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In this paper we use large deviation theory to determine the equilibrium distribution of a basic droplet model that underlies a
number of important models in material science and statistical mechanics. Given 𝑏 ∈ N and 𝑐 > 𝑏, 𝐾 distinguishable particles are
placed, each with equal probability 1/𝑁, onto the 𝑁 sites of a lattice, where 𝐾/𝑁 equals 𝑐. We focus on configurations for which
each site is occupied by a minimum of 𝑏 particles. The main result is the large deviation principle (LDP), in the limit𝐾 → ∞ and
𝑁 → ∞ with 𝐾/𝑁 = 𝑐, for a sequence of random, number-density measures, which are the empirical measures of dependent
random variables that count the droplet sizes. The rate function in the LDP is the relative entropy 𝑅(𝜃 | 𝜌∗), where 𝜃 is a possible
asymptotic configuration of the number-density measures and 𝜌∗ is a Poisson distribution with mean 𝑐, restricted to the set of
positive integers 𝑛 satisfying 𝑛 ≥ 𝑏.This LDP implies that 𝜌∗ is the equilibrium distribution of the number-density measures, which
in turn implies that 𝜌∗ is the equilibrium distribution of the random variables that count the droplet sizes.

1. Introduction

This paper is motivated by a natural question for a basic
model of a droplet. Given 𝑏 ∈ N and 𝑐 > 𝑏,𝐾 distinguishable
particles are placed, each with equal probability 1/𝑁, onto
the 𝑁 sites of a lattice Λ

𝑁
= {1, 2, . . . , 𝑁}. Under the

assumption that 𝐾/𝑁 = 𝑐 and that each site is occupied by a
minimum of 𝑏 particles, what is the equilibrium distribution,
as 𝑁 → ∞, of the number of particles per site? We prove
in Corollary 3 that this equilibrium distribution is a Poisson
distribution, with mean 𝑐, restricted to the set of positive
integers 𝑛 satisfying 𝑛 ≥ 𝑏. As we explain near the end of
the Introduction, this equilibrium distribution has important
applications to technologies using sprays and powders.

As in many other models in statistical mechanics, we can
identify the equilibrium distribution by exhibiting it as the
unique minimum point of a rate function in a large deviation
principle (LDP). Other models for which this procedure can
be implemented are discussed at the end of the Introduction.

For the droplet model we prove the LDP for a sequence
of randomprobabilitymeasures, called number-densitymea-
sures, which are the empirical measures of a sequence of

dependent random variables that count the droplet sizes.
This LDP is stated in Theorem 1. Our proof is self-contained
and starts from first principles, using techniques that are
familiar in applied mathematics and statistical mechanics.
For example, the proof of the local large deviation estimate
in Theorem 5, a key step in the proof of the LDP for
the number-density measures, is based on combinatorics,
Stirling’s formula, and Laplace asymptotics.

Our use of combinatorial methods goes back to Boltz-
mann in his work on the discrete ideal gas. He calculated
the Maxwell-Boltzmann equilibrium distribution for this
system by analyzing the asymptotic behavior of a particular
multinomial coefficient [1]. Starting with Boltzmann’s work,
combinatorial methods have remained an important tool
in both statistical mechanics and in the theory of large
deviations, offering insights into a wide variety of physical
andmathematical phenomena via techniques that are elegant,
powerful, and often elementary. In applications to statistical
mechanics, this state of affairs is explained by the observation
that “many fundamental questions . . . are inherently com-
binatorial, . . . including the Ising model, the Potts model,
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monomer-dimer systems, self-avoiding walks and percola-
tion theory” [2]. For the two-dimensional Ising model and
other exactly soluble models, [3, 4] are recommended.

A similar situation holds in the theory of large deviations.
For example, Section 2.1 of [5] discusses combinatorial tech-
niques for finite alphabets and points out that because of the
concreteness of these applications the LDPs are proved under
much weaker conditions than the corresponding results in
the general theory, into which the finite-alphabet results
give considerable insight. The text [6] devotes several early
sections to large deviation results for i.i.d. random variables
having a finite state space and proved by combinatorial
methods, including a sophisticated, level-3 result for the
empirical pair measure.

In order to formulate the LDP for the number-density
measures in our droplet model, a standard probabilistic
model is introduced. The configuration space is the setΩ

𝑁
=

Λ
𝐾

𝑁
consisting of all 𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝐾
), where 𝜔

𝑖
denotes

the site in Λ
𝑁
occupied by the 𝑖th particle. The cardinality

of Ω
𝑁

equals 𝑁𝐾. Denote by 𝑃
𝑁

the uniform probability
measure that assigns equal probability 1/𝑁𝐾 to each of the
𝑁
𝐾 configurations 𝜔 ∈ Ω

𝑁
. The asymptotic analysis of the

droplet model involves the two random variables, which are
functions of the configuration 𝜔 ∈ Ω

𝑁
: for ℓ ∈ Λ

𝑁
, 𝐾
ℓ
(𝜔)

denotes the number of particles occupying the site ℓ in the
configuration 𝜔; for 𝑗 ∈ N ∪ {0}, 𝑁

𝑗
(𝜔) denotes the number

of sites ℓ ∈ Λ
𝑁
for which𝐾

ℓ
(𝜔) = 𝑗.

We focus on the subset of Ω
𝑁
consisting of all configu-

rations 𝜔 for which every site of Λ
𝑁
is occupied by at least

𝑏 particles. Because of this restriction 𝑁
𝑗
(𝜔) is indexed by

𝑗 ∈ N
𝑏
= {𝑛 ∈ Z : 𝑛 ≥ 𝑏}. It is useful to think of each

particle as having one unit of mass and of the set of particles
at each site ℓ as defining a droplet. With this interpretation,
for each configuration 𝜔, 𝐾

ℓ
(𝜔) denotes the mass or size of

the droplet at site ℓ. The 𝑗th droplet class has𝑁
𝑗
(𝜔) droplets

andmass 𝑗𝑁
𝑗
(𝜔). Because the number of sites inΛ

𝑁
equals𝑁

and the sum of the masses of all the droplet classes equals 𝐾,
the following conservation laws hold for such configurations:

∑

𝑗∈N𝑏

𝑁
𝑗
(𝜔) = 𝑁,

∑

𝑗∈N𝑏

𝑗𝑁
𝑗
(𝜔) = 𝐾.

(1)

In addition, since the total number of particles is𝐾, it follows
that ∑

ℓ∈Λ𝑁
𝐾
ℓ
= 𝐾. These equality constraints show that the

random variables𝑁
𝑗
and𝐾

ℓ
are not independent.

In order to carry out the asymptotic analysis of the droplet
model, we introduce a quantity 𝑚 = 𝑚(𝑁) that converges
to ∞ sufficiently slowly with respect to 𝑁; specifically, we
require that 𝑚(𝑁)2/𝑁 → 0 as 𝑁 → ∞. In terms of 𝑏 and
𝑚 we define the subset Ω

𝑁,𝑏,𝑚
of Ω
𝑁
consisting of all config-

urations 𝜔 for which every site of Λ
𝑁
is occupied by at least

𝑏 particles and at most𝑚 of the quantities𝑁
𝑗
(𝜔) are positive.

This second condition is a useful technical device that allows
us to control the errors in several estimates. In Appendix D
of [7] we present evidence supporting the conjecture that this
condition can be eliminated.The discussion in that appendix

involves a number of interesting topics including Stirling
numbers of the second kind (see [8, pp. 96-97] and [9, §5.4])
and their asymptotic behavior [10, Example 5.4].

The random quantities in the droplet model for which we
formulate an LDP are the number-densitymeasuresΘ

𝑁,𝑏
. For

𝜔 ∈ Ω
𝑁,𝑏,𝑚

these random probability measures assign to 𝑗 ∈
N
𝑏
the probability𝑁

𝑗
(𝜔)/𝑁, which is the number density of

the 𝑗th droplet class. Because of the two conservation laws
in (1) and because 𝐾/𝑁 = 𝑐, for 𝜔 ∈ Ω

𝑁,𝑏,𝑚
, Θ
𝑁,𝑏
(𝜔) is a

probability measure on N
𝑏
= {𝑛 ∈ Z : 𝑛 ≥ 𝑏} having mean

𝑐. Thus Θ
𝑁,𝑏

takes values inPN𝑏 ,𝑐
, which is defined to be the

set of probability measures on N
𝑏
having mean 𝑐.

The probability measure 𝑃
𝑁,𝑏,𝑚

defining the droplet
model is obtained by restricting the uniform measure 𝑃

𝑁

to the set of configurations Ω
𝑁,𝑏,𝑚

. Thus 𝑃
𝑁,𝑏,𝑚

equals the
conditional probability 𝑃

𝑁
(⋅ | Ω
𝑁,𝑏,𝑚

). In the language of sta-
tistical mechanics 𝑃

𝑁,𝑏,𝑚
defines a microcanonical ensemble

that incorporates the conservation laws for number andmass
expressed in (1).

A natural question is to determine two equilibrium
distributions: the equilibrium distribution 𝜌∗ of the number-
density measures and the equilibrium distribution 𝜌

∗∗

=

∑
𝑗∈N𝑏

𝜌
∗∗

𝑗
𝛿
𝑗
of the droplet-size random variables 𝐾

ℓ
. These

distributions are defined by the following two limits: for any
𝜀 > 0, any ℓ ∈ Λ

𝑁
, and all 𝑗 ∈ N

𝑏

lim
𝑁→∞

𝑃
𝑁,𝑏,𝑚

(Θ
𝑁,𝑏

∈ 𝐵 (𝜌
∗

, 𝜀)) 󳨀→ 1,

lim
𝑁→∞

𝑃
𝑁,𝑏,𝑚

(𝐾
ℓ
= 𝑗) = 𝜌

∗∗

𝑗
,

(2)

where 𝐵(𝜌∗, 𝜀) denotes the open ball with center 𝜌∗ and
radius 𝜀 defined with respect to an appropriate metric on
PN𝑏 ,𝑐

. As we prove, the equilibrium distributions ofΘ
𝑁,𝑏

and
𝐾
ℓ
coincide. As in many models in statistical mechanics, an

efficient way to determine the equilibrium distribution Θ
𝑁,𝑏

is to prove an LDP forΘ
𝑁,𝑏

, which we carry out inTheorem 1.
This theorem is the main result in the paper.

The content of Theorem 1 is the following: as 𝑁 → ∞,
the sequence of number-density measures Θ

𝑁,𝑏
satisfies the

LDP on PN𝑏 ,𝑐
with respect to the measures 𝑃

𝑁,𝑏,𝑚
. The rate

function is the relative entropy 𝑅(𝜃 | 𝜌
𝑏,𝛼
) of 𝜃 ∈ PN𝑏 ,𝑐

with respect to the Poisson distribution 𝜌
𝑏,𝛼

on N
𝑏
having

components 𝜌
𝑏,𝛼;𝑗

= [𝑍
𝑏
(𝛼)]
−1

⋅ 𝛼
𝑗

/𝑗! for 𝑗 ∈ N
𝑏
. In

this formula 𝑍
𝑏
(𝛼) is the normalization that makes 𝜌

𝑏,𝛼
a

probability measure, and 𝛼 equals the unique value 𝛼
𝑏
(𝑐) for

which 𝜌
𝑏,𝛼𝑏(𝑐)

has mean 𝑐 [Theorem A.2]. Using the fact that
𝑅(𝜃 | 𝜌

𝑏,𝛼𝑏(𝑐)
) equals 0 at the unique measure 𝜃 = 𝜌

𝑏,𝛼𝑏(𝑐)
,

we apply the LDP for Θ
𝑁,𝑏

to conclude in Theorem 2 that
𝜌
𝑏,𝛼𝑏(𝑐)

is the equilibrium distribution of Θ
𝑁,𝑏

. Corollary 3
then implies that 𝜌

𝑏,𝛼𝑏(𝑐)
is also the equilibrium distribution

of 𝐾
ℓ
.

The space PN𝑏 ,𝑐
is the most natural space on which to

formulate the LDP for Θ
𝑁,𝑏

in Theorem 1. Not only is PN𝑏 ,𝑐

the smallest convex set of probabilitymeasures containing the
range ofΘ

𝑁,𝑏
for all𝑁 ∈ N, but also the union over𝑁 ∈ N of

the range of Θ
𝑁,𝑏

is dense inPN𝑏 ,𝑐
. As we explain in part (a)

ofTheorem 4,PN𝑏 ,𝑐
is not a complete, separablemetric space,

a situation that prevents us from directly applying general
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results in the theory of large deviations that require the setting
of a complete, separable metric space.

The droplet model is defined in Section 2. Step 1 in the
proof of the LDP forΘ

𝑁,𝑏
is to derive the local large deviation

estimate in part (b) of Theorem 5. This local estimate, one of
the centerpieces of the paper, gives information not available
in the LDP forΘ

𝑁,𝑏
, which involves global estimates. Step 2 is

to lift the local large deviation estimate to the large deviation
limit forΘ

𝑁,𝑏
lying in open balls and certain other subsets of

PN𝑏 ,𝑐
while Step 3 is to lift the large deviation limit for open

balls and certain other subsets to the LDP for Θ
𝑁,𝑏

stated in
Theorem 1. Steps 2 and 3 are explained in Section 4.

Details of Steps 2 and 3 as well as other routine proofs are
omitted from the present paper. They appear in the unpub-
lished companion paper [7], which also contains additional
background material. The paper [1] explores how our work
on the droplet model was inspired by the work of Ludwig
Boltzmannon a simplemodel of a discrete ideal gas.Themain
connection is via the local large deviation estimate in part (b)
ofTheorem 5.When 𝑏 = 0, the LDP for a path version ofΘ

𝑛,0

with 𝐾 = 𝑡𝑁 and 𝑡 > 0 varying appears in [11, 12].
The main application of the results in this paper is to

technologies using sprays and powders, which are ubiquitous
in many fields, including agriculture, the chemical and
pharmaceutical industries, consumer products, electronics,
manufacturing, material science, medicine, mining, paper
making, the steel industry, and waste treatment. In this paper
we focus on sprays; our theory also applies to powders
with only changes in terminology [13]. The behavior of
sprays might be complex depending on various parameters
including evaporation, temperature, and viscosity. Our goal
here is to consider the simplest model where the only
assumption is made on the average size of droplets in the
spray. In many situations it is important to have good control
over the sizes of the droplets, which can be translated into
properties of probability distributions. The size distributions
are important because they determine reliability and safety in
each particular application.

