Z} satisfying the

condition (23). Define 𝑊
0
as the orthogonal complement of 𝑉

0

in 𝑉
1
. Let 𝜓 ∈ 𝑉

1
such that

𝜓̂ (𝜉) = 𝑞
1/2

𝐺 (p𝜉) 𝜑 (p𝜉) , (42)

where 𝐺 is a periodic function in 𝐿
2
(D). Then, 𝜓 lies in 𝑊

0
if

and only if

𝑞−1

∑

𝑟=0

𝐻(p𝜉 +p𝑢 (𝑟))Φ (p𝜉 +p𝑢 (𝑟)) 𝐺 (p𝜉+ p𝑢 (𝑟)) =0 𝑎.𝑒. 𝜉.

(43)

Proof. We note that 𝜓 lies in 𝑊
0
if and only if

⟨𝜓, 𝜏
𝑘
𝜓⟩ = ⟨𝜓, 𝜓 (⋅ − 𝑢 (𝑘))⟩ = 0, ∀𝑘 ∈ N

0
. (44)

Define

𝐹 (𝜉) = ∑

𝑘∈N0

𝜑 (𝜉 + 𝑢 (𝑘)) 𝜓̂(𝜉 + 𝑢(𝑘)). (45)

Then, it is easy to verify that 𝐹 lies in 𝐿
1
(D) by using Mono-

tonic ConvergenceTheorem and the Plancherel Theorem as

∫
D

󵄨󵄨󵄨󵄨𝐹 (𝜉)
󵄨󵄨󵄨󵄨 𝑑𝜉 ≤ ∫

D

∑

𝑘∈N0

󵄨󵄨󵄨󵄨𝜑 (𝜉 + 𝑢 (𝑘)) 𝜓̂ (𝜉 + 𝑢 (𝑘))
󵄨󵄨󵄨󵄨 𝑑𝜉

= ∑

𝑘∈N0

∫
D

󵄨󵄨󵄨󵄨𝜑 (𝜉 + 𝑢 (𝑘)) 𝜓̂ (𝜉 + 𝑢 (𝑘))
󵄨󵄨󵄨󵄨 𝑑𝜉

= ∫
𝐾

󵄨󵄨󵄨󵄨𝜑 (𝜉) 𝜓̂ (𝜉)
󵄨󵄨󵄨󵄨 𝑑𝜉

≤
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝜓̂
󵄩󵄩󵄩󵄩2

=
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩2

.

(46)

For a fixed 𝑛 ∈ N
0
, we define 𝐹

𝑀
as

𝐹
𝑀 (𝜉) =

𝑀

∑

𝑘=0

𝜑 (𝜉 + 𝑢 (𝑘)) 𝜓̂(𝜉 + 𝑢(𝑘)) 𝜒
𝑛 (𝜉) . (47)

Then, in view of (23) and (42), we have

𝐹
𝑀

(𝜉) = 𝑞

𝑞−1

∑

𝑟=0

∑

𝑞𝑘+𝑟≤𝑀

𝐻(p𝜉 + p𝑢 (𝑟))
󵄨󵄨󵄨󵄨𝜑(p𝜉 + p𝑢(𝑟) + 𝑢(𝑘))

󵄨󵄨󵄨󵄨

2

⋅ 𝐺(p𝜉 + p𝑢(𝑟))𝜒
𝑛
(𝜉) .

(48)

Using Monotonic Convergence Theorem and the Cauchy-
Schwartz inequality, we obtain

󵄩󵄩󵄩󵄩𝐹𝑀 − 𝐹𝜒
𝑛

󵄩󵄩󵄩󵄩𝐿2(D)

≤ ∫
D

∑

𝑘≥𝑀+1

󵄨󵄨󵄨󵄨𝜑 (𝜉 + 𝑢 (𝑘)) 𝜓̂ (𝜉 + 𝑢 (𝑘))
󵄨󵄨󵄨󵄨 𝑑𝜉

= ∑

𝑘≥𝑀+1

∫
D

󵄨󵄨󵄨󵄨𝜑 (𝜉 + 𝑢 (𝑘)) 𝜓̂ (𝜉 + 𝑢 (𝑘))
󵄨󵄨󵄨󵄨 𝑑𝜉

= ∑

𝑘≥𝑀+1

∫
𝑥+D

󵄨󵄨󵄨󵄨𝜑 (𝜉) 𝜓̂ (𝜉)
󵄨󵄨󵄨󵄨 𝑑𝜉

≤ ∫
|𝜉|>𝑀

󵄨󵄨󵄨󵄨𝜑 (𝜉) 𝜓̂ (𝜉)
󵄨󵄨󵄨󵄨 𝑑𝜉

≤ {∫
|𝜉|>𝑀

|𝜑(𝜉)|
2
𝑑𝜉}

1/2

{∫
|𝜉|>𝑀

󵄨󵄨󵄨󵄨𝜓̂ (𝜉)
󵄨󵄨󵄨󵄨

2
𝑑𝜉}

1/2

󳨀→ 0 as𝑀 󳨀→ ∞.

