
Research Article
Maximal Midpoint-Free Subsets of Integers

Roger B. Eggleton

School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia

Correspondence should be addressed to Roger B. Eggleton; roger@ilstu.edu

Received 3 September 2014; Accepted 9 December 2014

Academic Editor: Chris A. Rodger

Copyright © 2015 Roger B. Eggleton. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A set 𝑆 ⊂ Z is midpoint-free if no ordered triple (𝑎, 𝑏, 𝑐) ∈ 𝑆
3 satisfies 𝑎 + 𝑐 = 2𝑏 and 𝑎 < 𝑏 < 𝑐. Midpoint-free subsets of Z+ and Z

are studied, with emphasis on those sets characterized by restrictions on the base𝑚 digits of their elements when 3 ≤ 𝑚 ≤ 14, and
with particular attention to maximal midpoint-free subsets with𝑚 ∈ {3, 4, 7, 9, . . . , 13}.

1. Introduction

An ordered triple (𝑎, 𝑏, 𝑐) of integers is a midpoint triple of Z
if 𝑎 + 𝑐 = 2𝑏 and 𝑎 < 𝑏 < 𝑐. The midpoint of this triple is
𝑏, its lower endpoint is 𝑎 and its upper endpoint is 𝑐. For any
subset 𝑋 ⊆ Z, let Λ(𝑋) denote the set of all midpoint triples
(𝑎, 𝑏, 𝑐) ∈ 𝑋

3. When 𝑆 ⊂ 𝑋 ⊆ Z, let

𝐴 (𝑆,𝑋) := {𝑎 ∈ 𝑋 | ∃𝑏, 𝑐 ∈ 𝑆 : (𝑎, 𝑏, 𝑐) ∈ Λ (𝑋)} ,

𝐵 (𝑆, 𝑋) := {𝑏 ∈ 𝑋 | ∃𝑎, 𝑐 ∈ 𝑆 : (𝑎, 𝑏, 𝑐) ∈ Λ (𝑋)} ,

𝐶 (𝑆, 𝑋) := {𝑐 ∈ 𝑋 | ∃𝑎, 𝑏 ∈ 𝑆 : (𝑎, 𝑏, 𝑐) ∈ Λ (𝑋)} .

(1)

Generically, the members of 𝐴(𝑆,𝑋) ∪ 𝐵(𝑆, 𝑋) ∪ 𝐶(𝑆, 𝑋) are
the balance points for 𝑆 in 𝑋. The balance points comprise
the lower endpoint set 𝐴(𝑆,𝑋), the midpoint set 𝐵(𝑆, 𝑋), and
the upper endpoint set 𝐶(𝑆,𝑋), for 𝑆 in 𝑋. The members of
𝐸(𝑆, 𝑋) := 𝑋 \ (𝑆 ∪ 𝐴(𝑆, 𝑋) ∪ 𝐵(𝑆, 𝑋) ∪ 𝐶(𝑆, 𝑋)) are the
eccentric points for 𝑆 in 𝑋. Attention to these sets appears
to be a new focus, suggested by the underlying geometrical
viewpoint. There is an extensive literature associated with
treating 𝑎 + 𝑐 = 2𝑏 as specifying an arithmetic progression
of length 3. A compact discussion and rich bibliography are
given in Guy’s survey work [1, Section E10]. For an example
of recent work in this field, see Dybizbański [2].

If Λ(𝑆) = 0 it will be convenient to say that 𝑆 ismidpoint-
free; moreover, 𝑆 is a maximal midpoint-free subset of 𝑋 if
Λ(𝑆) = 0 and Λ(𝑇) ̸= 0, whenever 𝑆 ⊂ 𝑇 ⊆ 𝑋. Hence we have
Λ(𝑆 ∪ {𝑥}) ̸= 0 for any 𝑥 ∈ 𝑋 \ 𝑆. This implies the following
characterization.

Theorem 1. If 𝑆 ⊂ 𝑋 ⊆ Z, then 𝑆 is a maximal midpoint-free
subset of𝑋 if and only if 𝐴(𝑆,𝑋) ∪ 𝐵(𝑆, 𝑋) ∪ 𝐶(𝑆, 𝑋) = 𝑋 \ 𝑆,
or equivalently, if and only if Λ(𝑆) = 0 and 𝐸(𝑆,𝑋) = 0.

Note that if 𝑋 is infinite, any maximal midpoint-free
subset 𝑆 ⊂ 𝑋 must also be infinite: any pair of elements of
𝑆 has one midpoint and two endpoints, so precludes at most
three elements of 𝑋 \ 𝑆 from membership of 𝐸(𝑆, 𝑋); thus
𝐸(𝑆, 𝑋) would be infinite if 𝑆 were finite, but then 𝑆 ∪ {𝑥}

would be midpoint-free for any 𝑥 ∈ 𝐸(𝑆,𝑋), contradicting
maximality of 𝑆.

In [3] the notions of midpoint triple and maximal
midpoint-free subset are studied for several “natural” subsets
of the real numbers, but for simplicity in the present note we
restrict 𝑋 to Z and subsets, especially Z+ := {𝑥 ∈ Z | 𝑥 ≥ 0}

andZ− := Z\Z+ = −Z+ \{0}. Here, themain focus will be on
𝐴(𝑆,𝑋), 𝐵(𝑆, 𝑋), and 𝐶(𝑆,𝑋) when 𝑆 is a maximal midpoint-
free subset of𝑋 = Z+, Z− or Z.

Initially 𝑆 has been defined to be midpoint-free if 𝑆3
contains no midpoint triple. There are several semantic
equivalents for this condition.

Theorem 2. If 𝑆 ⊂ 𝑋 ⊆ Z, then any one of the sets

𝐴 (𝑆,𝑋) ∩ 𝑆, 𝐵 (𝑆, 𝑋) ∩ 𝑆, 𝐶 (𝑆, 𝑋) ∩ 𝑆 (2)

is empty if and only if all three are empty.

Proof. Consider the contrary. If 𝑏 ∈ 𝐵(𝑆, 𝑋) ∩ 𝑆 there is a
triple (𝑎, 𝑏, 𝑐) ∈ Λ(𝑆); this triple ensures that 𝑎 ∈ 𝐴(𝑆, 𝑋) ∩ 𝑆
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and 𝑐 ∈ 𝐶(𝑆, 𝑋) ∩ 𝑆. The other two cases follow in the same
way.

Take𝑋 = Z in Theorem 2. Then 𝐵(𝑆,Z) ∩ 𝑆 = 0 recovers
the “natural” terminology that 𝑆 is midpoint-free if and only
if it does not contain the midpoint of any two of its members.
Equally, 𝑆 is midpoint-free if and only if it is lower endpoint-
free, or alternatively, if and only if it is upper endpoint-free.

Corollary 3. A subset 𝑆 ⊂ 𝑋 ⊆ Z is midpoint-free if and
only if

(𝐴 (𝑆, 𝑋) ∪ 𝐵 (𝑆, 𝑋) ∪ 𝐶 (𝑆,𝑋)) ∩ 𝑆 = 0. (3)

This yields another semantic equivalent: 𝑆 is midpoint-
free exactly when it is balance point-free.

For any 𝑥 ∈ 𝑋 define the multiplicity of 𝑥 as a lower
endpoint, midpoint, or upper endpoint for 𝑆, respectively, as

𝛼 (𝑥, 𝑆) := # {(𝑏, 𝑐) ∈ 𝑆
2
| (𝑥, 𝑏, 𝑐) ∈ Λ (𝑋)} ,

𝛽 (𝑥, 𝑆) := # {(𝑎, 𝑐) ∈ 𝑆
2
| (𝑎, 𝑥, 𝑐) ∈ Λ (𝑋)} ,

𝛾 (𝑥, 𝑆) := # {(𝑎, 𝑏) ∈ 𝑆
2
| (𝑎, 𝑏, 𝑥) ∈ Λ (𝑋)} .

(4)

The multiplicities for 𝑥 ∈ 𝑋 in particular cases of 𝑆 ⊂ 𝑋 ⊆ Z

will be of interest.

2. An Explicit Example, Involving Base 𝑚

Digit Restrictions

Let us begin with an explicit example to illustrate these
notions and sample some of the typical features encountered.

For any integer 𝑚 ≥ 3, let Z+
𝑚
(0, 1) be the set of integers

𝑥 ∈ Z+ with regular base 𝑚 representation in which all
digits are restricted to the set {0, 1}. When 𝑎, 𝑏, 𝑐 are distinct
members of Z+

𝑚
(0, 1), all digits of the base 𝑚 representation

of 2𝑏 lie in the set {0, 2}, but base 𝑚 computation of 𝑎 + 𝑐

involves no carry over, so 𝑎 + 𝑐 contains the digit 1 in each
placewhere the base𝑚digits of 𝑎 and 𝑐differ.Hence 𝑎+𝑐 = 2𝑏

is impossible. It follows that Z+
𝑚
(0, 1) is midpoint-free.

Let (𝑥)
𝑚
denote the regular base 𝑚 representation of 𝑥.

An easy base𝑚 computation shows that

(112)
𝑚
= (111)

𝑚
+ (1)
𝑚
= (101)

𝑚
+ (11)

𝑚
. (5)

This corresponds to the identities

𝑚
2
+ 𝑚 + 2 = (𝑚

2
+ 𝑚 + 1) + 1 = (𝑚

2
+ 1) + (𝑚 + 1) .

(6)

Note that 𝑚(𝑚 + 1) + 2 is an even positive integer, so
𝑧 := (1/2)(𝑚

2
+ 𝑚 + 2) is a midpoint for 𝑆 := Z+

𝑚
(0, 1) when

this set is treated as a subset of𝑋 := Z+. Digit considerations
make it clear that 2𝑧 = (112)

𝑚
= (𝑎)
𝑚
+ (𝑐)
𝑚
has no other

solutions with 𝑎, 𝑐 ∈ Z+
𝑚
(0, 1), so the midpoint multiplicity of

𝑧 is 2. In summary,

𝑧 :=
1

2
(𝑚
2
+ 𝑚 + 2) ∈ 𝐵 (Z

+

𝑚
(0, 1) ,Z

+
) ,

𝛽 (𝑧,Z
+

𝑚
(0, 1)) = 2.

(7)

Again, the general base𝑚 computation

(112)
𝑚
+ (110)

𝑚
= (222)

𝑚
= 2 ⋅ (111)

𝑚 (8)

corresponds to the identity

(𝑚
2
+ 𝑚 + 2) + (𝑚

2
+ 𝑚) = 2 (𝑚

2
+ 𝑚 + 1) , (9)

which implies

2𝑧 = 𝑚
2
+ 𝑚 + 2 ∈ 𝐶 (Z

+

𝑚
(0, 1) ,Z

+
) ,

𝛾 (2𝑧,Z
+

𝑚
(0, 1)) = 1,

(10)

when 𝑚 ≥ 4. Additionally, in the special case 𝑚 = 3 we also
have

(112)
3
+ (11)

3
= 2 ⋅ (100)

3
;

(112)3 + (101)3 = 2 ⋅ (110)3 ;

(112)
3
+ (1111)

3
= 2 ⋅ (1000)

3
.

(11)

Hence (112)
3

= 14 ∈ 𝐴(Z+
3
(0, 1),Z+) ∩ 𝐶(Z+

3
(0, 1),Z+).

There are no other solutions to (112)
3
+ (𝑐)
3
= 2 ⋅ (𝑏)

3
with

𝑏, 𝑐 ∈ Z+
3
(0, 1), so the multiplicities of 14 as a lower and

upper endpoint are 𝛼(14,Z+
3
(0, 1)) = 1, 𝛾(14,Z+

3
(0, 1)) = 3.

When𝑚 ≥ 5, it can be seen that (24)
𝑚
+(𝑐)
𝑚
= 2⋅(𝑏)

𝑚
has

no solutions with 𝑏, 𝑐 ∈ Z+
𝑚
(0, 1), so 2𝑚+ 4 is not an endpoint

for Z+
𝑚
(0, 1), and

𝛼 (2𝑚 + 4,Z
+

𝑚
(0, 1)) = 𝛾 (2𝑚 + 4,Z

+

𝑚
(0, 1)) = 0. (12)

Now seek 𝑎, 𝑐 ∈ Z+
𝑚
(0, 1) = {0, 1, 𝑚,𝑚 + 1,𝑚

2
, 𝑚
2
+ 1,

𝑚
2
+ 𝑚,𝑚

2
+ 𝑚 + 1,𝑚

3
, . . .} such that 𝑎 + 𝑐 = 2(2𝑚 + 4)

and 𝑎 < 2𝑚 + 4 < 𝑐. As 𝑚2 > 2𝑚 + 4, it follows that
𝑎 ∈ {0, 1, 𝑚,𝑚 + 1}. Then it is routine to verify that

𝑐 ∈ {3𝑚 + 7, 3𝑚 + 8, 4𝑚 + 7, 4𝑚 + 8} ∩ Z
+

𝑚
(0, 1) = 0

(13)

when 𝑚 ≥ 5, but note that digit arguments must be sensitive
to the magnitude of 𝑚; for instance, 4𝑚 + 7 = (47)

𝑚
when

𝑚 ≥ 8, while for smaller𝑚 we have

4𝑚 + 7 = 𝑚
2
+ 𝑚 + 3 = (113)

𝑚
when 𝑚 = 4,

4𝑚 + 7 = 𝑚
2
+ 2 = (102)

𝑚
when 𝑚 = 5,

4𝑚 + 7 = 5𝑚 + 1 = (51)
𝑚

when 𝑚 = 6,

4𝑚 + 7 = 5𝑚 = (50)𝑚 when 𝑚 = 7.

(14)

It follows that

𝛽 (2𝑚 + 4,Z
+

𝑚
(0, 1)) = 0, (15)

and 2𝑚 + 4 is not a midpoint for Z+
𝑚
(0, 1) when 𝑚 ≥ 5.

This completes the demonstration that 2𝑚 + 4 is an eccentric
point, so the midpoint-free subset Z+

𝑚
(0, 1) ⊂ Z+ is not

maximal if𝑚 ≥ 5.
We will later return to amore systematic study ofZ+

3
(0, 1)

and Z+
4
(0, 1).
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3. New Maximal Midpoint-Free Sets from Old

If 𝑆 ⊂ Z and 𝑐, 𝑑 ∈ Zwith 𝑐 ̸= 0, then 𝑐𝑆+𝑑 := {𝑐𝑠+𝑑 | 𝑠 ∈ 𝑆}

is an affine transform of 𝑆. Clearly (𝑥, 𝑦, 𝑧) ∈ Λ(Z) if and only
if 𝑐(𝑥, 𝑦, 𝑧) + 𝑑 ∈ Λ(Z) when 𝑐 > 0 or 𝑐(𝑧, 𝑦, 𝑥) + 𝑑 ∈ Λ(Z)

when 𝑐 < 0, so any affine transform 𝑐𝑆 + 𝑑 is midpoint-free if
and only if 𝑆 is midpoint-free.