Interestingly, there does not seem to be a rigorous theory
that predicts the equilibrium distribution of droplet sizes,
analogous to the Maxwell-Boltzmann distribution of energy
levels in a discrete ideal gas [14, 15]. Our goal in the present
paper is to provide such a theory. We do so by focusing on
one aspect of the problem related to the relative entropy,
an approach that characterizes the equilibrium distribution
of droplet sizes as being a Poisson distribution restricted to
N
𝑏
. We expect that this distribution will be important in

experimental observations. A full understanding of droplet
behavior under dynamic conditions requires treating many
other aspects and is beyond the scope of this paper. We plan
to apply the ideas in this paper to understand the entropy of
dislocation networks [16].

The importance of predicting droplet size can be seen
from the wide range of applications utilizing sprays [17, 18].
Because of the importance of this problem, novel approaches
for measuring size distribution of droplet size in sprays
have been developed [19–23]. What makes the problem of
predicting droplet size particularly interesting is the com-
plexity of droplet-size distribution, which is attributed to

many factors such as temperature and viscosity. As [24]
shows, even the nozzle plays a significant role in the outcome.
Many theoretical tools used to understand the distribution of
droplet size in sprays include entropy [25], which also plays a
key role in the present paper.

We end the Introduction by expanding on a comment
made at the beginning of this section.This comment concerns
one of the main applications of large deviation theory in
statistical mechanics, which is to identify the equilibrium
distribution or distributions of a model as the minimum
point(s) of the rate function in an LDP for the model.
This procedure is also useful to study phase transitions
in the model, which concern how the structure of the
set of equilibrium distributions changes as the parameters
defining themodel change.There are numerous othermodels
for which this procedure has been used. They include the
following three lattice spin models: the Curie-Weiss spin
system, the Curie-Weiss-Potts model, and the mean-field
Blume-Capel model, which is also known as the mean-field
BEG model. As explained in the respective Sections 6.6.1,
6.6.2, and 6.6.3 of [26], the large deviation analysis shows that
each of these three models has a different phase transition
structure. Details of the analysis for the three models are
given in the references [6, §IV.4], [27–29]. Section 9 of
[30] outlines how large deviation theory can be applied to
determine equilibrium structures in statisticalmodels of two-
dimensional turbulence. Details of this analysis are given in
[31].

2. Definition of Droplet Model
and Main Theorem

After defining the droplet model, we state the main theorem
in the paper, Theorem 1. The content of this theorem is the
LDP for the sequence of random, number-density measures,
which are the empirical measures of a sequence of dependent
randomvariables that count the droplet sizes in themodel. As
we show in Theorem 2 and in Corollary 3, the LDP enables
us to identify a Poisson distribution as the equilibrium
distribution both of the number-density measures and of
the droplet-size random variables. In Theorem 4 we prove a
number of properties of two spaces of probability measures
in terms of which the LDP for the number-density measures
is formulated.

We start by fixing parameters 𝑏 ∈ N ∪ {0} and 𝑐 ∈ (𝑏,∞).
The droplet model is defined by a probability measure 𝑃

𝑁,𝑏

parameterized by 𝑁 ∈ N and the nonnegative integer 𝑏. The
measure depends on two other positive integers, 𝐾 and 𝑚,
where 2 ≤ 𝑚 ≤ 𝑁 < 𝐾. Both 𝐾 and 𝑚 are functions of𝑁 in
the large deviation limit𝑁 → ∞. In this limit we take𝐾 →

∞ and𝑁 → ∞, where𝐾/𝑁, the average number of particles
per site, equals 𝑐. Thus 𝐾 = 𝑁𝑐. In addition, we take 𝑚 →

∞ sufficiently slowly by choosing 𝑚 to be a function 𝑚(𝑁)
satisfying𝑚(𝑁) → ∞ and𝑚(𝑁)2/𝑁 → 0 as𝑁 → ∞; for
example, 𝑚(𝑁) = 𝑁𝛿 for some 𝛿 ∈ (0, 1/2). Throughout this
paper we fix such a function𝑚(𝑁). The parameter 𝑏 and the
function 𝑚 = 𝑚(𝑁) first appear in the definition of the set
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of configurationsΩ
𝑁,𝑏,𝑚

in (3), where these quantities will be
explained.

Because 𝐾 and 𝑁 are integers, 𝑐 must be a rational
number. This in turn imposes a restriction on the values of
𝑁 and 𝐾. If 𝑐 is a positive integer, then 𝑁 → ∞ along
the positive integers and 𝐾 → ∞ along the subsequence
𝐾 = 𝑐𝑁. If 𝑐 = 𝑥/𝑦, where 𝑥 and 𝑦 are relatively prime,
positive integers with 𝑦 ≥ 2, then 𝑁 → ∞ along the
subsequence 𝑁 = 𝑦𝑛 for 𝑛 ∈ N and 𝐾 → ∞ along the
subsequence 𝐾 = 𝑐𝑁 = 𝑥𝑛. Throughout this paper, when we
write 𝑁 ∈ N or 𝑁 → ∞, it is understood that 𝑁 and 𝐾
satisfy the restrictions discussed here.

In the droplet model 𝐾 distinguishable particles are
placed, each with equal probability 1/𝑁, onto the sites of
the lattice Λ

𝑁
= {1, 2, . . . , 𝑁}. This simple description cor-

responds to a simple probabilistic model. The configuration
space is the set Ω

𝑁
= Λ
𝐾

𝑁
consisting of all sequences 𝜔 =

(𝜔
1
, 𝜔
2
, . . . , 𝜔

𝐾
), where 𝜔

𝑖
∈ Λ
𝑁

denotes the site in Λ
𝑁

occupied by the 𝑖th particle. Let 𝜌(𝑁) be the measure on Λ
𝑁

that assigns equal probability 1/𝑁 to each site in Λ
𝑁
, and

let 𝑃
𝑁
= (𝜌
(𝑁)

)
𝐾 be the product measure on Ω

𝑁
with equal

one-dimensional marginals 𝜌(𝑁). Thus 𝑃
𝑁

is the uniform
probability measure that assigns equal probability 1/𝑁𝐾 to
each of the 𝑁𝐾 configurations 𝜔 ∈ Ω

𝑁
; for subsets 𝐴 of

Ω
𝑁

we have 𝑃
𝑁
(𝐴) = card(𝐴)/𝑁𝐾, where card denotes

cardinality.
The asymptotic analysis of the dropletmodel involves two

random variables. For ℓ ∈ Λ
𝑁
and 𝜔 ∈ Ω

𝑁
, 𝐾
ℓ
(𝜔) denotes

the number of particles occupying site ℓ in the configuration
𝜔. For 𝑗 ∈ N ∪ {0} and 𝜔 ∈ Ω

𝑁
,𝑁
𝑗
(𝜔) denotes the number of

sites ℓ ∈ Λ
𝑁
for which 𝐾

ℓ
(𝜔) = 𝑗. The dependence of 𝐾

ℓ
(𝜔)

and𝑁
𝑗
(𝜔) on𝑁 is not indicated in the notation. Because the

distributions of both random variables depend on𝑁, both𝐾
ℓ

and𝑁
𝑗
form triangular arrays.

We now specify the role played by the nonnegative integer
𝑏, first focusing on the case where 𝑏 is a positive integer.
The case where 𝑏 = 0 is discussed later. For 𝜔 ∈ Ω

𝑁
, in

general there exist sites ℓ ∈ Λ
𝑁
for which 𝐾

ℓ
(𝜔) = 0; that

is, sites that are occupied by 0 particles. The next step in the
definition of the droplet model is to restrict to a subsetΩ

𝑁,𝑏,𝑚

of configurations 𝜔 ∈ Ω
𝑁
for which every site is occupied by

at least 𝑏 particles and the following constraint holds: for any
configuration𝜔 ∈ Ω

𝑁,𝑏,𝑚
atmost𝑚 of the components𝑁

𝑗
(𝜔)

are positive, where 𝑚 = 𝑚(𝑁) → ∞ and 𝑚(𝑁)2/𝑁 → 0

as 𝑁 → ∞. Because for 𝜔 ∈ Ω
𝑁,𝑏,𝑚

every site ℓ ∈ Λ
𝑁

is occupied by at least 𝑏 particles, we have 𝐾
ℓ
(𝜔) ≥ 𝑏 and

𝑁
𝑗
(𝜔) is indexed by 𝑗 ∈ N

𝑏
= {𝑛 ∈ Z : 𝑛 ≥ 𝑏}. We

denote by 𝑁(𝜔) the sequence {𝑁
𝑗
(𝜔), 𝑗 ∈ N

𝑏
} and define

|𝑁(𝜔)|
+
= card{𝑗 ∈ N

𝑏
: 𝑁
𝑗
(𝜔) ≥ 1}. In terms of this notation

Ω
𝑁,𝑏,𝑚

= {𝜔 ∈ Ω
𝑁
: 𝐾
ℓ
(𝜔) ≥ 𝑏, ∀ℓ ∈ Λ

𝑁
, |𝑁 (𝜔)|

+

≤ 𝑚 = 𝑚 (𝑁)} .

(3)

The constraint restricting the number of positive com-
ponents of 𝑁(𝜔) is a useful technical device that allows us
to control the errors in several estimates. In Appendix D
of [7] we give evidence supporting the conjecture that this
restriction can be eliminated.

When 𝑏 is a positive integer, for each𝜔 ∈ Ω
𝑁,𝑏,𝑚

, each site
inΛ
𝑁
is occupied by at least 𝑏 particles. In this case it is useful

to think of each particle as having one unit of mass and of the
set of particles at each site ℓ as defining a droplet. With this
interpretation, for each configuration 𝜔, 𝐾

ℓ
(𝜔) denotes the

mass or the size of the droplet at site ℓ. The 𝑗th droplet class
has𝑁

𝑗
(𝜔) droplets and mass 𝑗𝑁

𝑗
(𝜔). Because the number of

sites in Λ
𝑁
equals 𝑁 and the sum of the masses of all the

droplet classes equals 𝐾, it follows that the quantities 𝑁
𝑗
(𝜔)

satisfy the two conservation laws in (1) for all 𝜔 ∈ Ω
𝑁,𝑏,𝑚

.
We now consider the modifications that must be made in

these definitions when 𝑏 = 0. In this case the first constraint
in the definition of Ω

𝑁,𝑏,𝑚
disappears because we allow sites

to be occupied by 0 particles, and therefore𝑁
𝑗
(𝜔) is indexed

by 𝑗 ∈ N
0
= N ∪ {0}. On the other hand, we retain the second

constraint in the definition ofΩ
𝑁,0,𝑚

, which requires that for
any configuration 𝜔 ∈ Ω

𝑁,0,𝑚
at most 𝑚 of the components

𝑁
𝑗
(𝜔) for 𝑗 ∈ N

0
are positive. When 𝑏 = 0, the definition of

Ω
𝑁,0,𝑚

becomes Ω
𝑁,0,𝑚

= {𝜔 ∈ Ω
𝑁
: |𝑁(𝜔)|

+
≤ 𝑚 = 𝑚(𝑁)}.

Because the choice 𝑏 = 0 allows sites to be empty, we lose
the interpretation of the set of particles at each site as being a
droplet. However, for 𝜔 ∈ Ω

𝑁,0,𝑚
the two conservation laws

in (1) continue to hold.
For the remainder of this paper we work with any

fixed nonnegative integer 𝑏. The probability measure 𝑃
𝑁,𝑏,𝑚

defining the droplet model is obtained by restricting the
uniform measure 𝑃

𝑁
to the set Ω

𝑁,𝑏,𝑚
. Thus 𝑃

𝑁,𝑏,𝑚
equals

the conditional probability 𝑃
𝑁
(⋅ | Ω

𝑁,𝑏,𝑚
). For subsets 𝐴 of

Ω
𝑁,𝑏,𝑚

, 𝑃
𝑁,𝑏,𝑚

(𝐴) takes the form

𝑃
𝑁,𝑏,𝑚

(𝐴) = 𝑃
𝑁
(𝐴 | Ω

𝑁,𝑏,𝑚
)

=
1

card (Ω
𝑁,𝑏,𝑚

)
⋅ card (𝐴) .

(4)

Having defined the droplet model, we introduce the
random probability measures whose large deviations we will
study. For 𝜔 ∈ Ω

𝑁,𝑏,𝑚
these measures are the number-density

measuresΘ
𝑁,𝑏

that assign to 𝑗 ∈ N
𝑏
the probability𝑁

𝑗
(𝜔)/𝑁.

This ratio represents the number density of droplet class 𝑗.
Thus for any subset 𝐴 of N

𝑏

Θ
𝑁,𝑏

(𝜔, 𝐴) = ∑

𝑗∈𝐴

Θ
𝑁,𝑏;𝑗

(𝜔) ,

where Θ
𝑁,𝑏;𝑗

(𝜔) =
𝑁
𝑗
(𝜔)

𝑁
.

(5)

By the two formulas in (1) ∑
𝑗∈N𝑏

Θ
𝑁,𝑏;𝑗

(𝜔) = 1 and
∑
𝑗∈N𝑏

𝑗Θ
𝑁,𝑏;𝑗

(𝜔) = 𝐾/𝑁 = 𝑐. Thus Θ
𝑁,𝑏
(𝜔) is a probability

measure on N
𝑏
having mean 𝑐.

We next introduce several spaces of probability measures
that arise in the large deviation analysis of the droplet model.
PN𝑏

denotes the set of probability measures on N
𝑏
= {𝑛 ∈

Z : 𝑛 ≥ 𝑏}. Thus 𝜃 ∈ PN𝑏
has the form ∑

𝑗∈N𝑏
𝜃
𝑗
𝛿
𝑗
, where the

components 𝜃
𝑗
satisfy 𝜃

𝑗
≥ 0 and ∑

𝑗∈N𝑏
𝜃
𝑗
= 1. We say that a

sequence of measures {𝜃(𝑛), 𝑛 ∈ N} in PN𝑏
converges weakly

to 𝜃 ∈ PN𝑏
, and write 𝜃(𝑛) ⇒ 𝜃, if, for any bounded function

𝑓 mapping N
𝑏
into R, ∫

N𝑏
𝑓𝑑𝜃
(𝑛)

→ ∫
N𝑏
𝑓𝑑𝜃 as 𝑛 → ∞.
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PN𝑏
is topologized by the topology of weak convergence.

There is a standard technique for introducing a metric
structure onPN𝑏

for which we quote the main facts. Because
N
𝑏
is a complete, separablemetric spacewithmetric𝑑(𝑥, 𝑦) =

|𝑥 − 𝑦|, there exists a metric 𝜋 on PN𝑏
called the Prohorov

metric with the following two properties: (1) convergence
with respect to the Prohorov metric is equivalent to weak
convergence [32,Thm. 3.3.1]; (2)with respect to the Prohorov
metric, PN𝑏

is a complete, separable metric space [32, Thm.
3.1.7].