(49)

Hence,
lim
𝑀→∞

󵄩󵄩󵄩󵄩𝐹𝑀 − 𝐹𝜒
𝑛

󵄩󵄩󵄩󵄩𝐿2(D)
= 0. (50)

Therefore, there exists a subsequence {𝐹
𝑀𝑗

} such that

lim
𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝐹
𝑀𝑗

− 𝐹𝜒
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(D)
= 0, a.e. (51)

Hence,

𝐹 (𝜉) = 𝑞

𝑞−1

∑

𝑟=0

𝐻(p𝜉 + p𝑢 (𝑟))

⋅ Φ (p𝜉 + p𝑢 (𝑟)) 𝐺(p𝜉 + p𝑢(𝑟)) a.e.

(52)
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Using (50) and the Dominated Convergence Theorem, we
have, for all 𝑛 ∈ N

0
,

⟨𝜓, 𝜏
−𝑛

𝜑⟩ = ∫
𝐾

𝜓̂ (𝜉) 𝜑(𝜉)𝜒
𝑛
(𝜉) 𝑑𝜉

= ∑

𝑘∈N0

∫
𝑥+D

𝜓̂ (𝜉) 𝜑(𝜉)𝜒𝑛 (𝜉) 𝑑𝜉

= lim
𝑀→∞

𝑀

∑

𝑘=0

∫
D

𝜓̂ (𝜉 + 𝑢 (𝑘))

⋅ 𝜑(𝜉 + 𝑢(𝑘))𝜒
𝑛
(𝜉) 𝜒
𝑘
(𝜉) 𝑑𝜉

= lim
𝑀→∞

∫
D

𝐹
𝑀 (𝜉) 𝑑𝜉

= ∫
D

𝐹 (𝜉) 𝜒
𝑛
(𝜉) 𝑑𝜉.

(53)

Consequently, 𝐹 = 0, a.e., is the necessary and sufficient
condition for (44) to hold for all 𝑛 ∈ N

0
.

Lemma 15. Let {𝑊
𝑗

: 𝑗 ∈ Z} be a sequence of pairwise
orthogonal closed subspaces of 𝐿

2
(𝐾) such that 𝐿

2
(𝐾) =

⨁
𝑗∈Z𝑊𝑗. Then, for every 𝑓 ∈ 𝐿

2
(𝐾), there exist 𝑓

𝑗
∈ 𝑊
𝑗
,

𝑗 ∈ Z, such that 𝑓(𝑥) = ∑
𝑗∈Z 𝑓
𝑗
(𝑥). Furthermore,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

2
= ∑

𝑗∈Z

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩

2

2
. (54)

Proof. For any arbitrary function 𝑓 ∈ 𝐿
2
(𝐾), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 −

𝑛

∑

𝑗=−𝑛

𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

= 0, (55)

where 𝑓
𝑗
∈ 𝑊
𝑗
, for each 𝑗 ∈ Z. Moreover, for a fixed 𝑛 ∈ N,

we have
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑗=−𝑛

𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

=

𝑛

∑

𝑗=−𝑛

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩

2

2
. (56)

Since the norm ‖⋅‖
2
is continuous, therefore the desired result

is obtained by taking 𝑛 → ∞ on both sides of the above
equality.

Theorem 16. Let 𝜑 be the scaling function for a frame
multiresolution analysis {𝑉

𝑗
: 𝑗 ∈ Z} and suppose that 𝑊

𝑗

is the orthogonal complement of 𝑉
𝑗
in 𝑉
𝑗+1

. Let Ψ = {𝜓
1
,

𝜓
2
, . . . , 𝜓

𝐿
} ⊂ 𝑊

0
. Then, the collection

F
Ψ

= {𝜓
ℓ

𝑗,𝑘
(𝑥) := 𝑞

𝑗/2
𝜓
ℓ
(p
−𝑗
𝑥 − 𝑢 (𝑘)) ,

𝑗 ∈ Z, 𝑘 ∈ N
0
, ℓ = 1, . . . , 𝐿}

(57)

constitutes a wavelet frame for 𝐿2(𝐾)with frame bounds𝐴 and
𝐵 if and only if

{𝜏
𝑘
𝜓
ℓ
: 𝑘 ∈ N

0
, ℓ = 1, . . . , 𝐿} (58)

forms a frame for 𝑊
0
with frame bounds 𝐴 and 𝐵.

Proof. Suppose that the systemF
Ψ
given by (57) is a wavelet

frame for 𝐿2(𝐾) with bounds 𝐴 and 𝐵. Then, it follows from
(39) that the family of functions 𝜓

ℓ

𝑗,𝑘
lies in 𝑊

𝑗
, for ℓ =

1, . . . , 𝐿, 𝑗 ∈ Z, and 𝑘 ∈ N
0
.