For example, let Z+
𝑚
(0, 2) be the set of all integers 𝑥 ∈ Z+

with regular base 𝑚 ≥ 3 representation in which all digits
are restricted to the set {0, 2}. Then Z+

𝑚
(0, 2) is midpoint-

free because Z+
𝑚
(0, 1) is midpoint-free when 𝑚 ≥ 3, and

Z+
𝑚
(0, 2) = 2Z+

𝑚
(0, 1) is an affine transform of Z+

𝑚
(0, 1).

The last identity shows that Z+
𝑚
(0, 2) ⊂ 2Z+. Similarly,

−(Z+
𝑚
(0, 2) + 1) = −2Z+

𝑚
(0, 1) − 1 is an affine transform of

Z+
𝑚
(0, 1) so is a midpoint-free subset of 2Z− + 1 when𝑚 ≥ 3.

Then

Z
+

𝑚
(0, 2) ∪ −(Z

+

𝑚
(0, 2) + 1) (16)

is a midpoint-free subset ofZ, since the positive and negative
components of this set are midpoint-free, and 𝑎 + 𝑐 = 2𝑏 has
no solution with 𝑎 ∈ 2Z− + 1, 𝑐 ∈ 2Z+, and 𝑏 ∈ Z, because
these conditions require 𝑎 + 𝑐 to be an odd integer and 2𝑏 to
be an even integer.

Suppose 𝑆 ⊂ Z+ is known to be a maximal midpoint-free
subset of Z. It turns out that the principle illustrated by the
example in the previous paragraph holds strongly for 𝑆.

Theorem 4. If 𝑆 ⊂ Z+ is a maximal midpoint-free subset ofZ,
then the set 𝑆(2) := 2𝑆 ∪ −(2𝑆 + 1) is a maximal midpoint-free
subset of Z.

Proof. As 𝑆 is a maximal midpoint-free subset of Z,
Theorem 1 implies

𝐴 (𝑆,Z) ∪ 𝐵 (𝑆,Z) ∪ 𝐶 (𝑆,Z) = Z \ 𝑆. (17)

But 𝑆 ⊂ Z+, so 𝐵(𝑆,Z) ⊂ Z+ and 𝐶(𝑆,Z) ⊂ Z+; hence
𝐵(𝑆,Z) = 𝐵(𝑆,Z+) and 𝐶(𝑆,Z) = 𝐶(𝑆,Z+). Therefore,
𝐴(𝑆,Z) = 𝐴(𝑆,Z+) ∪ Z−.

Given 𝑥 ∈ 𝐴(𝑆,Z) ∪𝐶(𝑆,Z), there exist 𝑏, 𝑦 ∈ 𝑆 such that
𝑥+𝑦 = 2𝑏 and 𝑏 ̸= 𝑦. Let 𝛿 ∈ {0, 1}.Then (2𝑥+𝛿)+(2𝑦+𝛿) =
2(2𝑏 + 𝛿), so

𝑥 < 𝑦 ⇒ 2𝑥 + 𝛿 ∈ 𝐴 (2𝑆 + 𝛿,Z) ;

𝑥 > 𝑦 ⇒ 2𝑥 + 𝛿 ∈ 𝐶 (2𝑆 + 𝛿,Z) .
(18)

Therefore,

2𝐴 (𝑆,Z) + 𝛿 ⊆ 𝐴 (2𝑆 + 𝛿,Z) ,

2𝐶 (𝑆,Z) + 𝛿 ⊆ 𝐶 (2𝑆 + 𝛿,Z) .
(19)

Conversely, suppose 𝑢 ∈ 𝐴(2𝑆+ 𝛿,Z) ∪𝐶(2𝑆 + 𝛿,Z), so there
exist 𝑑, V ∈ 2𝑆 + 𝛿 such that 𝑢 + V = 2𝑑 and 𝑑 ̸= V. But
𝑑 = 2𝑑


+ 𝛿, V = 2V + 𝛿 where 𝑑, V ∈ 𝑆, so 𝑢 + V ≡ 0mod 2

implies 𝑢 ≡ V ≡ 𝛿mod 2, whence 𝑢 = 2𝑢

+𝛿with 𝑢 ∈ Z. But

𝑆 is midpoint-free, so 2𝑆 + 𝛿 is midpoint-free, and therefore,
𝑢 ∈ Z \ (2𝑆 + 𝛿). Thus 𝑢 ∈ Z \ 𝑆. Now 𝑢 + V = 2𝑑 and 𝑑 ̸= V

imply that 𝑢+V = 2𝑑
 and 𝑑 ̸= V, so 𝑢 ∈ 𝐴(𝑆,Z)∪𝐶(𝑆,Z).

Therefore, the reverse containments also hold:

𝑢 < V ⇒ 𝑢 ∈ 2𝐴 (𝑆,Z) + 𝛿;

𝑢 > V ⇒ 𝑢 ∈ 2𝐶 (𝑆,Z) + 𝛿.

(20)

Hence

𝐴 (2𝑆 + 𝛿,Z) = 2𝐴 (𝑆,Z) + 𝛿,

𝐶 (2𝑆 + 𝛿,Z) = 2𝐶 (𝑆,Z) + 𝛿.

(21)

For 𝑥 ∈ 𝐵(𝑆,Z), similar reasoning shows that 2𝑥 + 𝛿 ∈

𝐵(2𝑆 + 𝛿,Z+), so

2𝐵 (𝑆,Z) + 𝛿 ⊆ 𝐵 (2𝑆 + 𝛿,Z) . (22)

However, this containment can in fact be proper. For instance,
if 𝑆 = {2

𝑛
| 𝑛 ∈ Z+}, then 2𝐵(𝑆,Z) only contains even

integers, whereas {2𝑛+1 + 1 | 𝑛 ∈ Z+} ⊂ 𝐵(2𝑆,Z).
Since 𝑆 is a maximal midpoint-free subset of Z, no

integers are eccentric for 𝑆, so no members of 2Z+ + 𝛿 are
eccentric for 2𝑆 + 𝛿. Then the positive integers eccentric for
2𝑆 + 𝛿 satisfy

𝐸 (2𝑆 + 𝛿,Z
+
) = (2Z

+
+ 𝜀) \ 𝐵 (2𝑆 + 𝛿,Z) ⊆ 2Z

+
+ 𝜀, (23)

where 𝜀 := 1−𝛿. Since𝐴(𝑆,Z) = 𝐴(𝑆,Z+)∪Z− it follows that

𝐸 (2𝑆 + 𝛿,Z) ⊆ 2Z + 𝜀. (24)

Specifically, all integers eccentric for 2𝑆 are odd, and all
integers eccentric for 2𝑆 + 1 are even. Therefore, no integer
is eccentric for both 2𝑆 and −(2𝑆 + 1), so 𝐸(𝑆(2),Z) = 0. Thus
𝑆
(2) is a maximal midpoint-free subset of Z.

Corollary 5. If 𝑆 ⊂ Z+ is a maximal midpoint-free subset of
Z, the balance point sets for 𝑆 and 2𝑆+ 𝛿 with 𝛿 ∈ {0, 1} satisfy

𝐴 (𝑆,Z) = 𝐴 (𝑆,Z
+
) ∪ Z
−
, 𝐵 (𝑆,Z) = 𝐵 (𝑆,Z

+
) ,

𝐶 (𝑆,Z) = 𝐶 (𝑆,Z
+
) , 𝐴 (2𝑆 + 𝛿,Z) = 2𝐴 (𝑆,Z) + 𝛿,

𝐶 (2𝑆 + 𝛿,Z) = 2𝐶 (𝑆,Z) + 𝛿,

𝐵 (2𝑆 + 𝛿,Z) ⊇ 2𝐵 (𝑆,Z) + 𝛿.

(25)

It is convenient to refer to the construction inTheorem 4
as “doubling” the given set 𝑆. Other constructions involving
affine transforms of a set are also of interest. For example,
since Z+

𝑚
(0, 1) is midpoint-free when 𝑚 ≥ 3, it follows

that the disjoint sets 𝑚Z+
𝑚
(0, 1) and 𝑚Z+

𝑚
(0, 1) + 1 are

midpoint-free when 𝑚 ≥ 3. In fact, their union is midpoint-
free. This turns out to be “trivial.” Multiplying a member
of Z+
𝑚
(0, 1) by 𝑚 simply shifts its base 𝑚 digits one place,

and a terminal 0 emerges to occupy the zeroth place; then
adding 1 replaces the terminal 0 by 1. Hence 𝑚Z+

𝑚
(0, 1) ∪

(𝑚Z+
𝑚
(0, 1) + 1) = Z+

𝑚
(0, 1).

When 𝑚 ≥ 4, the disjoint midpoint-free sets 3Z+
𝑚
(0, 1)

and 3Z+
𝑚
(0, 1) + 1 are more interesting. Let us verify that

𝑆 := 3Z
+

𝑚
(0, 1) ∪ (3Z

+

𝑚
(0, 1) + 1) (26)
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is also midpoint-free. The two component sets are midpoint-
free, so any midpoint triple (𝑎, 𝑏, 𝑐) ∈ Λ(𝑆)must have at least
one member in each set. Thus {𝑎, 𝑏, 𝑐} ∩ (3Z+ + 𝛿) ̸= 0 in
each case with 𝛿 ∈ {0, 1}. If {𝑎, 𝑐} ⊂ 3Z+

𝑚
(0, 1) + 𝛿, then

𝑏 ∈ 3Z+
𝑚
(0, 1)+ 𝜀 for 𝜀 := 1−𝛿 ∈ {0, 1}. Then 𝑎+𝑐 ∈ 3Z+ +2𝛿

and 2𝑏 ∈ 3Z+ + 2𝜀. But {2𝛿, 2𝜀} = {0, 2}, so 𝑎 + 𝑐 ̸= 2𝑏.
If {𝑎, 𝑏} ⊂ 3Z+

𝑚
(0, 1) + 𝛿 then 𝑐 ∈ 3Z+

𝑚
(0, 1) + 𝜀, while if

{𝑏, 𝑐} ⊂ 3Z+
𝑚
(0, 1) + 𝛿 then 𝑎 ∈ 3Z+

𝑚
(0, 1) + 𝜀. In each case

𝑎 + 𝑐 ∈ 3Z+ + 1 and 2𝑏 ∈ 3Z+ + 2𝛿, so 𝑎 + 𝑐 ̸= 2𝑏 because
2𝛿 ∈ {0, 2}. Thus Λ(𝑆) = 0, as claimed.

Generalising the latter example, a “trebling” construction
which produces newmaximalmidpoint-free subsets ofZwill
now be studied.

Theorem 6. If 𝑆 ⊂ Z+ is a maximal midpoint-free subset
of Z, and all members of Z+ \ 𝑆 are endpoints for 𝑆, then
𝑆
(3)

:= 3𝑆 ∪ (3𝑆 + 1) is a maximal midpoint-free subset of Z,
and all members of Z \ 𝑆

(3) are endpoints of 𝑆(3).

Proof. Because 𝑆 is midpoint-free, each of the affine trans-
forms 3𝑆 and 3𝑆 + 1 is midpoint-free. Assume (𝑎, 𝑏, 𝑐) ∈

Λ(𝑆
(3)
). Since 𝑆(3) ⊂ 3Z+ ∪ (3Z+ + 1), there is a 𝛿 ∈ {0, 1}

such that 𝑏 ∈ 3Z+ + 𝛿. Then 𝑎 + 𝑐 = 2𝑏 ∈ 3Z+ + 2𝛿, so
𝑎, 𝑏, 𝑐 ∈ 3Z+ + 𝛿. Thus (𝑎, 𝑏, 𝑐) ∈ Λ(3𝑆 + 𝛿) = 0, so no such
triple exists. Hence 𝑆(3) := 3𝑆 ∪ (3𝑆 + 1) is midpoint-free.

By hypothesis, 𝐴(𝑆,Z+) ∪ 𝐶(𝑆,Z+) = Z+ \ 𝑆. Also
𝐴(𝑆,Z) = 𝐴(𝑆,Z+) ∪ Z− by Corollary 5, so every 𝑥 ∈ Z \ 𝑆

is an endpoint for 𝑆. Suppose 𝑥 + 𝑦 = 2𝑏 and 𝑏, 𝑦 ∈ 𝑆. Two
integers from complementary sets cannot be equal, so 𝑥, 𝑦, 𝑏
must be different. Also

(3𝑥 + 𝑟) + (3𝑦 + 𝑡) = 2 (3𝑏 + 𝑠) (27)

holds when (𝑟, 𝑠, 𝑡) ∈ {(0, 0, 0), (1, 1, 1), (2, 1, 0), (−1, 0, 1)}. It
follows that

𝑥 < 𝑦 ⇒ 𝑥 ∈ 𝐴 (𝑆,Z) ,

3𝑥 + {−1, 0, 1, 2} ⊂ 𝐴 (𝑆
(3)
,Z) ,

𝑥 > 𝑦 ⇒ 𝑥 ∈ 𝐶 (𝑆,Z) ,

3𝑥 + {−1, 0, 1, 2} ⊂ 𝐶 (𝑆
(3)
,Z) .

(28)

If 𝑠 < 𝑠
 are consecutive members of 𝑆, all members of the

interval

[𝑠 + 1, 𝑠

− 1] := {𝑧 ∈ Z | 𝑠 + 1 ≤ 𝑧 ≤ 𝑠


− 1} (29)

are endpoints for 𝑆. Then 3𝑠 + 1 < 3𝑠
 are consecutive

members of 𝑆(3) and allmembers of [3(𝑠+1)−1, 3(𝑠−1)+2] =
[3𝑠 + 2, 3𝑠


− 1] are endpoints for 𝑆(3). Also each 𝑥 ∈ Z− is

an endpoint for 𝑆, so all members of [3𝑥 − 1, 3𝑥 + 2] are
endpoints for 𝑆(3). Thus𝐴(𝑆(3),Z) ∪ 𝐶(𝑆

(3)
,Z) = Z \ 𝑆

(3), and
𝐸(𝑆
(3)
,Z) = 0.

Let 𝑈
𝑛
:= {𝑥 ∈ Z+

3
(0, 1) | 0 ≤ 𝑥 < 3

𝑛
} for each 𝑛 ∈ Z+,

and let 𝑆(3,0) := 𝑆. Iterating the construction in Theorem 6
and combining withTheorem 4 yields the following result.

Corollary 7. If 𝑆 ⊂ Z+ is a maximal midpoint-free subset of
Z, and all members of Z+ \ 𝑆 are endpoints for 𝑆, then the set

𝑆
(3,𝑛)

:= ⋃

𝑥∈𝑈
𝑛

(3
𝑛
𝑆 + 𝑥) (30)

is a maximal midpoint-free subset ofZ, for any integer 𝑛 ∈ Z+,
and all members of Z \ 𝑆

(3,𝑛) are endpoints of 𝑆(3,𝑛). Moreover,
the set

𝑆
(2,3,𝑛)

:= 2𝑆
(3,𝑛)

∪ − (2𝑆
(3,𝑛)

+ 1) (31)

is a maximal midpoint-free subset of Z.