We denote by PN𝑏 ,𝑐
the set of measures in PN𝑏

having
mean 𝑐. Thus 𝜃 ∈ PN𝑏 ,𝑐

has the form ∑
𝑗∈N𝑏

𝜃
𝑗
𝛿
𝑗
, where the

components 𝜃
𝑗
satisfy 𝜃

𝑗
≥ 0,∑

𝑗∈N𝑏
𝜃
𝑗
= 1, and∑

𝑗∈N𝑏
𝑗𝜃
𝑗
= 𝑐.

The number-density measuresΘ
𝑁,𝑏

defined in (5) take values
inPN𝑏 ,𝑐

.
According to part (a) of Theorem 4,PN𝑏 ,𝑐

is not a closed
subset of PN𝑏

. Hence it is natural to introduce the closure
of PN𝑏 ,𝑐

in PN𝑏
. As we prove in part (b) of Theorem 4, the

closure of PN𝑏 ,𝑐
in PN𝑏

equals PN𝑏 ,[𝑏,𝑐]
, which is the set of

measures in PN𝑏
having mean lying in the closed interval

[𝑏, 𝑐]. Being the closure of the relatively compact, separable
metric space PN𝑏 ,𝑐

, PN𝑏 ,[𝑏,𝑐]
is a compact, separable metric

space with respect to the Prohorovmetric.This space appears
in the formulation of the large deviation upper bound in part
(c) of Theorem 1.

We next state Theorem 1, which is the LDP for the se-
quence of distributions 𝑃

𝑁,𝑏,𝑚
(Θ
𝑁,𝑏

∈ 𝑑𝜃) on PN𝑏 ,𝑐
as

𝑁 → ∞. The rate function in the LDP is the relative
entropy of 𝜃with respect to the Poisson distribution 𝜌

𝑏,𝛼𝑏(𝑐)
=

∑
𝑗∈N𝑏

𝜌
𝑏,𝛼𝑏(𝑐);𝑗

𝛿
𝑗
defined in (7), where each 𝜌

𝑏,𝛼𝑏(𝑐);𝑗
> 0. Thus

any 𝜃 ∈ PN𝑏 ,𝑐
is absolutely continuous with respect to 𝜌

𝑏,𝛼𝑏(𝑐)
.

For 𝜃 ∈ PN𝑏 ,𝑐
the relative entropy of 𝜃 with respect to 𝜌

𝑏,𝛼𝑏(𝑐)

is defined by

𝑅 (𝜃 | 𝜌
𝑏,𝛼𝑏(𝑐)

) = ∑

𝑗∈N𝑏

𝜃
𝑗
log(

𝜃
𝑗

𝜌
𝑏,𝛼𝑏(𝑐);𝑗

) . (6)

If 𝜃
𝑗
= 0, then 𝜃

𝑗
log(𝜃
𝑗
/𝜌
𝑏,𝛼𝑏(𝑐);𝑗

) = 0. For 𝑗 ∈ N
𝑏
the

components of themeasure 𝜌
𝑏,𝛼𝑏(𝑐)

appearing in the LDP have
the form

𝜌
𝑏,𝛼𝑏(𝑐);𝑗

=
1

𝑍
𝑏
(𝛼
𝑏
(𝑐))

⋅
[𝛼
𝑏
(𝑐)]
𝑗

𝑗!
, (7)

where 𝛼
𝑏
(𝑐) ∈ (0,∞) is chosen so that 𝜌

𝑏,𝛼𝑏(𝑐)
has mean 𝑐 and

𝑍
𝑏
(𝛼
𝑏
(𝑐)) is the normalization making 𝜌

𝑏,𝛼𝑏(𝑐)
a probability

measure; thus 𝑍
0
(𝛼
0
(𝑐)) = 𝑒

𝛼0(𝑐) and, for 𝑏 ∈ N, 𝑍
𝑏
(𝛼
𝑏
(𝑐)) =

𝑒
𝛼𝑏(𝑐) − ∑

𝑏−1

𝑗=0
[𝛼
𝑏
(𝑐)]
𝑗

/𝑗!. As we show in Theorem A.2, there
exists a unique value of 𝛼

𝑏
(𝑐).

As a consequence of the fact that PN𝑏 ,𝑐
is not closed

in PN𝑏
, the large deviation upper bound takes two forms

depending on whether the subset 𝐹 of PN𝑏 ,𝑐
is compact or

whether𝐹 is closed.When𝐹 is compact, in part (b) we obtain
the standard large deviation upper bound for 𝐹. When 𝐹 is
closed, in part (c) we obtain a variation of the standard large
deviation upper bound, which, when 𝐹 is compact, coincides
with the upper bound in part (b).The refinement in part (c) is
important. It is applied in the proof ofTheorem 2 to show that

𝜌
𝑏,𝛼𝑏(𝑐)

is the equilibrium distribution of the number-density
measures Θ

𝑁,𝑏
. In turn, Theorem 2 is applied in the proof of

Corollary 3 to show that𝜌
𝑏,𝛼𝑏(𝑐)

is the equilibriumdistribution
of the droplet-size random variables𝐾

ℓ
.

In the next theorem we assume that 𝑚 is the function
𝑚(𝑁) appearing in the definition of Ω

𝑁,𝑏,𝑚
in (3) and

satisfying 𝑚(𝑁) → ∞ and 𝑚(𝑁)2/𝑁 → 0 as 𝑁 → ∞.
The assumption that𝑚(𝑁)2/𝑁 → 0 is used to control error
terms in Lemmas 6 and 7 in the present paper and in Lemma
B.3 in [7]. This assumption on 𝑚(𝑁) is optimal in the sense
that it is a minimal assumption guaranteeing that error terms
in parts (a) and (b) of Lemma B.3 in [7] converge to 0. In the
next theorem, for 𝐴 a subset of PN𝑏 ,𝑐

or PN𝑏 ,[𝑏,𝑐]
we denote

by 𝑅(𝐴 | 𝜌
𝑏,𝛼𝑏(𝑐)

) the infimum of 𝑅(𝜃 | 𝜌
𝑏,𝛼𝑏(𝑐)

) over 𝜃 ∈ 𝐴.

Theorem 1. Fix a nonnegative integer 𝑏 and a rational number
𝑐 ∈ (𝑏,∞). Let 𝑚 be the function 𝑚(𝑁) appearing in the
definition of Ω

𝑁,𝑏,𝑚
in (3) and satisfying 𝑚(𝑁) → ∞ and

𝑚(𝑁)
2

/𝑁 → 0 as 𝑁 → ∞. Let 𝜌
𝑏,𝛼𝑏(𝑐)

∈ PN𝑏 ,𝑐
be the

distribution having the components defined in (7). Then as
𝑁 → ∞, with respect to the measures 𝑃

𝑁,𝑏,𝑚
, the sequence

Θ
𝑁,𝑏

satisfies the LDPonPN𝑏 ,𝑐
with rate function𝑅(𝜃 | 𝜌

𝑏,𝛼𝑏(𝑐)
)

in the following sense.

(a) 𝑅(𝜃 | 𝜌
𝑏,𝛼𝑏(𝑐)

)mapsPN𝑏 ,𝑐
into [0,∞] and has compact

level sets inPN𝑏 ,𝑐
; that is, for any𝑀 < ∞ the set {𝜃 ∈

PN𝑏 ,𝑐
: 𝑅(𝜃 | 𝜌

𝑏,𝛼𝑏(𝑐)
) ≤ 𝑀} is compact.

(b) For any compact subset 𝐹 of PN𝑏 ,𝑐
we have the large

deviation upper bound

lim sup
𝑁→∞

1

𝑁
log𝑃
𝑁,𝑏,𝑚

(Θ
𝑁,𝑏

∈ 𝐹) ≤ −𝑅 (𝐹 | 𝜌
𝑏,𝛼𝑏(𝑐)

) . (8)

(c) For any closed subset𝐹 ofPN𝑏 ,𝑐
, let𝐹 denote the closure

of 𝐹 in PN𝑏 ,[𝑏,𝑐]
. We have the large deviation upper

bound

lim sup
𝑁→∞

1

𝑁
log𝑃
𝑁,𝑏,𝑚

(Θ
𝑁,𝑏

∈ 𝐹) ≤ −𝑅 (𝐹 | 𝜌
𝑏,𝛼𝑏(𝑐)

) . (9)

(d) For any open subset 𝐺 of PN𝑏 ,𝑐
we have the large

deviation lower bound

lim inf
𝑁→∞

1

𝑁
log𝑃
𝑁,𝑏,𝑚

(Θ
𝑁,𝑏

∈ 𝐺) ≥ −𝑅 (𝐺 | 𝜌
𝑏,𝛼𝑏(𝑐)

) . (10)

The properties of 𝑅(𝜃 | 𝜌
𝑏,𝛼𝑏(𝑐)

) in part (a) are proved in
[33, Lem. 1.4.1] and part (a) of Theorem A.1. The basic step
in proving the large deviation bounds in parts (b)–(d) is the
local large deviation estimate in part (b) of Theorem 5. As
explained in Section 4, this local estimate is lifted to large
deviation limits involving open balls stated in Theorem 8,
which in turn are used to derive the bounds in parts (b)–(d)
of Theorem 1.

In the next theorem we use the large deviation upper
bound in part (c) of Theorem 1 to prove that the Pois-
son distribution 𝜌

𝑏,𝛼𝑏(𝑐)
is the equilibrium distribution

of the number-density measures Θ
𝑁,𝑏

. In this theorem
[𝐵
𝜋
(𝜌
𝑏,𝛼𝑏(𝑐)

, 𝜀)]
𝑐 denotes the complement inPN𝑏 ,𝑐

of the open



6 International Journal of Stochastic Analysis

ball 𝐵
𝜋
(𝜌
𝑏,𝛼𝑏(𝑐)

, 𝜀) = {] ∈ PN𝑏 ,𝑐
: 𝜋(𝜌

𝑏,𝛼𝑏(𝑐)
, ]) < 𝜀}.

[𝐵
𝜋
(𝜌
𝑏,𝛼𝑏(𝑐)

, 𝜀)]
𝑐 denotes the complement in PN𝑏 ,[𝑏,𝑐]

of the
open ball 𝐵

𝜋
(𝜌
𝑏,𝛼𝑏(𝑐)

, 𝜀) = {] ∈ PN𝑏 ,[𝑏,𝑐]
: 𝜋(𝜌
𝑏,𝛼𝑏(𝑐)

, ]) < 𝜀}.

Theorem 2. One assumes the hypotheses of Theorem 1. The
following results hold for any 𝜀 > 0.

(a) The quantity 𝑥
∗

= inf{𝑅(𝜃 | 𝜌
𝑏,𝛼𝑏(𝑐)

) : 𝜃 ∈

[𝐵
𝜋
(𝜌
𝑏,𝛼𝑏(𝑐)

, 𝜀)]
𝑐

} is strictly positive.
(b) For any number 𝑦 in the interval (0, 𝑥∗) and all

sufficiently large𝑁

𝑃
𝑁,𝑏,𝑚

(Θ
𝑁,𝑏

∈ [𝐵
𝜋
(𝜌
𝑏,𝛼𝑏(𝑐)

, 𝜀)]
𝑐

) ≤ exp [−𝑁𝑦]

󳨀→ 0 𝑎𝑠 𝑁 󳨀→ ∞.

(11)

This upper bound implies that, as 𝑁 → ∞, 𝑃
𝑁,𝑏,𝑚

(Θ
𝑁,𝑏

∈

𝐵
𝜋
(𝜌
𝑏,𝛼𝑏(𝑐)

, 𝜀)) → 1 and for any bounded, continuous function
𝑔mappingPN𝑏 ,𝑐

into R

lim
𝑁→∞

∫
Ω𝑁,𝑏,𝑚

𝑔 (Θ
𝑁,𝑏
) 𝑑𝑃
𝑁,𝑏,𝑚

= 𝑔 (𝜌
𝑏,𝛼𝑏(𝑐)

) . (12)

These two limits allow us to interpret the Poisson distribution
𝜌
𝑏,𝛼𝑏(𝑐)

as the equilibrium distribution of the number-density
measures Θ

𝑁,𝑏
with respect to 𝑃

𝑁,𝑏,𝑚
.

Proof. The starting point is the large deviation upper
bound in part (c) of Theorem 1 applied to the closed
set [𝐵

𝜋
(𝜌
𝑏,𝛼𝑏(𝑐)

, 𝜀)]
𝑐, which is a subset of [𝐵

𝜋
(𝜌
𝑏,𝛼𝑏(𝑐)

, 𝜀)]
𝑐.

We denote the closure of [𝐵
𝜋
(𝜌
𝑏,𝛼𝑏(𝑐)

, 𝜀)]
𝑐 in PN𝑏 ,[𝑏,𝑐]

by
[𝐵
𝜋
(𝜌
𝑏,𝛼𝑏(𝑐)

, 𝜀]
𝑐. Since [𝐵

𝜋
(𝜌
𝑏,𝛼𝑏(𝑐)

, 𝜀)]
𝑐

⊂ [𝐵
𝜋
(𝜌
𝑏,𝛼𝑏(𝑐)

, 𝜀)]
𝑐, the

large deviation upper bound in part (c) of Theorem 1 takes
the form

lim sup
𝑁→∞

1

𝑁
log𝑃
𝑁,𝑏,𝑚

(Θ
𝑁,𝑏

∈ [𝐵
𝜋
(𝜌
𝑏,𝛼𝑏(𝑐)

, 𝜀)]
𝑐

}

≤ −𝑅([𝐵
𝜋
(𝜌
𝑏,𝛼𝑏(𝑐)

, 𝜀)]
𝑐

| 𝜌
𝑏,𝛼𝑏(𝑐)

)

≤ −𝑅 ([𝐵
𝜋
(𝜌
𝑏,𝛼𝑏(𝑐)

, 𝜀)]
𝑐

| 𝜌
𝑏,𝛼𝑏(𝑐)

) .