By applyingTheorem 13 to an arbitrary function 𝑓 ∈ 𝑊
0
,

we have

∑

𝑗∈Z

∑

𝑘∈N0

󵄨󵄨󵄨󵄨󵄨
⟨𝑓, 𝜓
ℓ

𝑗,𝑘
⟩
󵄨󵄨󵄨󵄨󵄨

2

= ∑

𝑘∈N0

󵄨󵄨󵄨󵄨󵄨
⟨𝑓, 𝜏
𝑘
𝜓
ℓ
⟩
󵄨󵄨󵄨󵄨󵄨

2

. (59)

Using the frame property of the systemF
Ψ
, we have

𝐴
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

2

2
≤

𝐿

∑

ℓ=1

∑

𝑘∈N0

󵄨󵄨󵄨󵄨󵄨
⟨𝑓, 𝜏
𝑘
𝜓
ℓ
⟩
󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐵
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

2

2
, (60)

and it follows that the collection {𝜏
𝑘
𝜓
ℓ
: 𝑘 ∈ N

0
, ℓ = 1, . . . , 𝐿}

is a frame for𝑊
0
.

Conversely, suppose that the collection {𝜏
𝑘
𝜓
ℓ

: 𝑘 ∈

N
0
, ℓ = 1, . . . , 𝐿} is a frame for 𝑊

0
with bounds 𝐴 and 𝐵.

For any fixed 𝑗 ∈ Z and 𝑓 ∈ 𝑊
𝑗
, we have from (39) that

𝑓(p𝑗⋅) ∈ 𝑊
0
. Moreover, by making use of the fact that

⟨𝑓, 𝜓
ℓ

𝑗,𝑘
⟩ = 𝑞
𝑗/2

∫
𝐾

𝑓 (𝑥) 𝜓
ℓ (p−𝑗𝑥 − 𝑢 (𝑘))𝑑𝑥,

󵄩󵄩󵄩󵄩󵄩
𝑞
−𝑗/2

𝑓(p
𝑗
⋅)
󵄩󵄩󵄩󵄩󵄩

2

2
= 𝑞
−𝑗

∫
𝐾

󵄨󵄨󵄨󵄨󵄨
𝑓 (p
𝑗
𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 =
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

2

2
,

(61)

we have

𝐴
󵄩󵄩󵄩󵄩󵄩
𝑞
−𝑗/2

𝑓(p
𝑗
⋅)
󵄩󵄩󵄩󵄩󵄩

2

2
≤

𝐿

∑

ℓ=1

∑

𝑘∈N0

󵄨󵄨󵄨󵄨󵄨
⟨𝑓, 𝜓
ℓ

𝑗,𝑘
⟩
󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐵
󵄩󵄩󵄩󵄩󵄩
𝑞
−𝑗/2

𝑓(p
𝑗
⋅)
󵄩󵄩󵄩󵄩󵄩

2

2
.

(62)

Thus, for a given 𝑗 ∈ Z, the collection {𝜓
ℓ

𝑗,𝑘
: 𝑘 ∈ N

0
, ℓ =

1, . . . , 𝐿} constitutes a frame for𝑊
𝑗
with frame bounds𝐴 and

𝐵.
Let 𝑓 be an arbitrary function in 𝐿

2
(𝐾); then, by Theo-

rem 13 and Lemma 15, there exist 𝑓
𝑗
∈ 𝑊
𝑗
such that

𝑓 = ∑

𝑗∈Z

𝑓
𝑗
, ⟨𝑓

𝑖
, 𝜓
ℓ

𝑗,𝑘
⟩ = 0, 𝑖 ̸= 𝑗. (63)

Therefore, we have
𝐿

∑

ℓ=1

∑

𝑗∈Z

∑

𝑘∈N0

󵄨󵄨󵄨󵄨󵄨
⟨𝑓, 𝜓
ℓ

𝑗,𝑘
⟩
󵄨󵄨󵄨󵄨󵄨

2

=

𝐿

∑

ℓ=1

∑

𝑗∈Z

∑

𝑘∈N0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑖∈Z

⟨𝑓
𝑖
, 𝜓
ℓ

𝑗,𝑘
⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

=

𝐿

∑

ℓ=1

∑

𝑗∈Z

∑

𝑘∈N0

󵄨󵄨󵄨󵄨󵄨
⟨𝑓
𝑗
, 𝜓
ℓ

𝑗,𝑘
⟩
󵄨󵄨󵄨󵄨󵄨

2

.

(64)

Using (62), we obtain

𝐴∑

𝑗∈Z

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩

2

2
≤

𝐿

∑

ℓ=1

∑

𝑗∈Z

∑

𝑘∈N0

󵄨󵄨󵄨󵄨󵄨
⟨𝑓
𝑗
, 𝜓
ℓ

𝑗,𝑘
⟩
󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐵∑

𝑗∈Z

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩

2

2
. (65)

Combining (64), (65), and Lemma 15, we have

𝐴
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩

2

2
≤

𝐿

∑

ℓ=1

∑

𝑗∈Z

∑

𝑘∈N0

󵄨󵄨󵄨󵄨󵄨
⟨𝑓
𝑗
, 𝜓
ℓ

𝑗,𝑘
⟩
󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐵
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩

2

2
. (66)

This completes the proof of the theorem.
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