4. Subsets of Z+ with Base 𝑚 Digit Restrictions

Fix an integer𝑚 ≥ 3. Let {0} ⊆ 𝐷 ⊂ {𝑥 ∈ Z+ | 0 ≤ 𝑥 < 𝑚} :=

[0,𝑚). Then 𝐷 is a digit subset for base 𝑚 representations of
the integers or, briefly, a base𝑚 digit subset. LetZ+

𝑚
(𝐷) be the

set of nonnegative integers with base 𝑚 representation using
only digits in 𝐷, and let ⟦𝑥⟧

𝑚,𝑖
denote the digit in position

𝑖 ≥ 0 of the regular base𝑚 representation of 𝑥 ∈ Z+, so

Z
+

𝑚
(𝐷) := {𝑥 ∈ Z

+
| ∀𝑖 ∈ Z

+
: ⟦𝑥⟧
𝑚,𝑖

∈ 𝐷} . (32)

Let us say that𝐷 is midpoint-free as a base𝑚 digit subset
if 2 ⋅max(𝐷) < 𝑚 and there is no ordered triple (𝑑, 𝑒, 𝑓) ∈ 𝐷

3

such that 𝑑 ̸= 𝑓 and 𝑑 + 𝑓 = 2𝑒.

Theorem 8. If 𝐷 is a midpoint-free base 𝑚 digit subset with
𝑔 := max𝐷 ≥ 1 and 𝑚 ≥ 2𝑔 + 1, then the set Z+

𝑚
(𝐷) is

midpoint-free.

Proof. Suppose (𝑎, 𝑏, 𝑐) ∈ Λ(Z+
𝑚
(𝐷)). Then 𝑎 + 𝑐 = 2𝑏. There

is no carry-over in computing this sum in base𝑚 arithmetic
since all its digits are less than𝑚/2, so

⟦𝑎⟧
𝑚,𝑖

+ ⟦𝑐⟧
𝑚,𝑖

= ⟦2𝑏⟧
𝑚,𝑖

= 2 ⟦𝑏⟧
𝑚,𝑖

(33)

for every 𝑖 ≥ 0. Since𝐷 is midpoint-free, it follows that

⟦𝑎⟧
𝑚,𝑖

= ⟦𝑏⟧
𝑚,𝑖

= ⟦𝑐⟧
𝑚,𝑖

(34)

for every 𝑖 ≥ 0, so 𝑎 = 𝑏 = 𝑐, contradicting the initial choice of
(𝑎, 𝑏, 𝑐).ThusΛ(Z+

𝑚
(𝐷)) = 0, soZ+

𝑚
(𝐷) is midpoint-free.

Three early instances of Theorem 8, the first of which
was independently demonstrated earlier, are of considerable
interest.

Corollary 9. Each Z+
𝑚
(0, 1) is midpoint-free when𝑚 ≥ 3.

Corollary 10. Each Z+
𝑚
(0, 1, 3) is midpoint-free when𝑚 ≥ 7.

Corollary 11. EachZ+
𝑚
(0, 1, 3, 4) ismidpoint-free when𝑚 ≥ 9.

If 𝐷 is a midpoint-free base 𝑚 ≥ 3 digit subset, it
is of interest to decide whether Z+ has any members that
are eccentric for Z+

𝑚
(𝐷), since this is equivalent to deciding

whether Z+
𝑚
(𝐷) is a maximal midpoint-free subset of Z+.
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For 𝑥 ∈ Z+, let the support for 𝑥, as a lower endpoint,
midpoint, or upper endpoint for 𝑆, be defined by

supp
𝐴

(𝑥,Z
+

𝑚
(𝐷))

:= ⋃{𝑏, 𝑐 ∈ Z
+

𝑚
(𝐷) | (𝑥, 𝑏, 𝑐) ∈ Λ (Z

+
)} ,

supp
𝐵

(𝑥,Z
+

𝑚
(𝐷))

:= ⋃{𝑎, 𝑐 ∈ Z
+

𝑚
(𝐷) | (𝑎, 𝑥, 𝑐) ∈ Λ (Z

+
)} ,

supp
𝐶

(𝑥,Z
+

𝑚
(𝐷))

:= ⋃{𝑎, 𝑏 ∈ Z
+

𝑚
(𝐷) | (𝑎, 𝑏, 𝑥) ∈ Λ (Z

+
)} .

(35)

The following result is useful for settling whether the eccen-
tric set 𝐸(𝑆, 𝑋) is empty in specific cases.

Theorem 12. Suppose𝑚 ≥ 3 and𝐷 is a midpoint-free base𝑚
digit subset. If 𝑥 ∈ [0,𝑚

𝑘
) with 𝑘 ≥ 1, then

supp
𝐴

(𝑥,Z
+

𝑚
(𝐷)) ⊂ [0,𝑚

𝑘+1
) ∩ Z
+

𝑚
(𝐷) ,

supp
𝐵

(𝑥,Z
+

𝑚
(𝐷)) ⊂ [0, 2𝑚

𝑘
) ∩ Z
+

𝑚
(𝐷) ,

supp
𝐶

(𝑥,Z
+

𝑚
(𝐷)) ⊂ [0,𝑚

𝑘
) ∩ Z
+

𝑚
(𝐷) .

(36)

Proof. Fix the nonnegative integer 𝑥 ∈ [0,𝑚
𝑘
) with 𝑘 ≥ 1.

(For simplicity we do not explicitly require 𝑥 ∉ Z+
𝑚
(𝐷),

althoughTheorem 8 does imply thatmembers ofZ+
𝑚
(𝐷) have

empty support sets.)
Suppose there exist 𝑏, 𝑐 ∈ Z+

𝑚
(𝐷) such that (𝑥, 𝑏, 𝑐) ∈

Λ(Z+), so 𝑥+𝑐 = 2𝑏. Base𝑚 arithmetic for this sum takes the
form

⟦𝑥⟧
𝑚,𝑖

+ ⟦𝑐⟧
𝑚,𝑖

+ 𝛿
𝑖
= ⟦2𝑏⟧

𝑚,𝑖
+ 𝑚𝛿
𝑖+1 (37)

for every 𝑖 ≥ 0, with carry-overs 𝛿
𝑖
∈ {0, 1} satisfying 𝛿

0
= 0

and

⟦𝑥⟧
𝑚,𝑖

+ ⟦𝑐⟧
𝑚,𝑖

+ 𝛿
𝑖
< 𝑚 ⇒ 𝛿

𝑖+1
= 0,

⟦𝑥⟧
𝑚,𝑖

+ ⟦𝑐⟧
𝑚,𝑖

+ 𝛿
𝑖
≥ 𝑚 ⇒ 𝛿

𝑖+1
= 1

(38)

for 𝑖 > 0. But 𝑥 < 𝑚
𝑘 so ⟦𝑥⟧

𝑚,𝑖
= 0 for 𝑖 ≥ 𝑘. In particular,

⟦𝑥⟧
𝑚,𝑘

+ ⟦𝑐⟧
𝑚,𝑘

+ 𝛿
𝑘
<
𝑚

2
+ 1 < 𝑚 (39)

so 𝛿
𝑘+1

= 0. For all 𝑖 ≥ 𝑘 + 1, it follows that 𝛿
𝑖
= 0 and

⟦𝑥⟧
𝑚,𝑖

+ ⟦𝑐⟧
𝑚,𝑖

+ 𝛿
𝑖
= ⟦𝑐⟧

𝑚,𝑖
= ⟦2𝑏⟧

𝑚,𝑖
= 2 ⟦𝑏⟧

𝑚,𝑖
. (40)

But 𝐷 is midpoint-free, so ⟦𝑏⟧
𝑚,𝑖

= ⟦𝑐⟧
𝑚,𝑖

= 0 for all 𝑖 ≥

𝑘 + 1, since otherwise (0, ⟦𝑏⟧
𝑚,𝑖
, ⟦𝑐⟧
𝑚,𝑖
) ∈ Λ(𝐷) yields the

contradiction Λ(𝐷) ̸= 0. Hence 𝑏 < 𝑐 < 𝑚
𝑘+1.

The other two cases follow simply by noting that if
(𝑎, 𝑥, 𝑐) ∈ Λ(Z+) then 𝑎 < 𝑐 ≤ 𝑎 + 𝑐 = 2𝑥 < 2𝑚

𝑘, and if
(𝑎, 𝑏, 𝑥) ∈ Λ(Z+) then 𝑎 < 𝑏 < 𝑥 < 𝑚

𝑘.

Corollary 13. If 𝐷 is a midpoint-free base 𝑚 ≥ 3 digit subset,
then relative to Z+

𝑚
(𝐷) the three multiplicities of any 𝑥 ∈ Z+

are finite.

Corollary 14. If 𝐷 is a midpoint-free base 𝑚 ≥ 3 digit
subset and 𝑥 ∈ [0,𝑚

𝑘
) with 𝑘 ≥ 1, then 𝑀

𝑘
:= [0,𝑚

𝑘+1
) ∩

Z+
𝑚
(𝐷) contains all three support sets for 𝑥 relative to Z+

𝑚
(𝐷).

Moreover #𝑀
𝑘
= 𝑑
𝑘+1, where 𝑑 := #𝐷.

Corollary 15. If𝑚 ≥ 5 then𝑚 + 3 is eccentric for Z+
𝑚
(0, 1).

Corollary 16. If𝑚 ≥ 8 then 2𝑚+4 is eccentric forZ+
𝑚
(0, 1, 3).

Corollary 17. If 𝑚 ≥ 14 then 4𝑚 + 9 is eccentric for
Z+
𝑚
(0, 1, 3, 4).

The last three corollaries leave open the possibility that
their subject sets Z+

𝑚
(𝐷) might be maximal midpoint-free

subsets of Z+ when 𝑚 is small enough. In the next section
we shall consider Z+

3
(0, 1) and pursue other cases later.

5. Greedy Midpoint-Free Subset of Z+

The greedy midpoint-free subset of Z+ is the set

𝑆
0
:= {𝑠
𝑖
∈ Z
+
| 𝑖 ∈ Z

+
} (41)

in which 𝑠
0
= 0 and each 𝑠

𝑖
with 𝑖 > 0 is the smallest integer

satisfying 𝑠
𝑖
> 𝑠
𝑖−1

such that {𝑠
0
, 𝑠
1
, . . . , 𝑠

𝑖
} is midpoint-free. It

has long been known [4] that

𝑆
0
= Z
+

3
(0, 1) = {0, 1, 3, 4, 9, 10, 12, 13, 27, . . .} , (42)

corresponding to sequence A00536 of OEIS [5]. For brevity,
let

𝐴
+

0
:= 𝐴 (𝑆

0
,Z
+
) , 𝐵

+

0
:= 𝐵 (𝑆

0
,Z
+
) ,

𝐶
+

0
:= 𝐶 (𝑆

0
,Z
+
) .

(43)

We shall attach the adjective greedy when referring to these
sets. Before we prove that each of these greedy balance point
sets contains all positive integers not in Z+

3
(0, 1), let us check

the example 32 = (1012)
3
∈ Z+ \ Z+

3
(0, 1). The following

base 3 computations are transparent:

(1012)3 + (1010)3 = 2 ⋅ (1011)3 ,

(1012)
3
+ (1111)

3
= 2 ⋅ (1100)

3
,

2 ⋅ (1012)3 = (2101)3 = (1000)3 + (1101)3 .

(44)

Hence we have the midpoint triples (30, 31, 32), (32, 36, 40),
(27, 32, 37) ∈ Λ(Z+), showing that 32 ∈ 𝐴

+

0
∩ 𝐵
+

0
∩ 𝐶
+

0
. Now

consider the general case.

Theorem 18. The greedy midpoint-free subset Z+
3
(0, 1) ⊂ Z+

has greedy balance point sets satisfying

𝐴
+

0
= 𝐵
+

0
= 𝐶
+

0
= Z
+
\ Z
+

3
(0, 1) . (45)
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Proof. Let𝑥 ∈ Z+\Z+
3
(0, 1). First we show that𝑥 is amidpoint

for Z+
3
(0, 1). Note that there is at least one 𝑗 ≥ 0 such that

⟦2𝑥⟧
3,𝑗

= 1. Specify 𝑎, 𝑐 ∈ Z+
3
(0, 1) by their base 3 digits;

thus

⟦2𝑥⟧
3,𝑖

= 1 ⇒ ⟦𝑎⟧
3,𝑖

= 0, ⟦𝑐⟧
3,𝑖

= 1;

⟦2𝑥⟧
3,𝑖

̸= 1 ⇒ ⟦𝑎⟧
3,𝑖

= ⟦𝑐⟧
3,𝑖

=
1

2
⟦2𝑥⟧
3,𝑖
.

(46)

We have ⟦𝑎⟧
3,𝑖

≤ ⟦𝑐⟧
3,𝑖

≤ ⟦2𝑥⟧
3,𝑖

for all 𝑖 ≥ 0. Also ⟦𝑎⟧
3,𝑗

=

0 < ⟦𝑐⟧
3,𝑗

= 1, because ⟦2𝑥⟧
3,𝑗

= 1. Hence 0 ≤ 𝑎 < 𝑐 ≤ 2𝑥. It
is easily checked that

⟦𝑎⟧
3,𝑖
+ ⟦𝑐⟧

3,𝑖
= ⟦2𝑥⟧

3,𝑖 (47)

for all 𝑖 ≥ 0, so 𝑎 + 𝑐 = 2𝑥. Hence 𝑥 ∈ 𝐵
+

0
.

Next we show that 𝑥 is an upper endpoint forZ+
3
(0, 1). Let

𝑎, 𝑏 ∈ Z+
3
(0, 1) be specified by their base 3 digits; thus

⟦𝑥⟧
3,𝑖

= 2 ⇒ ⟦𝑎⟧
3,𝑖

= 0, ⟦𝑏⟧
3,𝑖

= 1;

⟦𝑥⟧
3,𝑖

̸= 2 ⇒ ⟦𝑎⟧
3,𝑖

= ⟦𝑏⟧
3,𝑖

= ⟦𝑥⟧
3,𝑖
.

(48)

There is at least one 𝑘 ≥ 0 such that ⟦𝑥⟧
3,𝑘

= 2, so 0 ≤ 𝑎 <

𝑏 < 𝑥. Also

⟦𝑎⟧
3,𝑖
+ ⟦𝑥⟧

3,𝑖
= 2 ⟦𝑏⟧

3,𝑖
= ⟦2𝑏⟧

3,𝑖 (49)

for all 𝑖 ≥ 0, so 𝑎 + 𝑥 = 2𝑏. Hence 𝑥 ∈ 𝐶
+

0
.

Finally we show that 𝑥 is a lower endpoint for Z+
3
(0, 1).

We need to find 𝑏, 𝑐 ∈ Z+
3
(0, 1) such that 0 < 𝑥 < 𝑏 < 𝑐 and

𝑥 + 𝑐 = 2𝑏. Base 3 arithmetic for this sum takes the form

⟦𝑥⟧
3,𝑖
+ ⟦𝑐⟧

3,𝑖
+ 𝛿
𝑖
= ⟦2𝑏⟧

3,𝑖
+ 3𝛿
𝑖+1 (50)

for every 𝑖 ≥ 0, with carry-overs 𝛿
𝑖
∈ {0, 1} satisfying 𝛿

0
= 0

and

⟦𝑥⟧
3,𝑖
+ ⟦𝑐⟧

3,𝑖
+ 𝛿
𝑖
≤ 2 ⇒ 𝛿

𝑖+1
= 0,

⟦𝑥⟧
3,𝑖
+ ⟦𝑐⟧

3,𝑖
+ 𝛿
𝑖
> 2 ⇒ 𝛿

𝑖+1
= 1.