(13)

We now prove part (a) of Theorem 2. Since 𝑅(𝜃 | 𝜌
𝑏,𝛼𝑏(𝑐)

) is
lower semicontinuous onPN𝑏 ,[𝑏,𝑐]

and has compact level sets
in PN𝑏 ,[𝑏,𝑐]

[33, Lem. 1.4.3(b)–(c)], it attains its infimum 𝑥
∗

on the closed set [𝐵
𝜋
(𝜌
𝑏,𝛼𝑏(𝑐)

, 𝜀)]
𝑐. If 𝑥∗ = 0, then there would

exist 𝜃 ∈ [𝐵
𝜋
(𝜌
𝑏,𝛼𝑏(𝑐)

, 𝜀)]
𝑐 such that 𝑅(𝜃 | 𝜌

𝑏,𝛼𝑏(𝑐)
) = 0. But on

PN𝑏 ,[𝑏,𝑐]
, 𝑅(𝜃 | 𝜌

𝑏,𝛼𝑏(𝑐)
) attains its infimum of 0 at the unique

measure 𝜃 = 𝜌
𝑏,𝛼𝑏(𝑐)

[33, Lem. 1.4.1]. This contradicts the fact
that 𝜌

𝑏,𝛼𝑏(𝑐)
∉ [𝐵
𝜋
(𝜌
𝑏,𝛼𝑏(𝑐)

, 𝜀)]
𝑐, completing the proof of part

(a). The inequality in part (b) is an immediate consequence
of part (a) and the large deviation upper bound (13). This
inequality yields the limit 𝑃

𝑁,𝑏,𝑚
(Θ
𝑁,𝑏

∈ 𝐵
𝜋
(𝜌
𝑏,𝛼𝑏(𝑐)

, 𝜀)) →

1, which in turn implies (12). The proof of Theorem 2 is
complete.

We now apply Theorem 2 to prove that 𝜌
𝑏,𝛼𝑏(𝑐)

is also the
equilibrium distribution of the random variables 𝐾

ℓ
, which

count the droplet sizes at the sites of Λ
𝑁
. This is the content

of the next corollary. A fact needed in the proof is thatΘ
𝑁,𝑏

is
the empirical measure of these random variables; that is, for
𝜔 ∈ Ω

𝑁,𝑏,𝑚
,Θ
𝑁,𝑏
(𝜔) assigns to subsets𝐴 ofN

𝑏
the probability

Θ
𝑁,𝑏
(𝜔, 𝐴) = 𝑁

−1

∑
𝑁

ℓ=1
𝛿
𝐾ℓ(𝜔)

(𝐴). This representation is valid
because bothΘ

𝑁,𝑏
(𝜔) and the empiricalmeasure assign to 𝑗 ∈

Λ
𝑁
the probability𝑁

𝑗
(𝜔)/𝑁.

Corollary 3. One assumes the hypotheses of Theorem 1. Then
for any site ℓ ∈ Λ

𝑁
and any 𝑗 ∈ N

𝑏

lim
𝑁→∞

𝑃
𝑁,𝑏,𝑚

(𝐾
ℓ
= 𝑗) = 𝜌

𝑏,𝛼𝑏(𝑐);𝑗

=
1

𝑍
𝑏
(𝛼
𝑏
(𝑐))

⋅
[𝛼
𝑏
(𝑐)]
𝑗

𝑗!
.

(14)

Proof. Since the random variables 𝐾
ℓ
are identically dis-

tributed, it suffices to prove the corollary for ℓ = 1. For fixed
𝑗 ∈ N
𝑏
, the limit (12) with 𝑔(𝜃) = 𝜃

𝑗
yields

lim
𝑁→∞

𝑃
𝑁,𝑏,𝑚

(𝐾
1
= 𝑗)

= lim
𝑁→∞

1

𝑁

𝑁

∑

ℓ=1

∫
Ω𝑁,𝑏,𝑚

1
𝑗
(𝐾
ℓ
) 𝑑𝑃
𝑁,𝑏,𝑚

= lim
𝑁→∞

∫
Ω𝑁,𝑏,𝑚

Θ
𝑁,𝑏;𝑗

𝑑𝑃
𝑁,𝑏,𝑚

= 𝜌
𝑏,𝛼𝑏(𝑐);𝑗

.

(15)

This completes the proof.

The last theorem in this section proves several properties
ofPN𝑏 ,𝑐

andPN𝑏 ,[𝑏,𝑐]
with respect to the Prohorovmetric that

are needed in the paper.

Theorem4. Fix a nonnegative integer 𝑏 and a real number 𝑐 ∈
(𝑏,∞).Themetric spacesPN𝑏 ,𝑐

andPN𝑏 ,[𝑏,𝑐]
have the following

properties.

(a) PN𝑏 ,𝑐
, the set of probability measures on N

𝑏
having

mean 𝑐, is a relatively compact, separable subset ofPN𝑏
.

However, PN𝑏 ,𝑐
is not a closed subset of PN𝑏

and thus
is not a compact subset or a complete metric space.

(b) PN𝑏 ,[𝑏,𝑐]
, the set of probability measures on N

𝑏
having

mean lying in the closed interval [𝑏, 𝑐], is the closure of
PN𝑏 ,𝑐

in PN𝑏
. PN𝑏 ,[𝑏,𝑐]

is a compact, separable subset
ofPN𝑏

.

Proof. (a) For 𝜉 ∈ N satisfying 𝜉 ≥ 𝑏 let Ψ
𝜉
denote the

compact subset {𝑏, 𝑏 + 1, . . . , 𝜉} of N
𝑏
, and let [Ψ

𝜉
]
𝑐 denote

its complement. For any 𝜃 ∈ PN𝑏 ,𝑐

𝑐 = ∑

𝑗∈N𝑏

𝑗𝜃
𝑗
≥ ∑

𝑗≥𝜉+1

𝑗𝜃
𝑗
≥ 𝜉 ∑

𝑗≥𝜉+1

𝜃
𝑗
= 𝜉𝜃 ([Ψ

𝜉
]
𝑐

) . (16)

It follows thatPN𝑏 ,𝑐
is tight; that is, for any 𝜀 > 0 there exists

𝜉 ∈ N such that 𝜃([Ψ
𝜉
]
𝑐

) < 𝜀 for all 𝜃 ∈ PN𝑏 ,𝑐
. Prohorov’s

theorem implies that PN𝑏 ,𝑐
is relatively compact [32, Thm.

3.2.2]. The separability ofPN𝑏 ,𝑐
is proved in Corollary B.2 in

[7].
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We now prove thatPN𝑏 ,𝑐
is not a closed subset ofPN𝑏

by
exhibiting a sequence 𝜃(𝑛) ∈ PN𝑏 ,𝑐

having a weak limit that
does not lie inPN𝑏 ,𝑐

. Let 𝜃 be any measure inPN𝑏
with mean

𝛽 ∈ [𝑏, 𝑐); thus 𝜃 ∉ PN𝑏 ,𝑐
. The sequence

𝜃
(𝑛)

=
𝑛 − 𝑐

𝑛 − 𝛽
𝜃 +

𝑐 − 𝛽

𝑛 − 𝛽
𝛿
𝑛

for 𝑛 ∈ N, 𝑛 > 𝑐 (17)

has the property that 𝜃(𝑛) ∈ PN𝑏 ,𝑐
and that 𝜃(𝑛) ⇒ 𝜃 ∉ PN𝑏 ,𝑐

.
This completes the proof of part (a).

(b) Since PN𝑏 ,𝑐
is a separable subset of PN𝑏

and PN𝑏 ,𝑐

is dense in PN𝑏 ,[𝑏,𝑐]
, it follows that PN𝑏 ,[𝑏,𝑐]

is separable. We
prove thatPN𝑏 ,[𝑏,𝑐]

is the closure ofPN𝑏 ,𝑐
inPN𝑏

. Let 𝜃(𝑛) be
a sequence in PN𝑏 ,𝑐

converging weakly to 𝜃 ∈ PN𝑏
. Since

𝜃
(𝑛)

⇒ 𝜃 implies that 𝜃(𝑛)
𝑗

→ 𝜃
𝑗
for each 𝑗 ∈ N

𝑏
, Fatou’s

lemma implies that 𝑐 = lim inf
𝑛→∞

⟨𝜃
(𝑛)

⟩ ≥ ⟨𝜃⟩, where ⟨𝜃(𝑛)⟩
and ⟨𝜃⟩ denote themeans of 𝜃(𝑛) and 𝜃. Since for any 𝜃 ∈ PN𝑏
we have ⟨𝜃⟩ ≥ 𝑏, it follows that 𝑐 ≥ ⟨𝜃⟩ ≥ 𝑏. This shows
that the closure of PN𝑏 ,𝑐

in PN𝑏
is a subset of PN𝑏 ,[𝑏,𝑐]

. We
next prove that PN𝑏 ,[𝑏,𝑐]

is a subset of the closure of PN𝑏 ,𝑐

in PN𝑏
by showing that for any 𝜃 ∈ PN𝑏 ,[𝑏,𝑐]

there exists a
sequence 𝜃(𝑛) ∈ PN𝑏 ,𝑐

such that 𝜃(𝑛) ⇒ 𝜃. If ⟨𝜃⟩ = 𝑐, then
we choose 𝜃(𝑛) = 𝜃 for all 𝑛 ∈ N. If ⟨𝜃⟩ = 𝛽 ∈ [𝑏, 𝑐), then
we use the sequence 𝜃(𝑛) in (17), which converges weakly to
𝜃. We conclude that 𝜃 lies in the closure of PN𝑏 ,𝑐

and thus
that PN𝑏 ,[𝑏,𝑐]

is a subset of the closure of PN𝑏 ,𝑐
in PN𝑏

. This
completes the proof of part (b). The proof of Theorem 4 is
done.

In the next section we present the local large deviation
estimate that will be used in Section 4 to prove the LDP for
Θ
𝑁,𝑏

in Theorem 1.

3. Local Large Deviation Estimate
Yielding Theorem 1

Themain result needed to prove the LDP inTheorem 1 is the
local large deviation estimate stated in part (b) ofTheorem 5.
The first step is to introduce a set 𝐴

𝑁,𝑏,𝑚
that plays a central

role in this paper. Fix a nonnegative integer 𝑏 and a rational
number 𝑐 ∈ (𝑏,∞). Given𝑁 ∈ N define𝐾 = 𝑁𝑐 and let𝑚 be
the function appearing in the definition of Ω

𝑁,𝑏,𝑚
in (3) and

satisfying 𝑚(𝑁) → ∞ and 𝑚(𝑁)2/𝑁 → 0 as 𝑁 → ∞.
DefineN

𝑏
= {𝑛 ∈ Z : 𝑛 ≥ 𝑏}; thusN

0
is the set of nonnegative

integers. Let ] be a sequence {]
𝑗
, 𝑗 ∈ N

𝑏
} for which each ]

𝑗
∈

N
0
; thus ] ∈ N

N𝑏
0
. We define 𝐴

𝑁,𝑏,𝑚
to be the set of ] ∈ N

N𝑏
0

satisfying

∑

𝑗∈N𝑏

]
𝑗
= 𝑁,

∑

𝑗∈N𝑏

𝑗]
𝑗
= 𝐾,

|]|
+
≤ 𝑚 = 𝑚 (𝑁) ,

(18)

where |]|
+
= card{𝑗 ∈ N

𝑏
: ]
𝑗
≥ 1}. Because ]

𝑗
∈ N
0
, the two

sums involve only finitely many terms.

For 𝜔 ∈ Ω
𝑁,𝑏,𝑚

the componentsΘ
𝑁,𝑏;𝑗

(𝜔) of the number-
density measure defined in (5) are 𝑁

𝑗
(𝜔)/𝑁 for 𝑗 ∈ N

𝑏
,

where 𝑁
𝑗
(𝜔) denotes the number of sites in Λ

𝑁
containing

𝑗 particles in the configuration 𝜔. We denote by 𝑁(𝜔) the
sequence {𝑁

𝑗
(𝜔), 𝑗 ∈ N

𝑏
}. By definition, for every 𝜔 ∈ Ω

𝑁,𝑏,𝑚

each site ℓ ∈ Λ
𝑁

is occupied by at least 𝑏 particles, and
|𝑁(𝜔)|

+
≤ 𝑚 = 𝑚(𝑁). It follows that 𝐴

𝑁,𝑏,𝑚
is the range

of 𝑁(𝜔) for 𝜔 ∈ Ω
𝑁,𝑏,𝑚

; the two sums involving ]
𝑗
in (18)

correspond to the two sums involving𝑁
𝑗
(𝜔) in (1).

Since the range of 𝑁(𝜔) is 𝐴
𝑁,𝑏,𝑚

, for 𝜔 ∈ Ω
𝑁,𝑏,𝑚

the
range of Θ

𝑁,𝑏
(𝜔) is the set of probability measures 𝜃

𝑁,𝑏,]
whose components for 𝑗 ∈ N

𝑏
have the form 𝜃

𝑁,𝑏,];𝑗 = ]
𝑗
/𝑁

for ] ∈ 𝐴
𝑁,𝑏,𝑚

. By (18) 𝜃
𝑁,𝑏,] takes values in PN𝑏 ,𝑐

, the set of
probability measures onN

𝑏
having mean 𝑐. It follows that the

set

𝐵
𝑁,𝑏,𝑚

= {𝜃 ∈PN𝑏 ,𝑐
: 𝜃
𝑗
=
]
𝑗

𝑁
for 𝑗 ∈ N

𝑏
for some ]

∈ 𝐴
𝑁,𝑏,𝑚

}

(19)

is the range of Θ
𝑁,𝑏
(𝜔) for 𝜔 ∈ Ω

𝑁,𝑏,𝑚
.

In part (b) of the next theorem we state the local large
deviation estimate for the event {Θ

𝑁,𝑏
= 𝜃
𝑁,𝑏,]}. In part (a)

we introduce the Poisson distribution 𝜌
𝑏,𝛼𝑏(𝑐)

that appears in
the local estimate; 𝜌

𝑏,𝛼𝑏(𝑐)
is defined in terms of a parameter

𝛼
𝑏
(𝑐) guaranteeing that it has mean 𝑐.
In part (a) of Theorem C.2 in [7] we give the straightfor-

ward proof of the existence of 𝛼
𝑏
(𝑐) for 𝑏 = 1. The proof of

the existence of 𝛼
𝑏
(𝑐) for general 𝑏 ∈ N is much more subtle

than the proof for 𝑏 = 1. The proof for general 𝑏 ∈ N is given
inTheorem A.2 in the present paper.

Theorem 5. (a) Fix a nonnegative integer 𝑏 and a real number
𝑐 ∈ (𝑏,∞). For 𝛼 ∈ (0,∞) let 𝜌

𝑏,𝛼
be themeasure onN

𝑏
having

components 𝜌
𝑏,𝛼;𝑗

= [𝑍
𝑏
(𝛼)]
−1

⋅ 𝛼
𝑗

/𝑗! for 𝑗 ∈ N
𝑏
, where 𝑍

0,𝛼
=

𝑒
𝛼, and, for 𝑏 ∈ N, 𝑍

𝑏
(𝛼) = 𝑒

𝛼

− ∑
𝑏−1

𝑗=0
𝛼
𝑗

/𝑗!. Then there exists
a unique value 𝛼

𝑏
(𝑐) ∈ (0,∞) such that 𝜌

𝑏,𝛼𝑏(𝑐)
lies in the set

PN𝑏 ,𝑐
of probability measures on N

𝑏
having mean 𝑐. If 𝑏 = 0,

then 𝛼
0
(𝑐) = 𝑐. If 𝑏 ∈ N, then 𝛼

𝑏
(𝑐) is the unique solution in

(0,∞) of 𝛼𝑍
𝑏−1
(𝛼)/𝑍

𝑏
(𝛼) = 𝑐.