(51)

Specify 𝑏, 𝑐 by their base 3 digits; thus

⟦𝑥⟧
3,𝑖
+ 𝛿
𝑖
∈ {0, 3} ⇒ ⟦𝑐⟧

3,𝑖
= ⟦𝑏⟧

3,𝑖
= 0,

⟦𝑥⟧
3,𝑖
+ 𝛿
𝑖
= 1 ⇒ ⟦𝑐⟧

3,𝑖
= ⟦𝑏⟧

3,𝑖
= 1,

⟦𝑥⟧
3,𝑖
+ 𝛿
𝑖
= 2 ⇒ ⟦𝑐⟧

3,𝑖
= 1, ⟦𝑏⟧

3,𝑖
= 0.

(52)

If ⟦𝑥⟧
3,𝑘

= 2 and ⟦𝑥⟧
3,𝑖

< 2 for 0 ≤ 𝑖 < 𝑘 then 𝛿
𝑖
= 0

for 0 ≤ 𝑖 ≤ 𝑘. It follows that ⟦𝑐⟧
3,𝑘

= 1 > ⟦𝑏⟧
3,𝑘

= 0. Since
⟦𝑐⟧
3,𝑖

≥ ⟦𝑏⟧
3,𝑖
, for every 𝑖 ≥ 0, we have 𝑐 > 𝑏.

There are integers ℎ ≥ 𝑔 ≥ 𝑘 such that ⟦𝑥⟧
3,ℎ

> 0 and
⟦𝑥⟧
3,𝑖

= 0 for 𝑖 > ℎ and ⟦𝑥⟧
3,𝑔

= 2 and ⟦𝑥⟧
3,𝑖

≤ 1 for
𝑖 > 𝑔. If 𝛿

𝑔
= 0 then ⟦𝑐⟧

3,𝑔
= 1, ⟦𝑏⟧

3,𝑔
= 0; if 𝛿

𝑔
= 1 then

⟦𝑐⟧
3,𝑔

= ⟦𝑏⟧
3,𝑔

= 0. In either case it follows that 𝛿
𝑔+1

= 1.
If 𝛿
ℎ+1

= 1 then ⟦𝑥⟧
3,ℎ+1

< ⟦𝑐⟧
3,ℎ+1

= ⟦𝑏⟧
3,ℎ+1

= 1 so 𝑥 < 𝑏

since ⟦𝑥⟧
3,𝑖

= 0 for all 𝑖 > ℎ. If 𝛿
ℎ+1

= 0 then there is an integer
𝑓 such that ℎ ≥ 𝑓 > 𝑔 and 𝛿

𝑖
= 1 for𝑓 ≥ 𝑖 > 𝑔while 𝛿

𝑓+1
= 0.

If ⟦𝑥⟧
3,𝑖

≤ 1 and 𝛿
𝑖
= 0 then ⟦𝑥⟧

3,𝑖
= ⟦𝑐⟧

3,𝑖
= ⟦𝑏⟧

3,𝑖
∈ {0, 1}

so 𝛿
𝑖+1

= 0. Hence 𝛿
𝑖
= 0 for all 𝑖 > 𝑓. Also 𝛿

𝑓
= 1, 𝛿

𝑓+1
= 0

and ⟦𝑐⟧
3,𝑓

= 1, so ⟦𝑥⟧
3,𝑓

= 0. Then ⟦𝑥⟧
3,𝑓

= 0 < ⟦𝑏⟧
3,𝑓

= 1

and ⟦𝑥⟧
3,𝑖

= ⟦𝑏⟧
3,𝑖
for all 𝑖 > 𝑓, so 𝑥 < 𝑏.

Finally, in all three cases ⟦𝑥⟧
3,𝑖
+⟦𝑐⟧
3,𝑖
+𝛿
𝑖
= 2⟦𝑏⟧

3,𝑖
+3𝛿
𝑖+1

for each 𝑖 ≥ 0, so 𝑥 + 𝑐 = 2𝑏. Hence 𝑥 ∈ 𝐴
+

0
.

Corollary 19. The greedy midpoint-free subset Z+
3
(0, 1) is

maximal in Z+.

In [3] it was shown that 𝑆
0
= Z+
3
(0, 1) is actually a

maximal midpoint-free subset ofZ.The proof is not repeated
here, but let us note that the single example −32 ∈ 𝐴(𝑆

0
,Z)

follows from computing −32 + 𝑐 = 2𝑏 with 𝑏, 𝑐 ∈ Z+
3
(0, 1) in

the form 32 + 2𝑏 = 𝑐. Base 3 considerations yield

(1012)
3
+ (22)

3
= (1111)

3
, (53)

corresponding to (−32, 4, 40) ∈ Λ(Z), so −32 ∈ 𝐴(𝑆
0
,Z) as

claimed.
For brevity, let 𝐴

0
:= 𝐴(𝑆

0
,Z), 𝐵

0
:= 𝐵(𝑆

0
,Z), 𝐶

0
:=

𝐶(𝑆
0
,Z). WithTheorem 18, this yields the following result.

Corollary 20. The greedy midpoint-free subset Z+
3
(0, 1) ⊂ Z

has greedy balance point sets satisfying 𝐴
0
= Z \ Z+

3
(0, 1),

𝐵
0
= 𝐶
0
= Z+ \ Z+

3
(0, 1).

Reversing implications, this yields the following result.

Corollary 21. The greedy midpoint-free subset Z+
3
(0, 1) is

maximal in Z.

Now the multiplicities for 𝑥 ∈ Z+ \ Z
+

3
(0, 1) can be

examined. First note that the sum of base 3 digits of any even
integer is 0mod 2, so even integers have an even number of
base 3 digits equal to 1. If 𝑥 ∈ Z+ \Z+

3
(0, 1), at least one digit

in (2𝑥)
3
must be 1, so the total number of such digits is 2𝑘,

and 𝑘 > 0.

Theorem 22. If 𝑥 ∈ Z+ \ Z
+

3
(0, 1), then the midpoint multi-

plicity of 𝑥 is

𝛽 (𝑥,Z
+

3
(0, 1)) = 2

2𝑘−1
, (54)

where 2𝑘 is the number of digits equal to 1 in (2𝑥)
3
and 𝑘 > 0.

Proof. Suppose 𝑎, 𝑐 ∈ Z+
3
(0, 1) satisfy 𝑎 < 𝑐 and 𝑎 + 𝑐 = 2𝑥.

There is no carry-over in the base 3 arithmetic for the sum,
so ⟦𝑎⟧

3,𝑖
+ ⟦𝑐⟧
3,𝑖

= ⟦2𝑥⟧
3,𝑖
, for all 𝑖 ≥ 0. If ⟦2𝑥⟧

3,𝑖
∈ {0, 2}

then we must have

⟦𝑎⟧
3,𝑖

= ⟦𝑐⟧
3,𝑖

=
1

2
⟦2𝑥⟧
3,𝑖
. (55)

There is an integer 𝑗 > 0 such that ⟦2𝑥⟧
3,𝑗

= 1 and ⟦2𝑥⟧
3,𝑖

∈

{0, 2} for all 𝑖 > 𝑗, so 𝑎 < 𝑐 forces ⟦𝑎⟧
3,𝑗

= 0 < ⟦𝑐⟧
3,𝑗

= 1.
However, when 𝑗 > 𝑖 ≥ 0 and ⟦2𝑥⟧

3,𝑖
= 1, the requirement

⟦𝑎⟧
3,𝑖
+ ⟦𝑐⟧
3,𝑖

= 1 is satisfied if {⟦𝑎⟧
3,𝑖
, ⟦𝑐⟧
3,𝑖
} = {0, 1}. Both

possibilities are consistent with 𝑎 < 𝑐, so there are 2
2𝑘−1

solutions in total.
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To illustrate, when 𝑥 = 50 then 2𝑥 = (10201)
3
so

Λ(Z+
3
(0, 1),Z+) has just two triples with 50 as midpoint:

(9, 50, 91), (10, 50, 90). In contrast, when 𝑥 = 20 then
2𝑥 = (1111)

3
so Λ(Z+

3
(0, 1),Z+) has eight triples with 20 as

midpoint, ranging from (0, 20, 40) to (13, 20, 27), namely,
(𝑎, 20, 40 − 𝑎) for all 𝑎 ∈ Z+

3
(0, 1) ∩ [0, 13].

Fix 𝑥 ∈ Z+ \Z+
3
(0, 1). The digits of the base 3 representa-

tion (𝑥)
3
include at least one 2. An ordered pair of integers

(𝑗, 𝑘) with 0 ≤ 𝑗 < 𝑘 is critical for 𝑥 if ⟦𝑥⟧
3,𝑗

= 2 and
⟦𝑥⟧
3,𝑘

< 2, with ⟦𝑥⟧
3,𝑖

> 0 when 𝑗 ≤ 𝑖 < 𝑘. Any two
ordered pairs (𝑗, 𝑘) and (𝑗


, 𝑘

) critical for 𝑥 are independent

if [𝑗, 𝑘] ∩ [𝑗

, 𝑘

] = 0. Any set of ordered pairs critical for 𝑥

is independent if every two members are independent. Let
Crit(𝑥) denote the family of all sets of independent ordered
pairs critical for 𝑥, including the empty set.

Theorem 23. If 𝑥 ∈ Z+ \ Z
+

3
(0, 1), then 𝑥 has total endpoint

multiplicity

𝛼 (𝑥,Z
+

3
(0, 1)) + 𝛾 (𝑥,Z

+

3
(0, 1)) = #Crit (𝑥) . (56)

Proof. Given 𝑥 ∈ Z+ \ Z+
3
(0, 1), we seek 𝑦, 𝑏 ∈ Z+

3
(0, 1) such

that 𝑥 + 𝑦 = 2𝑏. Any solution necessarily satisfies 𝑥 ̸= 𝑦.
Base 3 arithmetic for this sum takes the form

⟦𝑥⟧
3,𝑖
+ ⟦𝑦⟧

3,𝑖
+ 𝛿
𝑖
= 2 ⟦𝑏⟧

3,𝑖
+ 3𝛿
𝑖+1 (57)

for every 𝑖 ≥ 0, with carry-overs 𝛿
𝑖
∈ {0, 1} satisfying 𝛿

0
= 0

and

⟦𝑥⟧
3,𝑖
+ ⟦𝑦⟧

3,𝑖
+ 𝛿
𝑖
≤ 2 ⇒ 𝛿

𝑖+1
= 0,

⟦𝑥⟧
3,𝑖
+ ⟦𝑦⟧

3,𝑖
+ 𝛿
𝑖
> 2 ⇒ 𝛿

𝑖+1
= 1.

(58)

Specifying 𝑦, 𝑏 by their base 3 digits, the equation 𝑥+𝑦 = 2𝑏

requires

⟦𝑥⟧
3,𝑖
+ 𝛿
𝑖
∈ {0, 3} ⇒ ⟦𝑦⟧

3,𝑖
= ⟦𝑏⟧

3,𝑖
= 0,

⟦𝑥⟧
3,𝑖
+ 𝛿
𝑖
= 1 ⇒ ⟦𝑦⟧

3,𝑖
= ⟦𝑏⟧

3,𝑖
= 1,

⟦𝑥⟧
3,𝑖
+ 𝛿
𝑖
= 2 ⇒ ⟦𝑦⟧

3,𝑖
+ ⟦𝑏⟧

3,𝑖
= 1.

(59)

As is easily verified, these digit specifications satisfy the
requirements of base 3 arithmetic for 𝑥 + 𝑦 = 2𝑏.

Any integer 𝑖 ≥ 0 is a base 3 transition point for the sum
𝑥 + 𝑦 if 𝛿

𝑖+1
̸= 𝛿
𝑖
. Note that the digits ⟦𝑦⟧

3,𝑖
and ⟦𝑏⟧

3,𝑖
are

forced unless ⟦𝑥⟧
3,𝑖

+ 𝛿
𝑖
= 2. In the latter case there are two

options:

(1) ⟦𝑦⟧
3,𝑖

= 0, ⟦𝑏⟧
3,𝑖

= 1, 𝛿
𝑖+1

= 0,
(2) ⟦𝑦⟧

3,𝑖
= 1, ⟦𝑏⟧

3,𝑖
= 0, 𝛿

𝑖+1
= 1.

If ⟦𝑥⟧
3,𝑖

= 2, 𝛿
𝑖
= 0 then choosing option (1) preserves the

carry-over state (“off”)with𝛿
𝑖+1

= 0whereas choosing option
(2) switches the carry-over state (to “on”) with 𝛿

𝑖+1
= 1, so

option (2) causes 𝑖 to be a transition point. If ⟦𝑥⟧
3,𝑖

= 1,
𝛿
𝑖
= 1 then choosing option (1) switches the carry-over state

(to “off”) with 𝛿
𝑖+1

= 0 and causes 𝑖 to be a transition point,
whereas choosing option (2) preserves the carry-over state
(“on”) with 𝛿

𝑖+1
= 1.

Let 𝑋 be a maximal block of nonzero digits in the
base 3 representation (𝑥)

3
, say 𝑋 := (⟦𝑥⟧

3,𝑖
| 𝑔 ≤ 𝑖 ≤ ℎ), and

assume that 𝑋 contains the digit 2 at least once. There must
be at least one such maximal block 𝑋 in (𝑥)

3
. Then 𝛿

𝑔
= 0,

and the “off” carry-over state 𝛿
𝑖
= 0 can only switch to

𝛿
𝑗+1

= 1 for some 𝑗 such that 𝑔 ≤ 𝑗 ≤ ℎ when ⟦𝑥⟧
3,𝑗

= 2

and ⟦𝑦⟧
3,𝑗

= 1, corresponding to an option (2) choice in the
construction of 𝑦. The “on” carry-over state 𝛿

𝑖
= 1 can only

switch back to 𝛿
𝑘+1

= 0 for some 𝑘 such that 𝑗 < 𝑘 ≤ ℎ if
⟦𝑥⟧
3,𝑘

= 1 and ⟦𝑦⟧
3,𝑘

= 0, corresponding to an option (1)
choice in constructing 𝑦. If no such option is exercised, then
maximality of𝑋 ensures the carry-over state 𝛿

𝑖
= 1 inevitably

switches back at 𝑖 = ℎ + 1, for in this case ⟦𝑥⟧
3,ℎ

> 0,
⟦𝑥⟧
3,ℎ+1

= 0, 𝛿
ℎ
= 1 and an option (2) choice for ⟦𝑦⟧

3,ℎ
results

in 𝛿
ℎ+1

= 1, ⟦𝑦⟧
3,ℎ+1

= 1, ⟦𝑏⟧
3,ℎ+1

= 1, 𝛿
ℎ+2

= 0. Note that
the ordered pair (𝑗, 𝑘) is critical for 𝑥, as is the ordered pair
(𝑗, ℎ + 1).