(b) Fix a nonnegative integer 𝑏 and a rational number 𝑐 ∈
(𝑏,∞). Let𝑚 be the function𝑚(𝑁) appearing in the definition
of Ω
𝑁,𝑏,𝑚

in (3) and satisfying𝑚(𝑁) → ∞ and𝑚(𝑁)2/𝑁 →

0 as𝑁 → ∞. For any ] ∈ 𝐴
𝑁,𝑏,𝑚

we define 𝜃
𝑁,𝑏,] ∈ PN𝑏 ,𝑐

to
have the components 𝜃

𝑁,𝑏,];𝑗 = ]
𝑗
/𝑁 for 𝑗 ∈ N

𝑏
. Then

1

𝑁
log𝑃
𝑁,𝑏,𝑚

(Θ
𝑁,𝑏

= 𝜃
𝑁,𝑏,])

= −𝑅 (𝜃
𝑁,𝑏,] | 𝜌𝑏,𝛼𝑏(𝑐)) + 𝜀𝑁 (]) .

(20)

𝑅(𝜃
𝑁,𝑏,] | 𝜌𝑏,𝛼𝑏(𝑐)) is finite because it involves only finitely many

components of 𝜃
𝑁,𝑏,], and 𝜀𝑁(]) → 0 uniformly for ] ∈ 𝐴

𝑁,𝑏,𝑚

as𝑁 → ∞.

We now prove the local large deviation estimate in part
(b) of Theorem 5. This proof is based on a combinato-
rial argument that is reminiscent of and is as natural as
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the combinatorial argument used to prove Sanov’s theorem
for empirical measures defined in terms of i.i.d. random
variables having a finite state space [1, §3]. Part (b) of
Theorem 5 is proved by analyzing the asymptotic behavior
of the product of two multinomial coefficients that we now
introduce.

Given ] ∈ 𝐴
𝑁,𝑏,𝑚

, our goal is to estimate the probability
𝑃
𝑁,𝑏,𝑚

(Θ
𝑁,𝑏

= 𝜃
𝑁,𝑏,]), where 𝜃𝑁,𝑏,] has the components

𝜃
𝑁,𝑏,];𝑗 = ]

𝑗
/𝑁 for 𝑗 ∈ N

𝑏
. A basic observation is that

{𝜔 ∈ Ω
𝑁,𝑏,𝑚

: Θ
𝑁,𝑏
(𝜔) = 𝜃

𝑁,𝑏,]} coincides with

Δ
𝑁,𝑏,𝑚;] = {𝜔 ∈ Ω𝑁,𝑏,𝑚 : 𝑁𝑗 (𝜔) = ]

𝑗
for 𝑗 ∈ N

𝑏
} . (21)

It follows that

𝑃
𝑁,𝑏,𝑚

(Θ
𝑁,𝑏

= 𝜃
𝑁,𝑏,]) = 𝑃𝑁,𝑏,𝑚 (Δ𝑁,𝑏,𝑚;])

=
1

card (Ω
𝑁,𝑏,𝑚

)
⋅ card (Δ

𝑁,𝑏,𝑚;]) .
(22)

Our first task is to determine the asymptotic behavior of
card(Δ

𝑁,𝑏,𝑚;]). In determining the asymptotic behavior of
card(Ω

𝑁,𝑏,𝑚
), we will use the fact that Ω

𝑁,𝑏,𝑚
can be written

as the disjoint union

Ω
𝑁,𝑏,𝑚

= ⋃

]∈𝐴𝑁,𝑏,𝑚

Δ
𝑁,𝑏,𝑚;]. (23)

Let ] ∈ 𝐴
𝑁,𝑏,𝑚

be given. We start by expressing the
cardinality of card(Δ

𝑁,𝑏,𝑚;]) as a product of two multinomial
coefficients. For each configuration 𝜔 ∈ Δ

𝑁,𝑏,𝑚;], 𝐾 particles
are distributed onto the 𝑁 sites of the lattice Λ

𝑁
with 𝑗

particles going onto ]
𝑗
sites for 𝑗 ∈ N

𝑏
. We carry this out in

two stages. In stage one 𝐾 particles are placed into 𝑁 bins,
]
𝑗
of which have 𝑗 particles for 𝑗 ∈ N

𝑏
. The number of ways

of making this placement equals the multinomial coefficient
𝐾!/∏

𝑗∈N𝑏
(𝑗!)

]𝑗 . This multinomial coefficient is well-defined
since ∑

𝑗∈N𝑏
𝑗]
𝑗
= 𝐾. Given this placement of 𝐾 particles

into 𝑁 bins, the number of ways of moving the particles
from the bins onto the sites 1, 2, . . . , 𝑁 of the lattice Λ

𝑁

equals the multinomial coefficient𝑁!/∏
𝑗∈N𝑏

]
𝑗
!. This second

multinomial coefficient is well-defined since ∑
𝑗∈N𝑏

]
𝑗
= 𝑁.

We conclude that the cardinality of Δ
𝑁,𝑏,𝑚;] is given by the

product of these two multinomial coefficients:

card (Δ
𝑁,𝑏,𝑚;]) =

𝑁!

∏
𝑗∈N𝑏

]
𝑗
!
⋅

𝐾!

∏
𝑗∈N𝑏

(𝑗!)
]𝑗 . (24)

Since |]|
+
≤ 𝑚, at most 𝑚 of the components ]

𝑗
are positive.

Such a product of multinomial coefficients is well known in
combinatorial analysis [8,Thm. 2.10]. A related version of this
formula is derived in Example III.23 of [34]. See also [35, p.
115] and formula (2) in [36, p. 36].

The next two steps in the proof of the local estimate given
in part (b) of Theorem 5 are to prove the asymptotic formula
for card(Δ

𝑁,𝑏,𝑚;]) in Lemma 6 and the asymptotic formula for
card(Ω

𝑁,𝑏,𝑚
) in part (b) of Lemma 7. The proof of Lemma 6

is greatly simplified by a substitution in line 4 of (34). This
substitution involves a parameter 𝛼 ∈ (0,∞), which, we
emphasize, is arbitrary in this lemma.The substitution in line

4 of (34) allows us to express the asymptotic behavior of both
card(Δ

𝑁,𝑏,𝑚;]) in Lemma 6 and card(Ω
𝑁,𝑏,𝑚

) in Lemma 7
directly in terms of the relative entropy 𝑅(𝜃

𝑁,𝑏,] | 𝜌𝑏,𝛼), where
𝜌
𝑏,𝛼

is the probability measure on N
𝑏
having the components

defined in part (a) of Theorem 5. One of the major issues in
the proof of part (b) ofTheorem 5 is to show that the arbitrary
parameter 𝛼 appearing in Lemmas 6 and 7 must take the
value 𝛼

𝑏
(𝑐), which is the unique value of 𝛼 guaranteeing that

𝜌
𝑏,𝛼
∈ PN𝑏 ,𝑐

[Theorem 5(a)].We show that𝛼must equal 𝛼
𝑏
(𝑐)

after the statement of Lemma 7.

Lemma 6. Fix a nonnegative integer 𝑏 and a rational number
𝑐 ∈ (𝑏,∞). Let 𝛼 be any real number in (0,∞), and let 𝑚 be
the function 𝑚(𝑁) appearing in the definition of Ω

𝑁,𝑏,𝑚
in (3)

and satisfying𝑚(𝑁) → ∞ and𝑚(𝑁)2/𝑁 → 0 as𝑁 → ∞.
We define

𝑓 (𝛼, 𝑏, 𝑐, 𝐾) = log𝑍
𝑏
(𝛼) − 𝑐 log𝛼 + 𝑐 log𝐾 − 𝑐. (25)

For any ] ∈ 𝐴
𝑁,𝑏,𝑚

, we define 𝜃
𝑁,𝑏,] ∈ PN𝑏 ,𝑐

to have the
components 𝜃

𝑁,𝑏,];𝑗 = ]
𝑗
/𝑁 for 𝑗 ∈ N

𝑏
. Then

1

𝑁
log card (Δ

𝑁,𝑏,𝑚;])

= −𝑅 (𝜃
𝑁,𝑏,] | 𝜌𝑏,𝛼) + 𝑓 (𝛼, 𝑏, 𝑐, 𝐾) + 𝜁𝑁 (]) .

(26)

The quantity 𝜁
𝑁
(]) → 0 uniformly for ] ∈ 𝐴

𝑁,𝑏,𝑚
as 𝑁 →

∞.

Proof. The proof is based on a weak form of Stirling’s
approximation, which states that, for all 𝑁 ∈ N satisfying
𝑁 ≥ 2 and for all 𝑛 ∈ N satisfying 1 ≤ 𝑛 ≤ 𝑁, 1 ≤

log(𝑛!) − (𝑛 log 𝑛 − 𝑛) ≤ 2 log𝑁. We summarize the last
formula by writing

log (𝑛!) = 𝑛 log 𝑛 − 𝑛 +O (log𝑁) ,

∀𝑁 ∈ N, 𝑁 ≥ 2, ∀𝑛 ∈ {1, 2, . . . , 𝑁} .

(27)

The term denoted by O(log𝑁) satisfies 1 ≤ O(log𝑁) ≤

2 log𝑁.
To simplify the notation, we rewrite (24) in the form

card(Δ
𝑁,𝑏,𝑚;]) = 𝑀

1
(𝑁, ]) ⋅ 𝑀

2
(𝐾, ]), where 𝑀

1
(𝑁, ])

denotes the first multinomial coefficient on the right side of
(24), and 𝑀

2
(𝐾, ]) denotes the second multinomial coeffi-

cient on the right side of (24). We have

1

𝑁
log card (Δ

𝑁,𝑏,𝑚;])

=
1

𝑁
log𝑀

1
(𝑁, ]) +

1

𝑁
log𝑀

2
(𝐾, ]) .

(28)

The asymptotic behavior of the first term on the right side
of the last display is easily calculated. Since ] ∈ 𝐴

𝑁,𝑏,𝑚
, there

are |]|
+
∈ {1, 2, . . . , 𝑚} positive components ]

𝑗
. Because of

this restriction on the number |]|
+
of positive components

of ], we are able to control the error in line 3 of (29). We
define Ψ

𝑁
(]) = {𝑗 ∈ N

𝑏
: ]
𝑗
≥ 1}. For each 𝑗 ∈ Ψ

𝑁
(]),

since the components ]
𝑗
satisfy 1 ≤ ]

𝑗
≤ 𝑁, we have
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log(]
𝑗
!) = ]

𝑗
log ]
𝑗
− ]
𝑗
+ O(log𝑁) for all 𝑁 ≥ 2. Using the

fact that ∑
𝑗∈Ψ𝑁(]) ]𝑗 = 𝑁, we obtain

1

𝑁
log𝑀

1
(𝑁, ]) =

1

𝑁
log (𝑁!) − 1

𝑁
∑

𝑗∈Ψ𝑁(])
log (]

𝑗
!)

=
1

𝑁
(𝑁 log𝑁 −𝑁 +O (log𝑁))

−
1

𝑁
∑

𝑗∈Ψ𝑁(])
(]
𝑗
log ]
𝑗
− ]
𝑗
+O (log𝑁))

= − ∑

𝑗∈N𝑏

𝜃
𝑁,𝑏,];𝑗 log 𝜃𝑁,𝑏,];𝑗 + 𝜁

(1)

𝑁
− 𝜁
(2)

𝑁
(]) ,

(29)

where 𝜁(1)
𝑁

= [O(log𝑁)]/𝑁 → 0 as 𝑁 → ∞ and 𝜁(2)
𝑁
(]) =

𝑁
−1

∑
𝑗∈Ψ𝑁(])O(log𝑁). By the inequality noted after (27) and

the fact that |]|
+
≤ 𝑚

0 ≤ max
]∈𝐴𝑁,𝑏,𝑚

𝜁
(2)

𝑁
(]) ≤ max

]∈𝐴𝑁,𝑏,𝑚

2

𝑁
∑

𝑗∈Ψ𝑁(])
log𝑁

≤
2𝑚 log𝑁

𝑁
.

(30)

Since (𝑚 log𝑁)/𝑁 → 0 as 𝑁 → ∞, we conclude that
𝜁
(2)

𝑁
(]) → 0 uniformly for ] ∈ 𝐴

𝑁,𝑏,𝑚
as𝑁 → ∞.

We now study the asymptotic behavior of the second term
on the right side of (28). Since𝐾 = 𝑁𝑐, we obtain for all𝐾 ≥ 2

1

𝑁
log𝑀

2
(𝐾, ]) =

1

𝑁
log (𝐾!) − 1

𝑁
∑

𝑗∈N𝑏

]
𝑗
log (𝑗!)

= 𝑐 log𝐾 − 𝑐 − ∑

𝑗∈N𝑏

𝜃
𝑁,𝑏,];𝑗 log (𝑗!)

+ 𝜁
(3)

𝑁
,

(31)

where 0 ≤ 𝜁(3)
𝑁

= O(log𝐾)/𝑁 = O(log𝑁)/𝑁 → 0 as𝑁 →

∞. The weak form of Stirling’s formula is used to rewrite the
term log(𝐾!) in the last display, but not to rewrite the terms
log(𝑗!), which we leave untouched.

Substituting (29) and (31) into (28), we obtain

1

𝑁
log card (Δ

𝑁,𝑏,𝑚;])

=
1

𝑁
log𝑀

1
(𝑁, ]) +

1

𝑁
log𝑀

2
(𝐾, ])

= − ∑

𝑗∈N𝑏

𝜃
𝑁,𝑏,];𝑗 log (𝜃𝑁,𝑏,];𝑗𝑗!) + 𝑐 log𝐾 − 𝑐

+ 𝜁
𝑁
(]) .

(32)

In this formula 𝜁
𝑁
(]) = 𝜁(1)

𝑁
− 𝜁
(2)

𝑁
(]) + 𝜁(3)

𝑁
. As𝑁 → ∞,

max
]∈𝐴𝑁,𝑏,𝑚

󵄨󵄨󵄨󵄨𝜁𝑁 (])
󵄨󵄨󵄨󵄨 ≤ 𝜁
(1)

𝑁
+ max

]∈𝐴𝑁,𝑏,𝑚
𝜁
(2)

𝑁
(]) + 𝜁(3)

𝑁
󳨀→ 0. (33)

We conclude that 𝜁
𝑁
(]) → 0 uniformly for ] ∈ 𝐴

𝑁,𝑏,𝑚
as

𝑁 → ∞.

Now comes the key step, the purpose of which is to
express the sum in the next-to-last line of (32) as the relative
entropy 𝑅(𝜃

𝑁,𝑏,];𝑗 | 𝜌𝑏,𝛼), where 𝛼 ∈ (0,∞) is arbitrary. To
express the sum in the next-to-last line of (32) as 𝑅(𝜃

𝑁,𝑏,] |

𝜌
𝑏,𝛼
), we rewrite the sumas shown in line 4 of the next display:

1

𝑁
log card (Δ

𝑁,𝑏,𝑚;])

= − ∑

𝑗∈N𝑏

𝜃
𝑁,𝑏,];𝑗 log (𝜃𝑁,𝑏,];𝑗𝑗!) + 𝑐 log𝐾 − 𝑐

+ 𝜁
𝑁
(])

= − ∑

𝑗∈N𝑏

𝜃
𝑁,𝑏,];𝑗 log(

𝜃
𝑁,𝑏,];𝑗

𝛼𝑗/ (𝑍
𝑏
(𝛼) ⋅ 𝑗!)

⋅
𝛼
𝑗

𝑍
𝑏
(𝛼)

)

+ 𝑐 log𝐾 − 𝑐 + 𝜁
𝑁
(])

= −𝑅 (𝜃
𝑁,𝑏,] | 𝜌𝑏,𝛼) + log𝑍

𝑏
(𝛼) − 𝑐 log𝛼 + 𝑐 log𝐾

− 𝑐 + 𝜁
𝑁
(])

= −𝑅 (𝜃
𝑁,𝑏,] | 𝜌𝑏,𝛼) + 𝑓 (𝛼, 𝑏, 𝑐, 𝐾) + 𝜁𝑁 (]) .

(34)

The facts that ∑
𝑗∈N𝑏

𝜃
𝑁,𝑏,];𝑗 = 1 and ∑

𝑗∈N𝑏
𝑗𝜃
𝑁,𝑏,];𝑗 = 𝑐 are

used to derive the next-to-last equality.The proof of Lemma 6
is complete.

The next step in the proof of the local large deviation
estimate in part (b) of Theorem 5 is to prove the asymptotic
formula for card(Ω

𝑁,𝑏,𝑚
) stated in part (b) of the next lemma.

The proof of this lemma uses Lemma 6 in a fundamental way.
After the statement of this lemmawe showhow to apply it and
Lemma 6 to prove part (b) of Theorem 5.

Lemma 7. Fix a nonnegative integer 𝑏 and a rational number
𝑐 ∈ (𝑏,∞). The following conclusions hold:

(a) lim
𝑁→∞

𝑁
−1 log card(𝐴

𝑁,𝑏,𝑚
) = 0.

(b) Let 𝛼 be the positive real number in Lemma 6, and let
𝑚 be the function 𝑚(𝑁) appearing in the definition
of Ω
𝑁,𝑏,𝑚

in (3) and satisfying 𝑚(𝑁) → ∞ and
𝑚(𝑁)

2

/𝑁 → 0 as𝑁 → ∞.We define𝑓(𝛼, 𝑏, 𝑐, 𝐾) =
log𝑍
𝑏
(𝛼)−𝑐 log𝛼+𝑐 log𝐾−𝑐.Then𝑅(𝜃 | 𝜌

𝑏,𝛼
) attains

its infimum over 𝜃 ∈ PN𝑏 ,𝑐
, and

1

𝑁
log card (Ω

𝑁,𝑏,𝑚
) = 𝑓 (𝛼, 𝑏, 𝑐, 𝐾)

− min
𝜃∈PN𝑏,𝑐

𝑅 (𝜃 | 𝜌
𝑏,𝛼
) + 𝜂
𝑁
.

(35)

The quantity 𝜂
𝑁
→ 0 as𝑁 → ∞.

Before proving Lemma 7, we derive the local large devia-
tion estimate in part (b) of Theorem 5 by applying Lemmas
6 and 7. An integral part of the proof is to show how the
arbitrary value of 𝛼 ∈ (0,∞) appearing in these lemmas is
replaced by the specific value 𝛼

𝑏
(𝑐) appearing in Theorem 5.

As in the statement of part (b) of Theorem 5, let ] be any
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vector in 𝐴
𝑁,𝑏,𝑚

and define 𝜃
𝑁,𝑏,] ∈ PN𝑏 ,𝑐

to have the
components 𝜃

𝑁,𝑏,];𝑗 = ]
𝑗
/𝑁 for 𝑗 ∈ N

𝑏
. By (22)

1

𝑁
log𝑃
𝑁,𝑏,𝑚

(Θ
𝑁,𝑏

= 𝜃
𝑁,𝑏,])

=
1

𝑁
log card (Δ

𝑁,𝑏,𝑚;]) −
1

𝑁
log card (Ω

𝑁,𝑏,𝑚
) .

(36)

Substituting the asymptotic formula for log card(Δ
𝑁,𝑏,𝑚;])

derived in Lemma 6 and the asymptotic formula for
log card(Ω

𝑁,𝑏,𝑚
) given in part (b) of Lemma 7 yields

1

𝑁
log𝑃
𝑁,𝑏,𝑚

(Θ
𝑁,𝑏

= 𝜃
𝑁,𝑏,])

= −𝑅 (𝜃
𝑁,𝑏,] | 𝜌𝑏,𝛼) + min

𝜃∈PN𝑏,𝑐

𝑅 (𝜃 | 𝜌
𝑏,𝛼
) + 𝜀
𝑁
(]) .

(37)

The error term 𝜀
𝑁
(]) equals 𝜁

𝑁
(]) − 𝜂

𝑁
; 𝜁
𝑁
(]) is the error

term in Lemma 6, and 𝜂
𝑁
is the error term in Lemma 7. As

𝑁 → ∞, 𝜁
𝑁
(]) → 0 uniformly for ] ∈ 𝐴

𝑁,𝑏,𝑚
, and 𝜂

𝑁
→

0. It follows that 𝜀
𝑁
(]) → 0 uniformly for ] ∈ 𝐴

𝑁,𝑏,𝑚
as

𝑁 → ∞.
We now consider the first two terms on the right side of

(37). By part (b) ofTheorem A.1 applied to 𝜃 = 𝜃
𝑁,𝑏,] ∈ PN𝑏 ,𝑐

,
for any 𝛼 ∈ (0,∞)

𝑅 (𝜃
𝑁,𝑏,] | 𝜌𝑏,𝛼) − min

𝜃∈PN𝑏,𝑐

𝑅 (𝜃 | 𝜌
𝑏,𝛼
)

= 𝑅 (𝜃
𝑁,𝑏,] | 𝜌𝑏,𝛼𝑏(𝑐)) .

(38)

With this step we have succeeded in replacing the relative
entropy 𝑅(𝜃

𝑁,𝑏,] | 𝜌
𝑏,𝛼
) with respect to 𝜌

𝑏,𝛼
, which appears

in Lemma 6, by the relative entropy 𝑅(𝜃
𝑁,𝑏,] | 𝜌𝑏,𝛼𝑏(𝑐)) with

respect to 𝜌
𝑏,𝛼𝑏(𝑐)

, which appears in Theorem 5. Substituting
the last equation into (37) gives

1

𝑁
log𝑃
𝑁,𝑏,𝑚

(Θ
𝑁,𝑏

= 𝜃
𝑁,𝑏,])

= −𝑅 (𝜃
𝑁,𝑏,] | 𝜌𝑏,𝛼𝑏(𝑐)) + 𝜀𝑁 (]) ,

(39)

where 𝜀
𝑁
(]) → 0 uniformly for ] ∈ 𝐴

𝑁,𝑏,𝑚
as𝑁 → ∞.This

is the conclusion of part (b) of Theorem 5.
We now complete the proof of part (b) of Theorem 5 by

proving Lemma 7.

Proof of Lemma 7. (a) We write 𝐴
𝑁,𝑏,𝑚

⊂ ⋃
𝑚

𝑘=1
{] ∈ N𝑁

0
:

∑
𝑗∈N𝑏

]
𝑗
= 𝑁, |]|

+
= 𝑘}. By [8, Cor. 2.5] the number

of elements in the set indexed by 𝑘 equals the binomial
coefficient 𝐶(𝑁 − 1, 𝑘 − 1). Since by assumption 𝑚/𝑁 →

0 as 𝑁 → ∞, for all sufficiently large 𝑁, the quantities
𝐶(𝑁 − 1, 𝑘 − 1) are increasing and are maximal when 𝑘 = 𝑚.
Since 𝐶(𝑁 − 1, 𝑘 − 1) ≤ 𝐶(𝑁, 𝑘), it follows that

card (𝐴
𝑁,𝑏,𝑚

) ≤

𝑚

∑

𝑘=1

𝐶 (𝑁, 𝑘) ≤ 𝑚𝐶 (𝑁,𝑚)

= 𝑚
𝑁!

𝑚! (𝑁 − 𝑚)!
.

(40)

An application of the weak form of Stirling’s formula yields
for all𝑚 ≥ 2 and all𝑁 ≥ 𝑚 + 2

0 ≤
1

𝑁
log card (𝐴

𝑁,𝑏,𝑚
)

≤
log𝑚
𝑁

−
𝑚

𝑁
log 𝑚

𝑁
− (1 −

𝑚

𝑁
) log(1 − 𝑚

𝑁
)

+
O (log𝑁)

𝑁
.

(41)

Since 𝑚/𝑁 → 0 as 𝑁 → ∞, we conclude that 0 ≤

𝑁
−1 log card(𝐴

𝑁,𝑏,𝑚
) → 0 as 𝑁 → ∞. This completes the

proof of part (a).
(b) The starting point is (23), which states that Ω

𝑁,𝑏,𝑚
=

⋃]∈𝐴𝑁,𝑏,𝑚 Δ𝑁,𝑏,𝑚;]. For distinct ] ∈ 𝐴𝑁,𝑏,𝑚 the sets Δ𝑁,𝑏,𝑚;] are
disjoint. Hence

1

𝑁
log card (Ω

𝑁,𝑏,𝑚
) =

1

𝑁
log ∑

]∈𝐴𝑁,𝑏,𝑚

card (Δ
𝑁,𝑏,𝑚;])

=
1

𝑁
log( max

]∈𝐴𝑁,𝑏,𝑚
card (Δ

𝑁,𝑏,𝑚;])) + 𝛿𝑁,

(42)

where
0 < 𝛿
𝑁

=
1

𝑁
log( ∑

]∈𝐴𝑁,𝑏,𝑚

card (Δ
𝑁,𝑏,𝑚;])

max]∈𝐴𝑁,𝑏,𝑚card (Δ𝑁,𝑏,𝑚;])
)

≤
1

𝑁
log card (𝐴

𝐾,𝑁,𝑚
) .

(43)

It follows from part (a) that 𝛿
𝑁
→ 0 as𝑁 → ∞.

We continue with the estimation of card(Ω
𝑁,𝑏,𝑚

). By
Lemma 6

− min
]∈𝐴𝑁,𝑏,𝑚

𝑅 (𝜃
𝑁,𝑏,] | 𝜌𝑏,𝛼) + 𝑓 (𝛼, 𝑏, 𝑐, 𝐾)

− max
]∈𝐴𝑁,𝑏,𝑚

󵄨󵄨󵄨󵄨𝜁𝑁 (])
󵄨󵄨󵄨󵄨

≤
1

𝑁
log( max

]∈𝐴𝑁,𝑏,𝑚
card (Δ

𝑁,𝑏,𝑚;]))

≤ − min
]∈𝐴𝑁,𝑏,𝑚

𝑅 (𝜃
𝑁,𝑏,] | 𝜌𝑏,𝛼) + 𝑓 (𝛼, 𝑏, 𝑐, 𝐾)

+ max
]∈𝐴𝑁,𝑏,𝑚

󵄨󵄨󵄨󵄨𝜁𝑁 (])
󵄨󵄨󵄨󵄨 .

(44)

As proved in Lemma 6, max]∈𝐴𝑁,𝑏,𝑚 |𝜁𝑁(])| → 0 as𝑁 → ∞.
Hence by (42)

− min
]∈𝐴𝑁,𝑏,𝑚

𝑅 (𝜃
𝑁,𝑏,] | 𝜌𝑏,𝛼) + 𝑓 (𝛼, 𝑏, 𝑐, 𝐾)

− max
]∈𝐴𝑁,𝑏,𝑚

󵄨󵄨󵄨󵄨𝜁𝑁 (])
󵄨󵄨󵄨󵄨 + 𝛿𝑁 ≤

1

𝑁
log card (Ω

𝑁,𝑏,𝑚
)

≤ − min
]∈𝐴𝑁,𝑏,𝑚

𝑅 (𝜃
𝑁,𝑏,] | 𝜌𝑏,𝛼) + 𝑓 (𝛼, 𝑏, 𝑐, 𝐾)

+ max
]∈𝐴𝑁,𝑏,𝑚

󵄨󵄨󵄨󵄨𝜁𝑁 (])
󵄨󵄨󵄨󵄨 + 𝛿𝑁.

(45)
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Under the assumption that𝑅(⋅ | 𝜌
𝑏,𝛼
) attains its infimum over

PN𝑏 ,𝑐
, we define

𝜂
𝑁
=
1

𝑁
log card (Ω

𝑁,𝑏,𝑚
) − 𝑓 (𝛼, 𝑏, 𝑐, 𝐾)

+ min
𝜃∈PN𝑏,𝑐

𝑅 (𝜃 | 𝜌
𝑏,𝛼
) .

(46)

In the last two paragraphs of this proof, we show that 𝜂
𝑁
→

0 as 𝑁 → ∞. Given this fact, the last equation yields the
asymptotic formula (35) in part (b).

We now prove that 𝜂
𝑁
→ 0 as𝑁 → ∞. To do this, we

use (45) to write

󵄨󵄨󵄨󵄨𝜂𝑁
󵄨󵄨󵄨󵄨 ≤ ( min

]∈𝐴𝑁,𝑏,𝑚
𝑅 (𝜃
𝑁,𝑏,] | 𝜌𝑏,𝛼) − min

𝜃∈PN𝑏,𝑐

𝑅 (𝜃 | 𝜌
𝑏,𝛼
))

+ max
]∈𝐴𝑁,𝑏,𝑚

󵄨󵄨󵄨󵄨𝜁𝑁 (])
󵄨󵄨󵄨󵄨 + 𝛿𝑁.