Now consider any set 𝑃(𝑋) of independent ordered pairs
(𝑗, 𝑘) critical for 𝑥, with 𝑔 ≤ 𝑗 < 𝑘 ≤ ℎ + 1. The set
𝑃(𝑋) determines a unique sequence of carry-over digits
Δ := (𝛿

𝑖
| 𝑔 ≤ 𝑖 ≤ ℎ + 1), with 𝛿

𝑖
= 1 if 𝑗 ≤ 𝑖 ≤ 𝑘 and

(𝑗, 𝑘) ∈ 𝑃(𝑋), and 𝛿
𝑖
= 0 for every other 𝑖 in the interval

[𝑔, ℎ + 1]. Then𝑋 and Δ determine blocks

𝑌 := (⟦𝑦⟧
3,𝑖

| 𝑔 ≤ 𝑖 ≤ ℎ + 1) ,

𝐵 := (⟦𝑏⟧
3,𝑖

| 𝑔 ≤ 𝑖 ≤ ℎ + 1)

(60)

such that 𝑋 + 𝑌 = 2𝐵. Each member of Crit(𝑥) is of the
form 𝑃(𝑥) := ⋃

𝑋
𝑃(𝑋), where 𝑋 runs through all maximal

blocks of nonzero digits containing 2 in (𝑥)
3
. Any such

𝑃(𝑥) uniquely determines a collection of suitable blocks of
base 3 digits for 𝑦, 𝑏 while all other digits are forced by
base 3 arithmetic for 𝑥 + 𝑦 = 2𝑏, so the number of solutions
for 𝑦, 𝑏 is precisely #Crit(𝑥).

To illustrate, when 𝑥 = 50 = (1212)
3
the possible ordered

pairs critical for 𝑥 are (0, 1), (0, 3), (0, 4), (2, 3), (2, 4). There
are #Crit(50) = 8 sets of independent critical pairs, namely,
0, the five singletons, {(0, 1), (2, 3)} and {(0, 1), (2, 4)}. The
corresponding triples in Λ(Z+) with 50 as an endpoint are

(4, 27, 50) , (10, 30, 50) , (12, 31, 50) , (28, 39, 50) , (30, 40, 50) ,

so 𝛾 (50,Z
+

3
(0, 1)) = 5;

(50, 81, 112) , (50, 84, 118) , (50, 85, 120) ,

so 𝛼 (50,Z
+

3
(0, 1)) = 3.

(61)

Given 𝑥 ∈ Z+ \ Z+
3
(0, 1), let 𝑋 := (⟦𝑥⟧

3,𝑖
| 𝑔 ≤ 𝑖 ≤ ℎ) be

the leading maximal block of nonzero digits containing 2 in
(𝑥)
3
, so ⟦𝑥⟧

3,𝑖
< 2 when 𝑖 > ℎ, and in particular ⟦𝑥⟧

3,ℎ+1
= 0.

Then any ordered pair (𝑗, 𝑘) critical for 𝑥 is constrained by
0 ≤ 𝑗 < 𝑘 ≤ ℎ + 1. In particular, the leading ordered pairs
critical for 𝑥 are all those of the form (𝑗, ℎ + 1). In this case
𝑔 ≤ 𝑗 ≤ ℎ, and there is at least one such ordered pair since
⟦𝑥⟧
3,𝑗

= 2 for at least one 𝑗 ∈ [𝑔, ℎ]. Let LeadCrit(𝑥) denote
the family of just those sets of independent ordered pairs
critical for 𝑥 that include a leading pair.
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Corollary 24. If 𝑥 ∈ Z+ \ Z
+

3
(0, 1), then𝑥 has lower endpoint

multiplicity

𝛼 (𝑥,Z
+

3
(0, 1)) = #LeadCrit (𝑥) . (62)

Proof. Continuing with the definitions and notation in the
proof ofTheorem 23, if𝑃(𝑥) ∈ LeadCrit(𝑥) contains the lead-
ing ordered pair (𝑗, ℎ+1) critical for 𝑥 then the corresponding
𝑦, 𝑏 for 𝑥 + 𝑦 = 2𝑏 satisfy ⟦𝑥⟧

3,𝑗
= 2, ⟦𝑦⟧

3,𝑗
= 1, ⟦𝑏⟧

3,𝑗
= 0

with ⟦𝑦⟧
3,𝑖

= ⟦𝑏⟧
3,𝑖

when 𝑖 > 𝑗; moreover, ⟦𝑥⟧
3,ℎ+1

= 0,
⟦𝑦⟧
3,ℎ+1

= 1, and ⟦𝑥⟧
3,𝑖

= ⟦𝑦⟧
3,𝑖

when 𝑖 ≥ ℎ + 2. Thus
𝑥 < 𝑏 < 𝑦 and 𝑏, 𝑦 ∈ supp

𝐴
(𝑥,Z+
3
(0, 1)).

On the other hand, if 𝑃∗(𝑥) ∈ Crit(𝑥) \ LeadCrit(𝑥) then
the corresponding 𝑦, 𝑏 for 𝑥 + 𝑦 = 2𝑏 satisfy ⟦𝑥⟧

3,𝑘
+ 𝛿
𝑘
= 2,

⟦𝑦⟧
3,𝑘

= 0, ⟦𝑏⟧
3,𝑘

= 1 for some 𝑘 ∈ [𝑔, ℎ], with ⟦𝑥⟧
3,𝑖

=

⟦𝑦⟧
3,𝑘

= ⟦𝑏⟧
3,𝑖

when 𝑖 > 𝑘. Thus 𝑏, 𝑦 ∈ supp
𝐶
(𝑥,Z+
3
(0, 1)).

The multiplicities in Theorem 23 and Corollary 24 are
implicit, so it is of some interest to identify a class of positive
integers with endpoint multiplicities that can be specified
simply and explicitly. Let 𝑢

3,𝑛
:= (3
𝑛
− 1)/2 be the integer

with base 3 representation comprising a block of 𝑛 digits all
equal to 1, so 𝑢

3,𝑛
is a base 3 rep-unit, following terminology

of Yates [6]. (See A003462 in OEIS [5].)

Corollary 25. For any integers 𝑛 ≥ 𝑚 > 0 and 𝑠 ≥ 0,
𝑡 > 𝑛 + 𝑠, let

𝑥 := 3
𝑠
(𝑢
3,𝑛

+ 𝑢
3,𝑚

) + 3
𝑡V + 𝑤, (63)

where V ∈ Z+
3
(0, 1) and 𝑤 ∈ Z+

3
(0, 1) ∩ [0, 3

𝑠
). Then

𝛼 (𝑥,Z
+

3
(0, 1)) = 𝑚,

𝛾 (𝑥,Z
+

3
(0, 1)) = 𝑚 (𝑛 − 𝑚) + 1.

(64)

Proof. The only maximal block of nonzero digits contain-
ing 2 in (𝑥)

3
is 𝑋 = (⟦𝑥⟧

3,𝑖
| 𝑠 ≤ 𝑖 < 𝑛 + 𝑠), with ⟦𝑥⟧

3,𝑖
= 2

when 𝑠 ≤ 𝑖 < 𝑚 + 𝑠, and ⟦𝑥⟧
3,𝑖

= 1 when 𝑚 + 𝑠 ≤ 𝑖 < 𝑛 + 𝑠,
with ⟦𝑥⟧

3,𝑛+𝑠
= 0. Therefore, the only ordered pairs (𝑗, 𝑘)

critical for 𝑥 have 𝑠 ≤ 𝑗 < 𝑚 + 𝑠 ≤ 𝑘 ≤ 𝑛 + 𝑠. No two
of these critical pairs are disjoint, so the only sets in Crit(𝑥)
are 𝑚(𝑛 − 𝑚 + 1) singletons and the empty set. The sets
comprising LeadCrit(𝑥) are the𝑚 singletons {(𝑗, 𝑛 + 𝑠)}.

For instance, 𝑥 = 862 = (1011221)
3
arises by taking 𝑚 =

2, 𝑛 = 4, 𝑠 = 1, 𝑡 = 6, and V = 𝑤 = 1 in Corollary 25. The
leading critical pairs for 𝑥 are (𝑗, 5) with 𝑗 ∈ {1, 2}, yielding
two midpoint triples (𝑥, 𝑏, 𝑦) with 𝑏, 𝑦 ∈ Z+

3
(0, 1):

𝑏 = (11000𝐵1)
3
, 𝑦 = (1111𝑌1)

3 (65)

for blocks (𝐵, 𝑌) ∈ {(0, 01), (1, 10)}, so (𝑥, 𝑏, 𝑦) = (862,

973 + 𝑟, 1084 + 2𝑟) with 𝑟 ∈ {0, 3}. Thus 𝛼(862,Z+
3
(0, 1)) =

2. The non-leading critical pairs for 𝑥 are (𝑗, 𝑘) with 𝑗 ∈

{1, 2}, 𝑘 ∈ {3, 4}, yielding five midpoint triples (𝑦, 𝑏, 𝑥) with
𝑏, 𝑦 ∈ Z+

3
(0, 1):

𝑏 = (101𝐵1)
3
, 𝑦 = (10𝑌1)

3 (66)

for (𝐵, 𝑌) ∈ {(000, 0101), (001, 0110), (100, 1001), (101, 1010),
(111, 1100)}, so (𝑦, 𝑏, 𝑥) = (760 + 2𝑟, 811 + 𝑟, 862) for
𝑟 ∈ {0, 3, 27, 30, 39}. Thus 𝛾(862,Z+

3
(0, 1)) = 5.

6. Doubling the Greedy Midpoint-Free
Subset of Z+

Doubling 𝑆
0

:= Z+
3
(0, 1) as in Theorem 4 shows that

𝑆
(2)

0
:= 2𝑆
0
∪ −(2𝑆

0
+ 1) is a maximal midpoint-free subset

ofZ. (This is an alternative demonstration to the proof given
in [3].) Here 2𝑆

0
= Z+
3
(0, 2) and 2𝑆

0
+ 1 = Z+

3
(0, 2; 1),

where Z+
3
(0, 2; 1) comprises those positive integers with

base 3 representation in which the trailing digit (the last
nonzero digit) is 1 and every other digit is in {0, 2}. The
relevant balance point sets and multiplicities will now be
examined briefly.

For brevity, let us write

𝐴
+

0,2
:= 𝐴 (2𝑆

0
,Z
+
) , 𝐵

+

0,2
:= 𝐵 (2𝑆

0
,Z
+
) ,

𝐶
+

0,2
:= 𝐶 (2𝑆

0
,Z
+
) ;

𝐴
0,2

:= 𝐴 (2𝑆
0
,Z) , 𝐵

0,2
:= 𝐵 (2𝑆

0
,Z) ,

𝐶
0,2

:= 𝐶 (2𝑆
0
,Z) ;

𝐴
(2)

0,2
:= 𝐴 (𝑆

(2)

0
,Z) , 𝐵

(2)

0,2
:= 𝐵 (𝑆

(2)

0
,Z) ,

𝐶
(2)

0,2
:= 𝐶 (𝑆

(2)

0
,Z) .

(67)

Note that𝐴(2𝑆
0
+1,Z+) = 𝐴

+

0,2
+1,𝐴(2𝑆

0
+1,Z) = 𝐴

0,2
+1.

Similar identities hold for other balance point sets of 2𝑆
0
+ 1.

It can be shown that every odd integer 𝑥 ∈ Z+ is the
sum of two distinct members of Z+

3
(0, 1). Indeed, there are

precisely 4𝑘 such sums, where 2𝑘 + 1 is the number of digits
equal to 1 in (𝑥)

3
for some integer 𝑘 ≥ 0. The balance point

sets and multiplicities for 2𝑆
0
, 2𝑆
0
+ 1, and 𝑆

(2)

0
can now be

specified.

Theorem 26. The midpoint-free subset Z+
3
(0, 2) ⊂ Z+ has

balance point sets satisfying 𝐴+
0,2

= 𝐶
+

0,2
= 2Z+ \ Z+

3
(0, 2) and

𝐵
+

0,2
= Z+ \ Z+

3
(0, 2).

Corollary 27. If 𝑥 ∈ Z+ \ Z
+

3
(0, 1), the endpoint multiplici-

ties satisfy

𝛼 (2𝑥 + 1,Z
+

3
(0, 2; 1)) = 𝛼 (2𝑥,Z

+

3
(0, 2)) = 𝛼 (𝑥,Z

+

3
(0, 1)) ,

𝛾 (2𝑥 + 1,Z
+

3
(0, 2; 1)) = 𝛾 (2𝑥,Z

+

3
(0, 2)) = 𝛾 (𝑥,Z

+

3
(0, 1)) .

(68)

Corollary 28. If 𝑥 ∈ Z+ \Z+
3
(0, 2), the midpoint multiplicities

satisfy

𝛽 (𝑥 + 1,Z
+

3
(0, 2; 1)) = 𝛽 (𝑥,Z

+

3
(0, 2)) = 2

𝑘−1
, (69)

where 𝑘 > 0 is the number of digits equal to 1 in (𝑥)
3
.

Corollary 29. The midpoint-free subset Z+
3
(0, 2) ⊂ Z has

balance point sets satisfying 𝐴
0,2

= 𝐴
+

0,2
∪ 2Z−, 𝐵

0,2
= 𝐵
+

0,2
,

𝐶
0,2

= 𝐶
+

0,2
.
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Corollary 30. The midpoint-free subset 𝑆(2)
0

:= Z+
3
(0, 2) ∪

−Z+
3
(0, 2; 1) ⊂ Z has balance point sets satisfying

𝐴
(2)

0,2
= 𝐴
0,2

∪ − (𝐶
0,2

+ 1) = (Z \ 𝑆
(2)

0
) \ (2Z

+
+ 1) ,

𝐶
(2)

0,2
= 𝐶
0,2

∪ − (𝐴
0,2

+ 1) = (Z \ 𝑆
(2)

0
) \ 2Z

−
,

𝐵
(2)

0,2
= 𝐵
+

0,2
∪ −𝐵
+

0,2,1
= Z \ 𝑆

(2)

0
.

(70)

Corollary 31. The set 𝑆(2)
0

is a maximal midpoint-free subset of
Z, with balance point sets satisfying𝐴(2)

0,2
∪𝐶
(2)

0,2
= 𝐵
(2)

0,2
= Z\𝑆

(2)

0
.