(47)

Like the second and third terms on the right side, the first
term on the right side is nonnegative because 𝐴

𝑁,𝑏,𝑚
is a

subset of PN𝑏 ,𝑐
. Since max]∈𝐴𝑁,𝑏,𝑚 |𝜁𝑁(])| → 0 and 𝛿

𝑁
→ 0

as 𝑁 → ∞, it will follow that 𝜂
𝑁
→ 0 if we can show that

𝑅(⋅ | 𝜌
𝑏,𝛼
) attains its infimum overPN𝑏 ,𝑐

and that

lim
𝑁→∞

min
]∈𝐴𝑁,𝑏,𝑚

𝑅 (𝜃
𝑁,𝑏,] | 𝜌𝑏,𝛼) = min

𝜃∈PN𝑏,𝑐

𝑅 (𝜃 | 𝜌
𝑏,𝛼
) . (48)

We now prove (48). 𝑅(⋅ | 𝜌
𝑏,𝛼
) is lower semicontinuous

onPN𝑏
[33, Lem. 1.4.3(b)] and thus onPN𝑏 ,𝑐

. Since 𝑅(⋅ | 𝜌
𝑏,𝛼
)

has compact level sets inPN𝑏 ,𝑐
[Theorem A.1(a)], it attains its

infimum overPN𝑏 ,𝑐
at some measure 𝜃∗. We apply Theorem

B.1 in [7] to 𝜃 = 𝜃
∗, obtaining a sequence 𝜃(𝑁) with the

following properties: (1) for 𝑁 ∈ N, 𝜃(𝑁) ∈ 𝐵
𝑁,𝑏,𝑚

has
components 𝜃(𝑁)

𝑗
= ](𝑁)
𝑗
/𝑁 for 𝑗 ∈ N

𝑏
, where ](𝑁) is an

appropriate sequence in 𝐴
𝑁,𝑏,𝑚

; (2) 𝜃(𝑁) ⇒ 𝜃
∗ as 𝑁 → ∞;

(3) 𝑅(𝜃
(𝑁)

| 𝜌
𝑏,𝛼
) → 𝑅(𝜃

∗

| 𝜌
𝑏,𝛼
) as 𝑁 → ∞. The limit in

(48) follows from the inequalities

min
𝜃∈PN𝑏,𝑐

𝑅 (𝜃 | 𝜌
𝑏,𝛼
) ≤ min

]∈𝐴𝑁,𝑏,𝑚
𝑅 (𝜃
𝑁,𝑏,] | 𝜌𝑏,𝛼)

≤ 𝑅 (𝜃
(𝑁)

| 𝜌
𝑏,𝛼
)

(49)

and the limit𝑅(𝜃(𝑁) | 𝜌
𝑏,𝛼
) → 𝑅(𝜃

∗

| 𝜌
𝑏,𝛼
) = min

𝜃∈PN𝑏,𝑐
𝑅(𝜃 |

𝜌
𝑏,𝛼
) as 𝑁 → ∞. This completes the proof of Lemma 7 and

thus the proof of the local estimate in part (b) of Theorem 5.

In the next section we explain how the local large
deviation estimate in part (b) of Theorem 5 yields the LDP
inTheorem 1.

4. Proof of Theorem 1 from
Part (b) of Theorem 5

In Theorem 1 we state the LDP for the sequence Θ
𝑁,𝑏

of
number-density measures. This sequence takes values in

PN𝑏 ,𝑐
, which is the set of probability measures on N having

mean 𝑐 ∈ (𝑏,∞). The purpose of the present section is to
explain how the local large deviation estimate in part (b)
of Theorem 5 yields the LDP for Θ

𝑁,𝑏
. All details appear in

Section 4 of [7]. The basic idea is first to prove the large
deviation limit for Θ

𝑁,𝑏
lying in open balls in PN𝑏 ,𝑐

and in
other subsets defined in terms of open balls and then to use
this large deviation limit to prove the LDP inTheorem 1.

In Theorem 8 we state the large deviation limit for open
balls and other subsets defined in terms of open balls. Two
types of open balls are considered. Let 𝜃be ameasure inPN𝑏 ,𝑐

,
and take 𝑟 > 0. Part (a) states the large deviation limit for open
balls 𝐵

𝜋
(𝜃, 𝑟) = {𝜇 ∈ PN𝑏 ,𝑐

: 𝜋(𝜃, 𝜇) < 𝑟}, where 𝜋 denotes
the Prohorov metric onPN𝑏 ,𝑐

. This limit is used to prove the
large deviation upper bound for compact subsets ofPN𝑏 ,𝑐

in
part (b) of Theorem 1 and the large deviation lower bound
for open subsets of PN𝑏 ,𝑐

in part (d) of Theorem 1. Now let
𝜃 be a measure inPN𝑏 ,[𝑏,𝑐]

. Part (b) states the large deviation
limit for sets of the form 𝐵

𝜋
(𝜃, 𝑟) ∩ PN𝑏 ,𝑐

, where 𝐵
𝜋
(𝜃, 𝑟) =

{𝜇 ∈ PN𝑏 ,[𝑏,𝑐]
: 𝜋(𝜃, 𝜇) < 𝑟}. This limit is used to prove the

large deviation upper bound for closed subsets in part (c) of
Theorem 1. If 𝜃 ∈ PN𝑏 ,𝑐

, then 𝐵
𝜋
(𝜃, 𝑟) = 𝐵

𝜋
(𝜃, 𝑟) ∩ PN𝑏 ,𝑐

,
and the conclusions of parts (a) and (b) of the next theorem
coincide.

Theorem8. Fix a nonnegative integer 𝑏 and a rational number
𝑐 ∈ (𝑏,∞). Let 𝑚 be the function 𝑚(𝑁) appearing in the
definitions of Ω

𝑁,𝑏,𝑚
in (3) and satisfying 𝑚(𝑁) → ∞ and

𝑚(𝑁)
2

/𝑁 → 0 as𝑁 → ∞. The following conclusions hold:

(a) Let 𝜃 be a measure in PN𝑏 ,𝑐
and take 𝑟 > 0. Then for

any open ball 𝐵
𝜋
(𝜃, 𝑟) inPN𝑏 ,𝑐

, 𝑅(𝐵
𝜋
(𝜃, 𝑟) | 𝜌

𝑏,𝛼𝑏(𝑐)
) is

finite, and one has the large deviation limit

lim
𝑁→∞

1

𝑁
log𝑃
𝑁,𝑏,𝑚

(Θ
𝑁,𝑏

∈ 𝐵
𝜋
(𝜃, 𝑟))

= −𝑅 (𝐵
𝜋
(𝜃, 𝑟) | 𝜌

𝑏,𝛼𝑏(𝑐)
) .

(50)

(b) Let 𝜃 be a measure inPN𝑏 ,[𝑏,𝑐]
and take 𝑟 > 0. Then the

set 𝐵
𝜋
(𝜃, 𝑟) ∩PN𝑏 ,𝑐

is nonempty, 𝑅(𝐵
𝜋
(𝜃, 𝑟) ∩PN𝑏 ,𝑐

|

𝜌
𝑏,𝛼𝑏(𝑐)

) is finite, and one has the large deviation limit

lim
𝑁→∞

1

𝑁
log𝑃
𝑁,𝑏,𝑚

(Θ
𝑁,𝑏

∈ 𝐵
𝜋
(𝜃, 𝑟) ∩PN𝑏 ,𝑐

)

= −𝑅 (𝐵
𝜋
(𝜃, 𝑟) ∩PN𝑏 ,𝑐

| 𝜌
𝑏,𝛼𝑏(𝑐)

) .

(51)

We proveTheorem 8 by applying the local large deviation
estimate in part (b) ofTheorem 5.Akey step is to approximate
probability measures in 𝐵

𝜋
(𝜃, 𝜀) and in 𝐵

𝜋
(𝜃, 𝑟) ∩ PN𝑏 ,𝑐

by
appropriate sequences of probability measures in the range
of Θ
𝑁,𝑏

. This procedure allows one to show in part (a) that
the infimum 𝑅(𝐵

𝜋
(𝜃, 𝜀) | 𝜌

𝑏,𝛼𝑏(𝑐)
) can be approximated by

the infimum of 𝑅(𝜃 | 𝜌
𝑏,𝛼𝑏(𝑐)

) over 𝜃 lying in the intersection
of 𝐵
𝜋
(𝜃, 𝜀) and the range of Θ

𝑁,𝑏
; a similar statement holds

for the infimum in part (b). A set of hypotheses that allow
one to carry out this approximation procedure is given
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in Theorem 4.2 in [7], a general formulation that yields
Theorem 8 as a special case.

Theorem 1 states the LDP for the number-density mea-
sures Θ

𝑁,𝑏
. In order to complete the proof of Theorem 1, we

must lift the large deviation limits in Theorem 8 to the large
deviation upper bound for compact sets and for closed sets
and the large deviation lower bound for open sets. The large
deviation lower bound for open sets is immediate from the
limit in part (a). To prove the large deviation upper bound
for compact sets, we cover the compact set by open balls and
use the limit in part (a); the large deviation upper bound for
closed sets follows by a similar procedure involving part (b).
The details of this procedure are carried out as an application
of general formulation inTheorem 4.3 in [7].

In the Appendix we prove two properties of the relative
entropy and prove the existence of the quantity 𝛼

𝑏
(𝑐) appear-

ing in part (a) of Theorem 5.

Appendix

Properties of Relative Entropy
and Existence of 𝛼

𝑏
(𝑐)

We fix a nonnegative integer 𝑏 and a real number 𝑐 ∈ (𝑏,∞).
Given 𝜃 a probability measure on N

𝑏
= {𝑛 ∈ Z : 𝑛 ≥ 𝑏},

the mean ∫
N𝑏
𝑥𝜃(𝑑𝑥) of 𝜃 is denoted by ⟨𝜃⟩. In Theorem A.1

we present two properties of the relative entropy 𝑅(𝜃 | 𝜌
𝑏,𝛼
)

and 𝑅(𝜃 | 𝜌
𝑏,𝛼𝑏(𝑐)

) for 𝜃 in each of the following three spaces,
which are introduced in Section 2:PN𝑏

, the set of probability
measures on N

𝑏
;PN𝑏 ,𝑐

, the set of 𝜃 ∈ PN𝑏
satisfying ⟨𝜃⟩ = 𝑐;

andPN𝑏 ,[𝑏,𝑐]
, the set of 𝜃 ∈ PN𝑏

satisfying ⟨𝜃⟩ ∈ [𝑏, 𝑐].
We recall that, for 𝛼 ∈ (0,∞), 𝜌

𝑏,𝛼
denotes the Poisson

distribution on N
𝑏
having components 𝜌

𝑏,𝛼;𝑗
= [𝑍
𝑏
(𝛼)]
−1

⋅

𝛼
𝑗

/𝑗! for 𝑗 ∈ N
𝑏
, where 𝑍

0
(𝛼) = 𝑒

𝛼, and, for 𝑏 ∈ N, 𝑍
𝑏
(𝛼) =

𝑒
𝛼

−∑
𝑏−1

𝑗=0
𝛼
𝑗

/𝑗!. According to part (a) ofTheorem 5 there exists
a unique value 𝛼 = 𝛼

𝑏
(𝑐) for which ⟨𝜌

𝑏,𝛼𝑏(𝑐)
⟩ = 𝑐; thus 𝜌

𝑏,𝛼𝑏(𝑐)

lies inPN𝑏 ,𝑐
. InTheorem A.2 we prove the existence of 𝛼

𝑏
(𝑐).

In part (a) of the next theorem we show that 𝑅(𝜃 | 𝜌
𝑏,𝛼
)

has compact level sets in PN𝑏
, PN𝑏 ,[𝑏,𝑐]

, and PN𝑏 ,𝑐
. After the

statement of Lemma 7 we use part (b) of the next theorem to
show that the arbitrary parameter 𝛼 in Lemmas 6 and 7 must
have the value 𝛼

𝑏
(𝑐).

Theorem A.1. Fix a nonnegative integer 𝑏 and a real number
𝑐 ∈ (𝑏,∞). For any 𝛼 ∈ (0,∞) the relative entropy 𝑅(𝜃 |

𝜌
𝑏,𝛼
) = ∑
𝑗∈N𝑏

𝜃
𝑗
log(𝜃
𝑗
/𝜌
𝑏,𝛼;𝑗

) has the following properties:

(a) 𝑅(⋅ | 𝜌
𝑏,𝛼
) has compact level sets inPN𝑏

,PN𝑏 ,[𝑏,𝑐]
, and

PN𝑏 ,𝑐
.

(b) For any 𝜃 ∈ PN𝑏 ,𝑐
,𝑅(𝜃 | 𝜌

𝑏,𝛼
)−min

𝜃∈PN𝑏,𝑐
𝑅(𝜃 | 𝜌

𝑏,𝛼
) =

𝑅(𝜃 | 𝜌
𝑏,𝛼𝑏(𝑐)

).

Proof. (a) The fact that 𝑅(⋅ | 𝜌
𝑏,𝛼𝑏(𝑐)

) has compact level sets
in PN is proved in part (c) of Lemma 1.4.3 in [33]. Since
PN𝑏 ,[𝑏,𝑐]

is a compact subset of PN𝑏
[Theorem 4(d)], 𝑅(⋅ |

𝜌
𝑏,𝛼
) also has compact level sets inPN𝑏 ,[𝑏,𝑐]

. BecausePN𝑏 ,𝑐
is

not a closed subset ofPN𝑏 ,[𝑏,𝑐]
[Theorem 4(a)], the proof that

𝑅(⋅ | 𝜌
𝑏,𝛼
) has compact level sets inPN𝑏 ,𝑐

is more subtle. If 𝜃(𝑛)

is any sequence in PN𝑏 ,𝑐
satisfying 𝑅(𝜃(𝑛) | 𝜌

𝑏,𝛼
) ≤ 𝑀 < ∞,

then since 𝜃(𝑛) ∈ PN𝑏
and 𝑅(⋅ | 𝜌

𝑏,𝛼
) has compact level

sets in PN𝑏
, there exist 𝜃 ∈ PN𝑏

and a subsequence 𝜃(𝑛
󸀠
)

such that 𝜃(𝑛
󸀠
)

⇒ 𝜃 and 𝑅(𝜃 | 𝜌
𝑏,𝛼
) ≤ 𝑀. To complete

the proof that 𝑅(⋅ | 𝜌
𝑏,𝛼
) has compact level sets in PN𝑏 ,𝑐

, we
must show that 𝜃 ∈ PN𝑏 ,𝑐

; that is, ⟨𝜃⟩ = 𝑐. By Fatou’s lemma
⟨𝜃⟩ ≤ lim inf

𝑁→∞
⟨𝜃
(𝑛
󸀠
)

⟩ = 𝑐. In addition, for any𝑤 ∈ (0,∞)

∫
N𝑏

𝑒
𝑤𝑥

𝜌
𝑏,𝛼
(𝑑𝑥) =

1

𝑍
𝑏
(𝛼)

⋅ ∑

𝑗∈N𝑏

𝑒
𝑤𝑗
𝛼
𝑗

𝑗!