Note that trebling 𝑆
0
:= Z+
3
(0, 1) as in Theorem 6 yields

𝑆
(3)

0
:= 3𝑆
0
∪ (3𝑆
0
+ 1), and earlier we saw that this is “trivial”

in this case, because 𝑆(3)
0

= 𝑆
0
. In the notation of Corollary 7,

for any integer 𝑛 ≥ 1 this implies

𝑆
(3,𝑛)

0
= 𝑆
0
, 𝑆

(2,3,𝑛)

0
= 𝑆
(2)

0
. (71)

If 𝑆 is any set satisfying the hypotheses of Theorem 6, and
𝑠
0

:= min(𝑆), then the normalized set 𝑆 = 𝑆 − 𝑠
0
is an

affine transformwhich satisfies the hypotheses ofTheorem 6.
Without loss of generality, assume 𝑆 is any normalized
compliant set; then Corollary 7 shows that iterated trebling
yields a sequence of maximal midpoint-free subsets of Z
which asymptotically approach the greedy subset 𝑆

0
, because

𝑆
(3,𝑛)

∩ [0, 3
𝑛
) = 𝑆
0
∩ [0, 3

𝑛
) . (72)

In this sense we may write the asymptotic equivalences

𝑆
(3,𝑛)

∼ 𝑆
0
, 𝑆

(2,3,𝑛)
∼ 𝑆
(2)

0
. (73)

7. The Midpoint-Free Set Z+
4
(0, 1)

Let us now study the set

𝑆
1
:= Z
+

4
(0, 1) = {0, 1, 4, 5, 16, 17, 20, 21, 64, . . .} , (74)

corresponding to sequence A000695 in OEIS [5]. Corollaries
9 and 15 leave open the possibility that 𝑆

1
is a maximal

midpoint-free subset of Z+. We now settle that matter. Let
𝐴
+

1
:= 𝐴(𝑆

1
,Z+), 𝐵+

1
:= 𝐵(𝑆

1
,Z+), 𝐶+

1
:= 𝐶(𝑆

1
,Z+).

Theorem 32. The midpoint-free subset Z+
4
(0, 1) ⊂ Z+ has

endpoint sets satisfying 𝐴+
1
∪ 𝐶
+

1
= Z+ \ Z+

4
(0, 1).

Proof. Let 𝑥 ∈ Z+ \ Z+
4
(0, 1). We seek 𝑦, 𝑏 ∈ Z+

4
(0, 1) such

that 𝑥 + 𝑦 = 2𝑏. Clearly any such solution has 𝑥 ̸= 𝑦.
Base 4 computation requires

⟦𝑥⟧
4,𝑖
+ ⟦𝑦⟧

4,𝑖
+ 𝛿
𝑖
= 2 ⟦𝑏⟧

4,𝑖
+ 4𝛿
𝑖+1 (75)

for every 𝑖 ≥ 0, with carry-overs 𝛿
𝑖
∈ {0, 1} satisfying 𝛿

0
= 0

and

⟦𝑥⟧
4,𝑖
+ ⟦𝑦⟧

4,𝑖
+ 𝛿
𝑖
≤ 3 ⇒ 𝛿

𝑖+1
= 0,

⟦𝑥⟧
4,𝑖
+ ⟦𝑦⟧

4,𝑖
+ 𝛿
𝑖
> 3 ⇒ 𝛿

𝑖+1
= 1.

(76)

Specifying 𝑦, 𝑏 by their base 4 digits, the equation 𝑥+𝑦 = 2𝑏

requires

⟦𝑥⟧
4,𝑖
+ 𝛿
𝑖
∈ {0, 4} ⇒ ⟦𝑦⟧

4,𝑖
= ⟦𝑏⟧

4,𝑖
= 0,

⟦𝑥⟧
4,𝑖
+ 𝛿
𝑖
= 1 ⇒ ⟦𝑦⟧

4,𝑖
= ⟦𝑏⟧

4,𝑖
= 1,

⟦𝑥⟧
4,𝑖
+ 𝛿
𝑖
= 2 ⇒ ⟦𝑦⟧

4,𝑖
= 0, ⟦𝑏⟧

4,𝑖
= 1,

⟦𝑥⟧
4,𝑖
+ 𝛿
𝑖
= 3 ⇒ ⟦𝑦⟧

4,𝑖
= 1, ⟦𝑏⟧

4,𝑖
= 0.

(77)

These digit specifications are easily seen to satisfy the require-
ments of base 4 arithmetic for 𝑥 + 𝑦 = 2𝑏. Therefore, every
𝑥 ∈ Z+ \ Z+

4
(0, 1) is in 𝐴

+

1
∪ 𝐶
+

1
. Since Z+

4
(0, 1) is midpoint-

free, it follows that 𝐴+
1
∪ 𝐶
+

1
= Z+ \ Z+

4
(0, 1).

Corollary 33. The set Z+
4
(0, 1) is a maximal midpoint-free

subset of Z+.

Corollary 34. For any 𝑥 ∈ Z+ \ Z+
4
(0, 1) the total endpoint

multiplicity is
𝛼 (𝑥,Z

+

4
(0, 1)) + 𝛾 (𝑥,Z

+

4
(0, 1)) = 1. (78)

Any𝑥 ∈ Z+\Z+
4
(0, 1)has at least one base 4 digit in {2, 3}.

A high block in (𝑥)
4
is a maximal block of base 4 digits all in

{2, 3}. If 𝑋 := (⟦𝑥⟧
4,𝑖

| 𝑗 ≤ 𝑖 ≤ 𝑘) is a high block in (𝑥)
4
, it is

clear if ⟦𝑥⟧
4,𝑘+1

= 0 and leading if ⟦𝑥⟧
4,𝑖

≤ 1 when 𝑖 > 𝑘.

Corollary 35. The lower endpoint set 𝐴+
1
for Z+
4
(0, 1) in Z+

comprises all positive integers in which the leading base 4 high
block is clear and contains 3. The upper endpoint set 𝐶+

1
is the

complement of 𝐴+
1
in Z+ \ Z+

4
(0, 1).

Proof. With the definitions and notation in the proof of
Theorem 32, let ⟦𝑥⟧

4,ℎ
> 0 for some ℎ > 0 and ⟦𝑥⟧

4,𝑖
= 0

when 𝑖 > ℎ. Let 𝑋 := (⟦𝑥⟧
4,𝑖

| 𝑗 ≤ 𝑖 ≤ 𝑘) be the leading
base 4 high block for 𝑥, so 0 ≤ 𝑗 ≤ 𝑘 ≤ ℎ and ⟦𝑥⟧

4,𝑖
≤ 1

when 𝑖 > 𝑘.

(1) If ⟦𝑥⟧
4,ℎ

= 1 then 𝛿
ℎ+1

= 0, so ⟦𝑦⟧
4,𝑖

= ⟦𝑏⟧
4,𝑖

= 0

when 𝑖 > ℎ. Also ⟦𝑥⟧
4,𝑘

≥ 2, while ⟦𝑥⟧
4,𝑖

≤ 1 when
𝑖 > 𝑘. If ⟦𝑥⟧

4,𝑘
+ 𝛿
𝑘
≥ 3 then 𝛿

𝑘+1
= 1. Therefore,

⟦𝑥⟧
4,𝑘+1

+⟦𝑦⟧
4,𝑘+1

= 1 and 𝛿
𝑖
= 0when 𝑖 > 𝑘+1.This

case arises just when ⟦𝑥⟧
4,𝑡

= 3 for some 𝑡 such that
𝑗 ≤ 𝑡 ≤ 𝑘, and ⟦𝑥⟧

4,𝑖
= 2 if 𝑡 < 𝑖 ≤ 𝑘. Also ⟦𝑥⟧

4,𝑖
=

⟦𝑦⟧
4,𝑖

when 𝑖 > 𝑘 + 1, so 𝑥 > 𝑦 if ⟦𝑥⟧
4,𝑘+1

= 1 and
𝑥 < 𝑦 if ⟦𝑥⟧

4,𝑘+1
= 0, the latter condition holding

precisely when 𝑋 is clear. On the other hand, if
⟦𝑥⟧
4,𝑘

+ 𝛿
𝑘
= 2 then ⟦𝑥⟧

4,𝑘
= 2, ⟦𝑦⟧

4,𝑘
= 0, while

𝛿
𝑖
= 0 and ⟦𝑥⟧

4,𝑖
= ⟦𝑦⟧

4,𝑖
when 𝑖 > 𝑘, so 𝑥 > 𝑦.

(2) If ⟦𝑥⟧
4,ℎ

= 2 and 𝛿
ℎ
= 0 then ⟦𝑦⟧

4,ℎ
= 0, so 𝛿

𝑖
= 0 and

⟦𝑥⟧
4,𝑖

= ⟦𝑦⟧
4,𝑖

= 0 when 𝑖 > ℎ. Then 𝑘 = ℎ but the
high block𝑋 does not contain 3. In this case 𝑥 > 𝑦.

(3) If ⟦𝑥⟧
4,ℎ

+ 𝛿
ℎ

= 3 then ⟦𝑦⟧
4,ℎ

= 1, so 𝛿
ℎ+1

= 1,
⟦𝑥⟧
4,ℎ+1

= 0, ⟦𝑦⟧
4,ℎ+1

= 1, and 𝛿
𝑖
= ⟦𝑥⟧

4,𝑖
=

⟦𝑦⟧
4,𝑖

= 0 when 𝑖 > ℎ + 1. Once again 𝑘 = ℎ, but now
the high block𝑋must contain 3. In this case 𝑥 < 𝑦.

(4) If ⟦𝑥⟧
4,ℎ

= 3, 𝛿
ℎ
= 1 then 𝛿

ℎ+1
= 1, ⟦𝑥⟧

4,ℎ+1
= 0,

⟦𝑦⟧
4,ℎ+1

= 1 and the same conclusions as in (3) apply.
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Corollary 36. The midpoint set 𝐵+
1
for Z+
4
(0, 1) in Z+ com-

prises those positive integers 𝑥 with 2𝑥 ∈ Z+
4
(0, 1, 2) \Z+

4
(0, 2).

Any such 𝑥 has midpoint multiplicity 𝛽(𝑥,Z+
4
(0, 1)) = 2

𝑘−1,
where 𝑘 > 0 is the number of digits in (2𝑥)

4
equal to 1.

Proof. Let 𝑥 ∈ Z+ \ Z+
4
(0, 1). We seek 𝑎, 𝑐 ∈ Z+

4
(0, 1) such

that 𝑎 + 𝑐 = 2𝑥. Clearly any such solution has 𝑎 ̸= 𝑥, so 𝑎 ̸= 𝑐

holds. Base 4 arithmetic requires

⟦𝑎⟧
4,𝑖
+ ⟦𝑐⟧

4,𝑖
= ⟦2𝑥⟧

4,𝑖
(79)

for every 𝑖 ≥ 0. This forces ⟦2𝑥⟧
4,𝑖

∈ {0, 1, 2}. Since 𝑥 ∉

Z+
4
(0, 1) it follows that ⟦2𝑥⟧

4,𝑗
= 1 for some 𝑗 ≥ 0, with

⟦2𝑥⟧
4,𝑖

̸= 1 for all 𝑖 > 𝑗. Specifying 𝑎, 𝑐 by their base 4 digits,
the equation 𝑎 + 𝑐 = 2𝑥 requires

⟦2𝑥⟧
4,𝑖

∈ {0, 2} ⇒ ⟦𝑎⟧
4,𝑖

= ⟦𝑐⟧
4,𝑖

=
1

2
⟦2𝑥⟧
4,𝑖
,

⟦2𝑥⟧
4,𝑖

= 1 ⇒ ⟦𝑎⟧
4,𝑖
+ ⟦𝑐⟧

4,𝑖
= 1.

(80)

With ⟦𝑎⟧
4,𝑗

= 0, ⟦𝑐⟧
4,𝑗

= 1, clearly all solutions meet
base 4 arithmetic requirements for 𝑎+ 𝑐 = 2𝑥 and 𝑎 < 𝑐.

An alternative characterization of the midpoint set 𝐵+
1
is

that it comprises every 𝑥 ∈ Z+ with ⟦𝑥⟧
4,𝑖

∈ {2, 3} for at least
one 𝑖 ≥ 0, and in each such instance ⟦𝑥⟧

4,𝑖+1
∈ {0, 2}.

Now consider the midpoint-free set 𝑆
1
:= Z+
4
(0, 1) as a

subset of Z. For brevity, let 𝐴
1
:= 𝐴(𝑆

1
,Z), 𝐵

1
:= 𝐵(𝑆

1
,Z),

𝐶
1
:= 𝐶(𝑆

1
,Z).

Corollary 37. The midpoint-free subset Z+
4
(0, 1) ⊂ Z has

balance point sets satisfying𝐴
1
= 𝐴
+

1
∪Z−, 𝐵

1
= 𝐵
+

1
, 𝐶
1
= 𝐶
+

1
.

Proof. Let −𝑥 ∈ Z−. We seek 𝑏, 𝑐 ∈ Z+
4
(0, 1) such that

𝑥 + 2𝑏 = 𝑐. Clearly any such solution has −𝑥 < 𝑏 < 𝑐.
Base 4 computation requires

⟦𝑥⟧
4,𝑖
+ 2 ⟦𝑏⟧

4,𝑖
+ 𝛿
𝑖
= ⟦𝑐⟧

4,𝑖
+ 4𝛿
𝑖+1 (81)

for every 𝑖 ≥ 0, with carry-overs 𝛿
𝑖
∈ {0, 1} satisfying 𝛿

0
= 0

and

⟦𝑥⟧
4,𝑖
+ 2 ⟦𝑏⟧

4,𝑖
+ 𝛿
𝑖
≤ 3 ⇒ 𝛿

𝑖+1
= 0,

⟦𝑥⟧
4,𝑖
+ 2 ⟦𝑏⟧

4,𝑖
+ 𝛿
𝑖
> 3 ⇒ 𝛿

𝑖+1
= 1.

(82)

Specifying 𝑏, 𝑐 by their base 4 digits, we require

⟦𝑥⟧
4,𝑖
+ 𝛿
𝑖
∈ {0, 4} ⇒ ⟦𝑏⟧

4,𝑖
= ⟦𝑐⟧

4,𝑖
= 0,

⟦𝑥⟧
4,𝑖
+ 𝛿
𝑖
= 1 ⇒ ⟦𝑏⟧

4,𝑖
= 0, ⟦𝑐⟧

4,𝑖
= 1,

⟦𝑥⟧
4,𝑖
+ 𝛿
𝑖
= 2 ⇒ ⟦𝑏⟧

4,𝑖
= 1, ⟦𝑐⟧

4,𝑖
= 0,

⟦𝑥⟧
4,𝑖
+ 𝛿
𝑖
= 3 ⇒ ⟦𝑏⟧

4,𝑖
= ⟦𝑐⟧

4,𝑖
= 1.

(83)

It is straightforward to verify that 𝑏, 𝑐 are uniquely
determined by these specifications, and (−𝑥, 𝑏, 𝑐) ∈ Λ(Z), so
−𝑥 ∈ 𝐴

1
.

Corollary 38. The set Z+
4
(0, 1) is a maximal midpoint-free

subset of Z.

Corollary 39. Any 𝑥 ∈ Z− has lower endpoint multiplicity
𝛼(𝑥,Z+

4
(0, 1)) = 1.

8. Doubling and Trebling the Set Z+
4
(0, 1)

By Theorem 32 and Corollary 38, the set 𝑆
1

:= Z+
4
(0, 1)

is compliant with the requirements for the doubling and
trebling constructions of Theorems 4 and 6, so both sets

𝑆
(2)

1
:= 2𝑆
1
∪ − (2𝑆

1
+ 1) , 𝑆

(3)

1
:= 3𝑆
1
∪ (3𝑆
1
+ 1) (84)

are maximal midpoint-free subsets of Z.
Let us now briefly examine the balance point sets associ-

ated with 𝑆
(2)

1
:

𝐴
+

1,2
:= 𝐴 (2𝑆

1
,Z
+
) , 𝐵

+

1,2
:= 𝐵 (2𝑆

1
,Z
+
) ,

𝐶
+

1,2
:= 𝐶 (2𝑆

1
,Z
+
) ;

𝐴
1,2

:= 𝐴 (2𝑆
1
,Z) , 𝐵

1,2
:= 𝐵 (2𝑆

1
,Z) ,

𝐶
1,2

:= 𝐶 (2𝑆
1
,Z) ;

𝐴
(2)

1,2
:= 𝐴 (𝑆

(2)

1
,Z) , 𝐵

(2)

1,2
:= 𝐵 (𝑆

(2)

1
,Z) ,

𝐶
(2)

1,2
:= 𝐶 (𝑆

∗

1
,Z) .

(85)

Easy digit and parity considerations in combination with
Theorem 32 yield the following corollaries.

Theorem 40. The midpoint-free subset 2𝑆
1
= Z+
4
(0, 2) ⊂ Z+

has balance point sets satisfying

𝐴
+

1,2
= 2𝐴
+

1
, 𝐶

+

1,2
= 2𝐶
+

1
,

𝐵
+

1,2
= Z
+

4
(0, 1, 2) \ Z

+

4
(0, 2) .

(86)

Corollary 41. The midpoint-free subset 2𝑆
1
⊂ Z has balance

point sets satisfying

𝐴
1,2

= 𝐴
+

1,2
∪ 2Z
−
, 𝐵

1,2
= 𝐵
+

1,2
, 𝐶

1,2
= 𝐶
+

1,2
. (87)

Corollary 42. The subset 𝑆(2)
1

:= 2𝑆
1
∪ −(2𝑆

1
+ 1) ⊂ Z is

midpoint-free and has balance point sets satisfying

𝐴
(2)

1,2
= 𝐴
1,2

∪ − (𝐶
1,2

+ 1) ,

𝐶
(2)

1,2
= 𝐶
1,2

∪ − (𝐴
1,2

+ 1) ,

𝐵
(2)

1,2
= 𝐵
+

1,2
∪ − (𝐵

+

1,2
+ 1) .

(88)

Corollary 43. The sets 2𝑆
1
and 𝑆

(2)

1
:= 2𝑆
1
∪ −(2𝑆

1
+ 1) are

midpoint-free subsets of Z with endpoint sets satisfying 𝐴
1,2

∪

𝐶
1,2

= 2Z \ 2𝑆
1
and 𝐴(2)

1,2
∪ 𝐶
(2)

1,2
= Z \ 𝑆

(2)

1
.
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The balance point sets of 𝑆(3)
1

:= 3𝑆
1
∪ (3𝑆
1
+ 1) can now

be considered. Let

𝐴
+

1,3
:= 𝐴 (𝑆

(3)

1
,Z
+
) , 𝐵

+

1,3
:= 𝐵 (𝑆

(3)

1
,Z
+
) ,

𝐶
+

1,3
:= 𝐶 (𝑆

(3)

1
,Z
+
) ,

𝐴
1,3

:= 𝐴 (𝑆
(3)

1
,Z) , 𝐵

1,3
:= 𝐵 (𝑆

(3)

1
,Z) ,

𝐶
1,3

:= 𝐶 (𝑆
(3)

1
,Z) .

(89)

If 𝑎 + 𝑥 = 2𝑏 and 𝑎, 𝑏 ∈ 𝑆
1
:= Z+
4
(0, 1), the conditions

3𝑎 + 𝑟, 3𝑏 + 𝑠 ∈ 𝑆
(3)

1
= 3𝑆
1
∪ (3𝑆
1
+ 1) (90)

and (3𝑎 + 𝑟) + (3𝑥 + 𝑡) = 2(3𝑏 + 𝑠) are satisfied by the
triples (𝑟, 𝑠, 𝑡) = (0, 0, 0), (1, 1, 1), (1, 0, −1), (0, 1, 2). Hence,
if 𝑥 ∈ 𝐴

+

1
∪ 𝐶
+

1
then 3𝑥 + {−1, 0, 1, 2} ⊂ 𝐴

+

1,3
∪ 𝐶
+

1,3
. Such

observations yield the following results.

Theorem 44. The subset 𝑆(3)
1

:= 3𝑆
1
∪ (3𝑆
1
+ 1) ⊂ Z+ is

midpoint-free and has balance point sets satisfying

𝐴
+

1,3
∪ 𝐶
+

1,3
= Z
+
\ 𝑆
(3)

1
,

𝐵
+

1,3
= 3𝐵
+

1
∪ (3𝐵

+

1
+ 1) ∪ (3𝐵

∼

1
− 1) ,

(91)

where 𝐵∼
1
:= (𝐵
+

1
∪ {1}) \ 2Z+.

Corollary 45. The subset 𝑆(3)
1

:= 3𝑆
1
∪ (3𝑆

1
+ 1) ⊂ Z is

midpoint-free and has balance point sets satisfying

𝐴
1,3

= 𝐴
+

1,3
∪ Z
−
, 𝐵

1,3
= 𝐵
+

1,3
, 𝐶

1,3
= 𝐶
+

1,3
. (92)

9. The Midpoint-Free Set Z+
7
(0, 1, 3)

Next consider the set

𝑆
2
:= Z
+

7
(0, 1, 3) = {0, 1, 3, 7, 8, 10, 21, 22, 24, 49, . . .} . (93)

At the time of writing, no corresponding sequence appears in
OEIS [5]. However, Corollary 10 asserts that it is midpoint-
free, and it will be shown that 𝑆

2
is in fact a maximal

midpoint-free subset ofZ. It will follow fromTheorems 4 and
6 that

𝑆
(2)

2
:= 2𝑆
1
∪ − (2𝑆

1
+ 1) , 𝑆

(3)

2
:= 3𝑆
2
∪ (3𝑆
2
+ 1) (94)

are maximal midpoint-free subsets of Z.
Themethods used in earlier sections are again applicable,

so fewer details are now required. Following earlier practice,
let

𝐴
+

2
:= 𝐴 (𝑆

2
,Z
+
) , 𝐵

+

2
:= 𝐵 (𝑆

2
,Z
+
) ,

𝐶
+

2
:= 𝐶 (𝑆

2
,Z
+
) ,

𝐴
2
:= 𝐴 (𝑆

2
,Z) , 𝐵

2
:= 𝐵 (𝑆

2
,Z) ,

𝐶
2
:= 𝐶 (𝑆

2
,Z) .

(95)

Theorem 46. Themidpoint-free subset 𝑆
2
:= Z+
7
(0, 1, 3) ⊂ Z+

has endpoint sets satisfying 𝐴+
2
∪ 𝐶
+

2
= Z+ \ 𝑆

2
.

Proof. Given 𝑥 ∈ Z+ \ 𝑆
2
, we seek 𝑦, 𝑏 ∈ 𝑆

2
such that

𝑥 + 𝑦 = 2𝑏. Any solution has 𝑥 ̸= 𝑦. Base 7 computation
requires

⟦𝑥⟧
7,𝑖
+ ⟦𝑦⟧

7,𝑖
+ 𝛿
𝑖
= 2 ⟦𝑏⟧

7,𝑖
+ 7𝛿
𝑖+1 (96)

for 𝑖 ≥ 0, with appropriate carry-overs 𝛿
𝑖
∈ {0, 1} beginning

with 𝛿
0
= 0. All base 7 digits of 𝑦, 𝑏 are determined by

⟦𝑥⟧
7,𝑖
+ 𝛿
𝑖
∈ {0, 7} ⇒ ⟦𝑦⟧

7,𝑖
= ⟦𝑏⟧

7,𝑖
= 0,

⟦𝑥⟧
7,𝑖
+ 𝛿
𝑖
= 1 ⇒ ⟦𝑦⟧

7,𝑖
= ⟦𝑏⟧

7,𝑖
= 1,

⟦𝑥⟧
7,𝑖
+ 𝛿
𝑖
= 2 ⇒ ⟦𝑦⟧

7,𝑖
= 0, ⟦𝑏⟧

7,𝑖
= 1,

⟦𝑥⟧
7,𝑖
+ 𝛿
𝑖
= 3 ⇒ ⟦𝑦⟧

7,𝑖
= ⟦𝑏⟧

7,𝑖
= 3,

⟦𝑥⟧
7,𝑖
+ 𝛿
𝑖
= 4 ⇒ ⟦𝑦⟧

7,𝑖
= 3, ⟦𝑏⟧

7,𝑖
= 0,

⟦𝑥⟧
7,𝑖
+ 𝛿
𝑖
= 5 ⇒ ⟦𝑦⟧

7,𝑖
= 1, ⟦𝑏⟧

7,𝑖
= 3,

⟦𝑥⟧
7,𝑖
+ 𝛿
𝑖
= 6 ⇒ ⟦𝑦⟧

7,𝑖
= 0, ⟦𝑏⟧

7,𝑖
= 3.

(97)

It is straightforward to verify that all requirements are
satisfied.

Corollary 47. The set Z+
7
(0, 1, 3) is a maximal midpoint-free

subset of Z+.

Corollary 48. For 𝑆
2
:= Z+
7
(0, 1, 3), any 𝑥 ∈ Z+ \ 𝑆

2
has

endpoint multiplicity

𝛼 (𝑥, 𝑆
2
) + 𝛾 (𝑥, 𝑆

2
) = 1. (98)

Corollary 49. Themidpoint set 𝐵+
2
for 𝑆
2
:= Z+
7
(0, 1, 3) inZ+

comprises those integers 𝑥 ∈ Z+ \ 𝑆
2
with 2𝑥 ∈ Z+

7
([0, 6] \ {5}).

Any such 𝑥 has midpoint multiplicity 𝛽(𝑥, 𝑆
2
) = 2

𝑘−1, where
𝑘 > 0 is the number of digits in (2𝑥)

7
belonging to {1, 3, 4}.

Proof. Given 𝑥 ∈ Z+ \ 𝑆
2
, we seek 𝑎, 𝑐 ∈ 𝑆

2
such that 𝑎 +

𝑐 = 2𝑥. Necessarily, any solution has 𝑎 ̸= 𝑥, so 𝑎 ̸= 𝑐 holds.
Base 7 arithmetic requires

⟦𝑎⟧
7,𝑖
+ ⟦𝑐⟧

7,𝑖
= ⟦2𝑥⟧

7,𝑖
(99)

for every 𝑖 ≥ 0. This forces ⟦2𝑥⟧
7,𝑖

∈ [0, 6] \ {5}. Since 𝑥 ∉

𝑆
2
there is an integer 𝑗 ≥ 0 such that ⟦2𝑥⟧

7,𝑗
∉ {0, 2, 6} but

⟦2𝑥⟧
7,𝑖

∈ {0, 2, 6} for all 𝑖 > 𝑗. Specify 𝑎, 𝑐 by

⟦2𝑥⟧
7,𝑖

∈ {0, 2, 6} ⇒ ⟦𝑎⟧
7,𝑖

= ⟦𝑐⟧
7,𝑖

=
1

2
⟦2𝑥⟧
7,𝑖

⟦2𝑥⟧
7,𝑖

= 1 ⇒ {⟦𝑎⟧
7,𝑖
, ⟦𝑐⟧
7,𝑖
} = {0, 1} ,

⟦2𝑥⟧
7,𝑖

= 3 ⇒ {⟦𝑎⟧
7,𝑖
, ⟦𝑐⟧
7,𝑖
} = {0, 3} ,

⟦2𝑥⟧
7,𝑖

= 4 ⇒ {⟦𝑎⟧
7,𝑖
, ⟦𝑐⟧
7,𝑖
} = {1, 3} .

(100)

With ⟦𝑎⟧
4,𝑗

< ⟦𝑐⟧
4,𝑗
, evidently all solutions satisfy 𝑎 + 𝑐 = 2𝑥

and 𝑎 < 𝑐.
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The base 7 representation of the integer 𝑢
7,𝑛

:= (7
𝑛
−1)/6

is a block of 𝑛 digits, all equal to 1. Thus 𝑢
7,𝑛

is a base 7 rep-
unit [6]. (See A023000 in OEIS [5].) For any 𝑥 ∈ Z+ let 𝑥|

7,𝑘

denote the integer 𝑦 resulting from (𝑥)
7
by deleting all but the

last 𝑘 base 7 digits:

⟦𝑦⟧
7,𝑖

= 0 for 𝑖 ≥ 𝑘,

⟦𝑦⟧
7,𝑖
= ⟦𝑥⟧

7,𝑖
for 𝑘 > 𝑖 ≥ 0.

(101)

An alternative characterization of the midpoint set 𝐵+
2
is that

it comprises every 𝑥 ∈ Z+ with ⟦𝑥⟧
7,𝑖

∈ {2, 4, 5, 6} for at least
one 𝑖 ≥ 0 and

⟦𝑥⟧
7,𝑘

= 2 ⇒ 𝑥|7,𝑘 ≤ 3𝑢
7,𝑘
,

⟦𝑥⟧
7,𝑘

= 6 ⇒ 𝑥|7,𝑘 > 3𝑢
7,𝑘
.

(102)

Corollary 50. The midpoint-free subset 𝑆
2
:= Z+
7
(0, 1, 3) ⊂ Z

has endpoint sets satisfying 𝐴
2
= 𝐴
+

2
∪Z−, 𝐵

2
= 𝐵
+

2
, 𝐶
2
= 𝐶
+

2
.

Proof. Given −𝑥 ∈ Z−, we seek 𝑏, 𝑐 ∈ 𝑆
2
such that 𝑥 + 2𝑏 = 𝑐.

Clearly −𝑥 ̸= 𝑐. Base 7 computation requires

⟦𝑥⟧
7,𝑖
+ 2 ⟦𝑏⟧

7,𝑖
+ 𝛿
𝑖
= ⟦𝑐⟧

7,𝑖
+ 7𝛿
𝑖+1 (103)

for 𝑖 ≥ 0, with appropriate carry-overs 𝛿
𝑖
∈ {0, 1} beginning

with 𝛿
0
= 0. All base 7 digits of 𝑏, 𝑐 are determined by

⟦𝑥⟧
7,𝑖
+ 𝛿
𝑖
∈ {0, 7} ⇒ ⟦𝑏⟧

7,𝑖
= ⟦𝑐⟧

7,𝑖
= 0,

⟦𝑥⟧
7,𝑖
+ 𝛿
𝑖
= 1 ⇒ (⟦𝑏⟧

7,𝑖
, ⟦𝑐⟧
7,𝑖
) ∈ {(0, 1) , (1, 3) , (3, 0)} ,

⟦𝑥⟧
7,𝑖
+ 𝛿
𝑖
= 2 ⇒ ⟦𝑏⟧

7,𝑖
= 3, ⟦𝑐⟧

7,𝑖
= 1,

⟦𝑥⟧
7,𝑖
+ 𝛿
𝑖
= 3 ⇒ ⟦𝑏⟧

7,𝑖
= 0, ⟦𝑐⟧

7,𝑖
= 3,

⟦𝑥⟧
7,𝑖
+ 𝛿
𝑖
= 4 ⇒ ⟦𝑏⟧

7,𝑖
= ⟦𝑐⟧

7,𝑖
= 3,

⟦𝑥⟧
7,𝑖
+ 𝛿
𝑖
= 5 ⇒ ⟦𝑏⟧

7,𝑖
= 1, ⟦𝑐⟧

7,𝑖
= 0,

⟦𝑥⟧
7,𝑖
+ 𝛿
𝑖
= 6 ⇒ ⟦𝑏⟧

7,𝑖
= ⟦𝑐⟧

7,𝑖
= 1.