≤
1

𝑍
𝑏
(𝛼)

⋅ exp (𝛼𝑒𝑤) < ∞.

(A.1)

Lemma 5.1 in [37] shows that the sequence 𝜃(𝑛
󸀠
) is uniformly

integrable, implying that 𝑐 = lim
𝑛
󸀠
→∞

⟨𝜃
(𝑛
󸀠
)

⟩ = ⟨𝜃⟩ [32,
Appendix, Prop. 2.3]. This completes the proof that 𝑅(⋅ |
𝜌
𝑏,𝛼
) has compact level sets in PN𝑏 ,𝑐

. The proof of part (a) is
finished.

(b) We define 𝑔(𝛼, 𝑏, 𝑐) = log𝑍
𝑏
(𝛼) − 𝑐 log𝛼 −

(log𝑍
𝑏
(𝛼
𝑏
(𝑐)) − 𝑐 log𝛼

𝑏
(𝑐)). Step 1 is to prove that for any

𝜃 ∈ PN𝑏 ,𝑐

𝑅 (𝜃 | 𝜌
𝑏,𝛼
) = 𝑅 (𝜃 | 𝜌

𝑏,𝛼𝑏(𝑐)
) + 𝑔 (𝛼, 𝑏, 𝑐) . (A.2)

For any 𝜃 ∈ PN𝑏 ,𝑐
we have ∑

𝑗∈N𝑏
𝜃
𝑗
= 1 and ∑

𝑗∈N𝑏
𝑗𝜃
𝑗
= 𝑐.

Hence

𝑅 (𝜃 | 𝜌
𝑏,𝛼
) = ∑

𝑗∈N𝑏

𝜃
𝑗
log(

𝜃
𝑗

𝜌
𝑏,𝛼;𝑗

)

= ∑

𝑗∈N𝑏

𝜃
𝑗
log(

𝜃
𝑗

𝜌
𝑏,𝛼𝑏(𝑐);𝑗

) + ∑

𝑗∈N𝑏

𝜃
𝑗
log(

𝜌
𝑏,𝛼𝑏(𝑐);𝑗

𝜌
𝑏,𝛼;𝑗

)

= 𝑅 (𝜃 | 𝜌
𝑏,𝛼𝑏(𝑐)

)

+ ∑

𝑗∈N𝑏

𝜃
𝑗
log(

[𝛼
𝑏
(𝑐)]
𝑗

𝑍
𝑏
(𝛼
𝑏
(𝑐)) 𝑗!

⋅
𝑍
𝑏
(𝛼) 𝑗!

𝛼𝑗
)

= 𝑅 (𝜃 | 𝜌
𝑏,𝛼𝑏(𝑐)

) + log(
𝑍
𝑏
(𝛼)

𝑍
𝑏
(𝛼
𝑏
(𝑐))

)

+ 𝑐 log(
𝛼
𝑏
(𝑐)

𝛼
) .

(A.3)

Since the last two lines equal 𝑅(𝜃 | 𝜌
𝑏,𝛼𝑏(𝑐)

) + 𝑔(𝛼, 𝑏, 𝑐), the
proof of (A.2) is complete. Step 2 is to prove that 𝑅(𝜃 | 𝜌

𝑏,𝛼
)

attains its infimum over 𝜃 ∈ PN𝑏 ,𝑐
at the measure 𝜃 = 𝜌

𝑏,𝛼𝑏(𝑐)
,

and

min
𝜃∈PN𝑏,𝑐

𝑅 (𝜃 | 𝜌
𝑏,𝛼
) = 𝑅 (𝜌

𝑏,𝛼𝑏(𝑐)
| 𝜌
𝑏,𝛼
) = 𝑔 (𝛼, 𝑏, 𝑐) . (A.4)

Given these two assertions part (b) of the theorem follows by
substituting 𝑔(𝛼, 𝑏, 𝑐) = min

𝜃∈PN𝑏,𝑐
𝑅(𝜃 | 𝜌

𝑏,𝛼
) into (A.2).
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We now prove the two assertions in Step 2. 𝑅(⋅ | 𝜌
𝑏,𝛼
)

is lower semicontinuous onPN𝑏
[33, Lem. 1.4.3(b)] and thus

on PN𝑏 ,𝑐
. Since 𝑅(⋅ | 𝜌

𝑏,𝛼
) has compact level sets in PN𝑏 ,𝑐

,
it attains its infimum over PN𝑏 ,𝑐

. The relative entropy 𝑅(⋅ |
𝜌
𝑏,𝛼𝑏(𝑐)

) attains its minimum value of 0 over PN𝑏 ,𝑐
at the

unique measure 𝜌
𝑏,𝛼𝑏(𝑐)

[33, Lem. 1.4.1]. Hence (A.2) implies
that the minimum value of 𝑅(⋅ | 𝜌

𝑏,𝛼
) overPN𝑏 ,𝑐

equals

min
𝜃∈PN𝑏,𝑐

𝑅 (𝜃 | 𝜌
𝑏,𝛼
) = min
𝜃∈PN𝑏,𝑐

𝑅 (𝜃 | 𝜌
𝑏,𝛼𝑏(𝑐)

) + 𝑔 (𝛼, 𝑏, 𝑐)

= 𝑔 (𝛼, 𝑏, 𝑐)

= 𝑅 (𝜌
𝑏,𝛼𝑏(𝑐)

| 𝜌
𝑏,𝛼𝑏(𝑐)

) + 𝑔 (𝛼, 𝑏, 𝑐)

= 𝑅 (𝜌
𝑏,𝛼𝑏(𝑐)

| 𝜌
𝑏,𝛼
) .

(A.5)

The last equality follows by applying (A.2) with 𝜃 = 𝜌
𝑏,𝛼𝑏(𝑐)

.
This display shows that 𝑅(⋅ | 𝜌

𝑏,𝛼
) attains its infimum over

PN𝑏 ,𝑐
at 𝜌
𝑏,𝛼𝑏(𝑐)

and yields (A.4). The proof of part (b) is
finished, completing the proof of the theorem.

We now prove that there exists a unique value of 𝛼
𝑏
(𝑐) for

which ⟨𝜌
𝑏,𝛼𝑏(𝑐)

⟩ = 𝑐. The conclusion of the next theorem is
part (a) of Theorem C.1 in [7]. In part (b) of that theorem we
derive two sets of bounds on 𝛼

𝑏
(𝑐) and use these bounds to

show that 𝛼
𝑏
(𝑐) is asymptotic to 𝑐 as 𝑐 → ∞. In part (d) of

Theorem C.1 in [7] we make precise the relationship between
𝜌
𝑏,𝛼𝑏(𝑐)

and a Poisson random variable having parameter
𝛼
𝑏
(𝑐).

Theorem A.2. Fix a nonnegative integer 𝑏 and a real number
𝑐 ∈ (𝑏,∞). There exists a unique value 𝛼

𝑏
(𝑐) ∈ (0,∞) such

that 𝜌
𝑏,𝛼𝑏(𝑐)

lies in the set PN𝑏 ,𝑐
of probability measures on N

𝑏

having mean 𝑐. If 𝑏 = 0, then 𝛼
0
(𝑐) = 𝑐. If 𝑏 ∈ N, then 𝛼

𝑏
(𝑐) is

the unique solution in (0,∞) of 𝛼𝑍
𝑏−1
(𝛼)/𝑍

𝑏
(𝛼) = 𝑐.

According to this theorem, for 𝑏 ∈ N, 𝛼
𝑏
(𝑐) is the unique

solution of 𝛼𝑍
𝑏−1
(𝛼)/𝑍

𝑏
(𝛼) = 𝑐. The heart of the proof of

Theorem A.2, and its most subtle step, is to prove that the
function 𝛾

𝑏
(𝛼) = 𝛼𝑍

𝑏−1
(𝛼)/𝑍

𝑏
(𝛼) satisfies 𝛾󸀠

𝑏
(𝛼) > 0 for

𝛼 ∈ (0,∞) and thus is monotonically increasing on this
interval. This fact is proved in the next lemma.

Lemma A.3. Fix a positive integer 𝑏 and a real number 𝑐 ∈
(𝑏,∞). For 𝛼 ∈ (0,∞) the function 𝛾

𝑏
(𝛼) = 𝛼𝑍

𝑏−1
(𝛼)/𝑍

𝑏
(𝛼)

satisfies 𝛾󸀠
𝑏
(𝛼) > 0.

Proof. For 𝑏 ∈ N and for 𝛼 ∈ (0,∞), we have 𝑍󸀠
𝑏
(𝛼) =

𝑍
𝑏−1
(𝛼). Thus 𝛾

𝑏
(𝛼) = 𝛼(log𝑍

𝑏
(𝛼))
󸀠. The key to proving

that 𝛾󸀠
𝑏
(𝛼) > 0 is to represent log𝑍

𝑏
(𝛼) in terms of the

moment generating function of a probability measure. We
do this by first expressing 𝑍

𝑏
(𝛼) in terms of the upper

incomplete gamma function via the formula𝑍
𝑏
(𝛼) = [𝑒

𝛼

/(𝑏−

1)!] ∫
𝛼

0

𝑥
𝑏−1

𝑒
−𝑥

𝑑𝑥. As suggested in [38], we now make the
change of variables 𝑥 = 𝑦𝛼, obtaining the representation

𝑍
𝑏
(𝛼) =

𝑒
𝛼

𝑏!
𝛼
𝑏

𝑔
𝑏
(𝛼) ,

where 𝑔
𝑏
(𝛼) = ∫

0

−1

𝑒
𝛼𝑦

𝑏 (−𝑦)
𝑏−1

𝑑𝑦.

(A.6)

The function 𝑔
𝑏
is the moment generating function of the

probability measure on R having the density ℎ
𝑏
(𝑦) =

𝑏(−𝑦)
𝑏−1 on [−1, 0]. For 𝛼 ∈ (0,∞) let 𝜎

𝑏,𝛼
be the probability

measure on R having the density 𝑒𝛼𝑦ℎ
𝑏
(𝑦)/𝑔
𝑏
(𝛼) on [−1, 0].

A straightforward calculation shows that

(log𝑔
𝑏
)
󸀠

(𝛼) = ∫
R

𝑦𝜎
𝑏,𝛼
(𝑑𝑦) ,

(log𝑔
𝑏
)
󸀠󸀠

(𝛼) = ∫
R

[𝑦 − (log𝑔
𝑏
)
󸀠

(𝛼)]
2

𝜎
𝑏,𝛼
(𝑑𝑦) .

(A.7)

It follows that (log𝑔
𝑏
)
󸀠󸀠

(𝛼) > 0 for all 𝛼 ∈ (0,∞).
Using (A.6) and the formulas 𝑍

𝑏−1
(𝛼) = ∑

∞

𝑗=𝑏−1
𝛼
𝑗

/𝑗! and
𝑍
𝑏
(𝛼) = ∑

∞

𝑗=𝑏
𝛼
𝑗

/𝑗!, we calculate

𝛾
󸀠

𝑏
(𝛼) = (log𝑍

𝑏
(𝛼))
󸀠

+ 𝛼 (log𝑍
𝑏
(𝛼))
󸀠󸀠

= (log𝑍
𝑏
(𝛼))
󸀠

+ 𝛼 [log(𝑒
𝛼

𝑏!
𝛼
𝑏

𝑔
𝑏
(𝛼))]

󸀠󸀠

=
𝑍
𝑏−1

(𝛼)

𝑍
𝑏
(𝛼)

−
𝑏

𝛼
+ 𝛼 (log𝑔

𝑏
(𝛼))
󸀠󸀠

=
𝛼𝑍
𝑏−1

(𝛼) − 𝑏𝑍
𝑏
(𝛼)

𝛼𝑍
𝑏
(𝛼)

+ 𝛼 (log𝑔
𝑏
(𝛼))
󸀠󸀠

=
1

𝑍
𝑏
(𝛼)

∞

∑

𝑗=𝑏

𝑗 − 𝑏

𝑗!
𝛼
𝑗−1

+ 𝛼 (log𝑔
𝑏
(𝛼))
󸀠󸀠

> 0.

(A.8)

This completes the proof of the lemma.

We are now ready to proveTheorem A.2.

Proof of Theorem A.2. We first consider 𝑏 = 0. In this case
𝜌
0,𝛼

is a standard Poisson distribution on N
0
having mean 𝛼.

It follows that 𝛼
0
(𝑐) = 𝑐 is the unique value for which 𝜌

0,𝛼0(𝑐)

has mean 𝑐 and thus lies in PN0 ,𝑐
. This completes the proof

for 𝑏 = 0.
We now consider 𝑏 ∈ N. In this case 𝜌

𝑏,𝛼
is a probability

measure on N
𝑏
having mean

∑

𝑗∈N𝑏

𝑗𝜌
𝑏,𝛼;𝑗

=
1

𝑍
𝑏
(𝛼)

⋅ ∑

𝑗∈N𝑏

𝛼
𝑗

(𝑗 − 1)!

=
1

𝑍
𝑏
(𝛼)

⋅ 𝛼𝑍
𝑏−1

(𝛼) .

(A.9)

Thus 𝜌
𝑏,𝛼

has mean 𝑐 if and only if 𝛼 satisfies 𝛾
𝑏
(𝛼) = 𝑐,

where 𝛾
𝑏
(𝛼) = 𝛼𝑍

𝑏−1
(𝛼)/𝑍

𝑏
(𝛼). We prove the theorem by

showing that 𝛾
𝑏
(𝛼) = 𝑐 has a unique solution 𝛼

𝑏
(𝑐) ∈

(0,∞) for all 𝑏 ∈ N and any 𝑐 > 𝑏. This assertion is a
consequence of the following three steps: (1) lim

𝛼→0
+𝛾
𝑏
(𝛼) =

𝑏; (2) lim
𝛼→∞

𝛾
𝑏
(𝛼) = ∞; (3) for all 𝛼 ∈ (0,∞), 𝛾󸀠

𝑏
(𝛼) > 0.

Steps 1 and 2 follow immediately from the definition of 𝛾
𝑏
(𝛼),

and Step 3 is proved in Lemma A.3.
We have proved the theorem for all 𝑏 ∈ N. Since we also

validated the conclusion of the theorem for 𝑏 = 0, the proof
for all nonnegative integers 𝑏 is done.
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