(104)

Let 𝑥 have leading digit in position ℎ ≥ 0. If ⟦𝑏⟧
7,ℎ

<

⟦𝑐⟧
7,ℎ

then 𝛿
ℎ+1

= 0 so 𝑏 < 𝑐, since 𝑏, 𝑐 have leading digits in
position ℎ. All requirements are satisfied.

Now suppose that ⟦𝑏⟧
7,ℎ

≥ ⟦𝑐⟧
7,ℎ
. Then in every case

𝛿
ℎ+1

= 1, and

(⟦𝑏⟧
7,ℎ+1

, ⟦𝑐⟧
7,ℎ+1

) ∈ {(0, 1) , (1, 3) , (3, 0)} . (105)

The first two options here ensure that 𝛿
ℎ+2

= 0 and 𝑏, 𝑐 have
leading digits in positionℎ + 1, and 𝑏 < 𝑐. However, ⟦𝑏⟧

7,ℎ+1
>

⟦𝑐⟧
7,ℎ+1

holds if the third option is chosen, and then 𝛿
ℎ+2

= 1,
so

(⟦𝑏⟧
7,ℎ+2

, ⟦𝑐⟧
7,ℎ+2

) ∈ {(0, 1) , (1, 3) , (3, 0)} . (106)

This behaviour can be iterated any finite number of times but
must terminate at some stage in order to determine integers
𝑏, 𝑐. We may choose any integer 𝑘 > 0 and assign

(⟦𝑏⟧
7,ℎ+𝑘

, ⟦𝑐⟧
7,ℎ+𝑘

) ∈ {(0, 1) , (1, 3)} , (107)

with ⟦𝑏⟧
7,ℎ+𝑖

= 3, ⟦𝑐⟧
7,ℎ+𝑖

= 0 if 0 < 𝑖 < 𝑘. The leading
digits of 𝑏, 𝑐 are in position ℎ + 𝑘, so 𝑏 < 𝑐. Once again, all
requirements are satisfied.

Corollary 51. The set Z+
7
(0, 1, 3) is a maximal midpoint-free

subset of Z.

The proof of Corollary 50 implies a surprising result.

Corollary 52. Let ⟦𝑥⟧
7,ℎ

∈ {4, 5, 6} be the leading base 7 digit
of 𝑥 ∈ Z+. Then −𝑥 is a lower endpoint for the midpoint-free
subset 𝑆

2
:= Z+
7
(0, 1, 3) ⊂ Z with multiplicity 𝛼(−𝑥, 𝑆

2
) = ℵ
0
.

Proof. The condition ⟦𝑥⟧
7,ℎ

∈ {4, 5, 6} necessitates ⟦𝑏⟧
7,ℎ

≥

⟦𝑐⟧
7,ℎ
. Let 𝑏, 𝑐 ∈ 𝑆

2
be a solution to 𝑥 + 2𝑏 = 𝑐 with

leading digits ⟦𝑏⟧
7,ℎ+1

= 1, ⟦𝑐⟧
7,ℎ+1

= 3. For 𝑔 > ℎ,
replace the leading 1 of (𝑏)

7
by a block comprising a leading

digit 1 followed by 𝑔 − ℎ digits all equal to 3. This yields a
new solution with the leading 3 of (𝑐)

7
replaced by a block

comprising a leading digit 3 followed by 𝑔−ℎ digits all equal
to 0. Using base 7 rep-units, this yields

𝑥 + 2 (𝑏 − 7
ℎ+1

+ 3 (𝑢
7,𝑔+1

− 𝑢
7,ℎ+1

) + 7
𝑔+1

)

= 𝑐 − 3 ⋅ 7
ℎ+1

+ 3 ⋅ 7
𝑔+1

,

(108)

since 6(𝑢
7,𝑔+1

− 𝑢
7,ℎ+1

) = 7
𝑔+1

− 7
ℎ+1. Thus,

(−𝑥, 𝑏 + 9 (𝑢
7,𝑔+1

− 𝑢
7,ℎ+1

) , 𝑐 + 18 (𝑢
7,𝑔+1

− 𝑢
7,ℎ+1

)) ∈ Λ (Z)

(109)

for every 𝑔 > ℎ, so there are infinitely many triples in
Λ(Z) having −𝑥 as lower endpoint, with midpoint and upper
endpoint in 𝑆

2
.

10. Closing Remarks

Remark 1. We have seen that the midpoint-free set 𝑆
5

:=

Z+
5
(0, 1) is not maximal in Z+. The smallest member of

𝐸(𝑆
5
,Z+) is 8, confirming Corollary 15 when 𝑚 = 5. If 𝑆

5
⊂

𝑇 ⊂ Z+ and 𝑇 is a maximal midpoint-free subset of Z+ then

𝑇 \ 𝑆
5
⊂ 𝐸 (𝑆

5
,Z
+
) . (110)

This raises some intriguing open questions. Forwhich subsets
𝑋 ⊂ 𝐸(𝑆

5
,Z+) is 𝑆

5
∪ 𝑋 a maximal midpoint-free subset of

Z+? What is the greedy subset 𝑆∗
5
⊂ 𝐸(𝑆

5
,Z+) which makes

𝑆
5
∪ 𝑆
∗

5
a maximal midpoint-free subset of Z+?

Note that 𝑆
5
∪ {𝑥} is midpoint-free for any 𝑥 ∈ 𝐸(𝑆

5
,Z+),

but 𝑆
5
∪ {𝑥, 𝑦} is not always midpoint-free if 𝑥, 𝑦 ∈ 𝐸(𝑆

5
,Z+).

For instance, themidpoint triple (8, 25, 42) comprises 25 ∈ 𝑆
5

and 8, 42 ∈ 𝐸(𝑆
5
,Z+).

Remark 2. Consider the balance points of 𝑆
5

:= Z+
5
(0, 1).

Using notation defined after the proof of Corollary 49, along
with base 5 rep-units 𝑢

5,𝑘
(see A003463 in OEIS [5]), for
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𝑥 ∈ Z+ \ 𝑆
5
we have 𝑥 ∈ 𝐴(𝑆

5
,Z+) ∪ 𝐶(𝑆

5
,Z+) precisely

when

⟦𝑥⟧
5,𝑘

= 2 ⇒ 𝑥|5,𝑘 ≤ 3𝑢
5,𝑘
,

⟦𝑥⟧
5,𝑘

= 3 ⇒ 𝑥|5,𝑘 > 3𝑢
5,𝑘
.

(111)

Hence, in particular,Z+
5
(0, 1, 4) \ 𝑆

5
⊂ 𝐴(𝑆

5
,Z+) ∪ 𝐶(𝑆

5
,Z+).

Similarly, if 𝑥 ∈ Z+ \ 𝑆
5
then 𝑥 ∈ 𝐵(𝑆

5
,Z+) precisely when

⟦𝑥⟧
5,𝑖

̸= 4 for all 𝑖 ≥ 0, and

⟦𝑥⟧
5,𝑘

= 1 ⇒ 𝑥|5,𝑘 ≤ 2𝑢
5,𝑘
,

⟦𝑥⟧
5,𝑘

= 2 ⇒ 𝑥|5,𝑘 > 2𝑢
5,𝑘
.

(112)

In particular, Z+
5
(0, 3) \ {0} ⊂ 𝐵(𝑆

5
,Z+).

If 𝑥 ∈ Z+ \ 𝑆
5
is eccentric for 𝑆

5
, the digit configuration

(𝑥)
5
violates each of these conditions. If 𝑥 < 5

ℎ then
(𝑥 + 5

ℎ
𝑦)
5
contains the same digit configuration for every

𝑦 ∈ Z+, so 𝑥 + 5
ℎ
𝑦 ∈ 𝐸(𝑆

5
,Z+). Every eccentric point 𝑥 is

the lower endpoint of infinitely many midpoint triples

(𝑥, 𝑥 + 5
ℎ
𝑦, 𝑥 + 2 ⋅ 5

ℎ
𝑦) ∈ Λ (𝐸 (𝑆

5
,Z
+
)) , (113)

so 𝐸(𝑆
5
,Z+) is densely packed with midpoint triples.

Remark 3. The set 𝑇
5

:= Z+
5
(0, 1, 3) is not midpoint-free,

since (0, 3, 6) ∈ Λ(𝑇
5
). The digit 3 is responsible for “most”

members of 𝑇
5
being midpoints, since it can be shown that

𝐵(𝑇
5
,Z+) = Z+ \ 𝑆

5
. Moreover, for any 𝑥 ∈ Z+ \ 𝑆

5
there is at

least one triple (𝑎, 𝑥, 𝑐) ∈ Λ(Z+) with 𝑎 ∈ 𝑆
5
and 𝑐 ∈ 𝑇

5
.

It can be shown that 𝐴(𝑇
5
,Z+) ∪ 𝐶(𝑇

5
,Z+) = Z+ and

Z− ⊂ 𝐴(𝑇
5
,Z), so no integer is eccentric for 𝑇

5
. Hence there

are maximal midpoint-free subsets 𝑇 ⊂ Z such that 𝑆
5
⊂ 𝑇 ⊂

𝑇
5
.What is the greedy subset𝑇∗

5
⊂ 𝑇
5
\𝑆
5
whichmakes 𝑆

5
∪𝑇
∗

5

a maximal midpoint-free subset of Z?
Note also that if (𝑥, 𝑏, 𝑐) ∈ Λ(Z) and 𝑏, 𝑐 ∈ 𝑇

5
, then

(𝑥, 𝑏 + 3 ⋅ 5
ℎ
, 𝑐 + 6 ⋅ 5

ℎ
) ∈ Λ (Z) (114)

and 𝑏+3 ⋅ 5ℎ, 𝑐+6 ⋅ 5ℎ ∈ 𝑇
5
for every sufficiently large ℎ ∈ Z+.

It follows that every 𝑥 ∈ Z has lower endpoint multiplicity
𝛼(𝑥, 𝑇

5
) = ℵ
0
.

Remark 4. The set 𝑇
6

:= Z+
6
(0, 1, 3) is not midpoint-free.

Once again, the digit 3 is responsible for “most” members
of 𝑇
6
being midpoints, since it can be shown that 𝑇

6
\ 𝑆
6
⊂

𝐵(𝑇
6
,Z+), where 𝑆

6
:= Z+
6
(0, 1). However, 𝐸(𝑇

6
,Z+) ̸= 0.

For example, it is easily verified that {𝑥 ∈ Z+ | ⟦𝑥⟧
6,0

= 4,

⟦𝑥⟧
6,1

= 2} ⊂ 𝐸(𝑇
6
,Z+). Thus there is no maximal midpoint-

free subset 𝑇 ⊂ Z that satisfies 𝑆
6
⊂ 𝑇 ⊆ 𝑇

6
. What is the

greedy subset 𝑆∗
6
⊂ 𝐸(𝑆

6
,Z+)which makes 𝑆

6
∪𝑆
∗

6
a maximal

midpoint-free subset of Z+?

Remark 5. The midpoint-free set 𝑆
8

:= Z+
8
(0, 1, 3) is not

maximal inZ+. Indeed, confirmingCorollary 16when𝑚 = 8,
the smallest member of 𝐸(𝑆

8
,Z+) is 20. In fact,

{𝑥 ∈ Z
+
⟦𝑥⟧
8,0

= 4, ⟦𝑥⟧
8,1

= 2} ⊂ 𝐸 (𝑆
8
,Z
+
) . (115)

For 𝑥 ∈ Z+ \ 𝑆
8
it can be shown that 𝑥 ∈ 𝐴(𝑆

8
,Z+) ∪

𝐶(𝑆
8
,Z+) precisely when

⟦𝑥⟧
8,𝑘

= 3 ⇒ 𝑥|8,𝑘 ≤ 4𝑢
8,𝑘
,

⟦𝑥⟧
8,𝑘

= 4 ⇒ 𝑥|8,𝑘 > 4𝑢
8,𝑘

(116)

so, in particular,Z+
8
([0, 3]) \ 𝑆

8
⊂ 𝐴(𝑆

8
,Z+) ∪ 𝐶(𝑆

8
,Z+). (For

base 8 rep-units 𝑢
8,𝑘
, see A023001 in OEIS [5].) Again, if 𝑥 ∈

Z+ \ 𝑆
8
then 𝑥 ∈ 𝐵(𝑆

8
,Z+) precisely when

⟦𝑥⟧
8,𝑘

∈ {2, 3, 6, 7} ⇒ 𝑥|8,𝑘 ≤ 3𝑢
8,𝑘 (117)

so, in particular, Z+
8
([0, 3]) \ 𝑆

8
⊂ 𝐵(𝑆

8
,Z+). What is the

greedy subset 𝑆∗
8
⊂ 𝐸(𝑆

8
,Z+)which makes 𝑆

8
∪𝑆
∗

8
a maximal

midpoint-free subset of Z+?

Remark 6. The set 𝑆
9
:= Z+
9
(0, 1, 3, 4) is a maximal midpoint-

free subset of Z+ since Z+
9
(0, 1, 3, 4) = Z+

3
(0, 1). This follows

immediately from the observation that

(3𝑟 + 𝑠) 9
𝑛
= 𝑟3
2𝑛+1

+ 𝑠3
2𝑛 when 𝑟, 𝑠 ∈ {0, 1} , 𝑛 ≥ 0.

(118)

More generally, Z+
𝑚
(𝐷) = Z+

3
(0, 1) when 𝑚 = 3

𝑛 and 𝐷 =

𝑆
0
∩ [0, 𝑢

3,𝑛
] for any positive integer 𝑛.

Remark 7. The midpoint-free sets 𝑆
𝑚

:= Z+
𝑚
(0, 1, 3, 4) are

maximal in Z+ for each 𝑚 ∈ [9, 13], and the endpoint sets
satisfy 𝐴(𝑆

𝑚
,Z
+
) ∪ 𝐶(𝑆

𝑚
,Z+) = Z+ \ 𝑆

𝑚
. Thus 𝑆

(2)

𝑚
:=

2𝑆
𝑚
∪ −(2𝑆

𝑚
+ 1) and 𝑆

(3)

𝑚
:= 3𝑆
𝑚
∪ (3𝑆
𝑚
+ 1) are maximal

midpoint-free subsets of Z when𝑚 ∈ [9, 13], by Theorems 4
and 6. However, the midpoint-free set 𝑆

14
is not maximal in

Z+ since, confirming Corollary 17 when𝑚 = 14, the smallest
member of 𝐸(𝑆

14
,Z+) is 65. What is the greedy subset 𝑆∗

14
⊂

𝐸(𝑆
14
,Z+) which makes 𝑆

14
∪ 𝑆
∗

14
a maximal midpoint-free

subset of Z+?
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