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The exponential cubic B-spline algorithm is presented to find the numerical solutions of the Korteweg-de Vries (KdV) equation.
The problem is reduced to a system of algebraic equations, which is solved by using a variant of Thomas algorithm. Numerical
experiments are carried out to demonstrate the efficiency of the suggested algorithm.

1. Introduction

The splines consist of piecewise functions defined on the
distributed knots on problem domain and have certain
continuity inside problem subdomain and at the knots.
Until now, some types of splines have been developed and
especially polynomial splines. The exponential splines are
defined as more general splines by McCartin [1–3]. The
basis of the exponential splines known as the exponential B-
splines is also given in the studies of McCartin. Existence
of the free parameter in the exponential B-splines yields the
different shapes of the splines functions. He has also showed
a reliable algorithm by using the exponential spline functions
to solve the hyperbolic conservation laws, McCartin and
Jameson [4].However,McCartin stated that application of the
exponential spline/exponential B-spline functions has been
neglected in the numerical analysis. So, use of the exponential
spline in the numerical methods for finding solutions of the
differential equations is not common and few papers exist
in the literature. McCartin has shown that the exponential
splines admit a basis known as the exponential B-splines.
These B-splines have been started using to form approximates
functions recently which are adapted to set up the numer-
ical methods to find solutions of the differential equations
recently. An application of the simple exponential splines is
considered for setting up the collocation method to solve
the numerical solution of singular perturbation problem [5].

Cardinal exponential B-splines are applied in solving sin-
gularly perturbed boundary problems [6]. A variant of B-
spline exponential collocation method was also built up for
computing numerical solutions of the singularly perturbed
boundary value problem [7]. Very recently, the exponential
B-spline collocation method has been applied to obtain the
solutions of the one-dimensional linear convection-diffusion
equation [8].

Types of spline functions are utilized to form approximate
solutions for Korteweg-de Vries equation (KdVE). The stan-
dard Galerkin formulation using the smooth splines on uni-
formmesh is set up for 1-periodic solutions of KdVE by Baker
and his coauthors [9]. The Galerkin finite element method
together with the cubic B-splines is used to solve the KdVE
in the paper [10]. The quadratic B-spline Galerkin method
is built up to find solutions of the KdVE [11]. A collocation
solution of the Korteweg-de Vries equation using septic B-
splines is proposed by Soliman [12]. A variant of the Galerkin
finite element method is designed for solving the KdVE by
Aksan and Özdeş [13]. The collocation method using quintic
B-splines is developed to solve the KdVE [14]. A numerical
method is developed for the KdVE by using splitting finite
difference technique and quintic B-spline functions [15]. The
spline finite element method using quadratic polynomial
spline for the numerical solution of the KdVE is given by G.
Micula andM.Micula [16]. A cubic B-spline Taylor-Galerkin
method is developed to find numerical solution of the KdVE
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Table 1: Values of 𝐵
𝑖
(𝑥) and its first and second derivatives at the knot points.

𝑥 𝑥
𝑖−2

𝑥
𝑖−1

𝑥
𝑖

𝑥
𝑖+1

𝑥
𝑖+2

𝐵
𝑖

0
𝑠 − 𝑝ℎ

2 (𝑝ℎ𝑐 − 𝑠)
1

𝑠 − 𝑝ℎ

2 (𝑝ℎ𝑐 − 𝑠)
0

𝐵


𝑖
0

𝑝 (1 − 𝑐)

2 (𝑝ℎ𝑐 − 𝑠)
0

𝑝 (𝑐 − 1)

2 (𝑝ℎ𝑐 − 𝑠)
0

𝐵


𝑖
0

𝑝
2
𝑠

2 (𝑝ℎ𝑐 − 𝑠)
−
𝑝
2
𝑠

𝑝ℎ𝑐 − 𝑠

𝑝
2
𝑠

2 (𝑝ℎ𝑐 − 𝑠)
0

by Canıvar et al. in [17]. A study based on cubic B-spline finite
element method for the solution of the KdVE is suggested by
Kapoor et al. [18]. A Bubnov-Galerkin finite element method
with quintic B-spline functions taken as element shape and
weight functions is presented for the solution of the KdVE
[19].The paper deals with the numerical solution of the KdVE
using quartic B-splines Galerkin method as both shape and
weight functions over the finite intervals [20]. A blended
spline quasi-interpolation scheme is employed to solve the
one-dimensional nonlinear KdVE [21]. A multilevel quartic
spline quasi-interpolation scheme is fulfilled to exhibit a large
number of physical phenomena for KdVE [22].

The aim of the present paper is to develop an approximate
solution of KdVE by collocation method. In Section 2, the
exponential B-spline collocation algorithm is defined for the
KdVE. In Section 3, the three numerical experiments are
constructed to demonstrate the efficiency of the proposed
method and the results are documented in tables and graphs
are depicted.

We will solve the KdVE:

𝑈
𝑡
+ 𝜀𝑈𝑈

𝑥
+ 𝜇𝑈
𝑥𝑥𝑥
= 0, 𝑎 ≤ 𝑥 ≤ 𝑏, (1)

where 𝜀, 𝜇 are positive parameters and the subscripts 𝑥 and
𝑡 denote differentiation. The boundary conditions will be
chosen as

𝑈 (𝑎, 𝑡) = 𝑈 (𝑏, 𝑡) = 0,

𝑈
𝑥 (𝑎, 𝑡) = 𝑈𝑥 (𝑏, 𝑡) = 0.

(2)

KdVE is prototypical example of exactly solvable math-
ematical model of waves on shallow water surface. It arises
for evolution, interaction of waves, and generation in physics.
Due to the term 𝑈

𝑡
, (1) is called the evolution equation, the

nonlinear term causes the steepness of the wave, and the
dispersive term defines the spreading of the wave. It is known
that the effect of the steepness and spreading results in soliton
solutions for the KdVE.

2. Exponential B-Spline Collocation Method

The region [𝑎, 𝑏] is partitioned into equal subintervals by
points 𝑥

𝑖
, 𝑖 = 0, . . . , 𝑁. On these points together with

additional points 𝑥
𝑖
, 𝑖 = −3, −2, −1,𝑁+1,𝑁+2,𝑁+3 outside

the domain, the exponential B-splines, 𝐵
𝑖
(𝑥), can be defined

as

𝐵
𝑖 (𝑥)

=

{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{

{

𝑏
2
((𝑥
𝑖−2
− 𝑥) −

1

𝑝
(sinh (𝑝 (𝑥

𝑖−2
− 𝑥)))) [𝑥

𝑖−2
, 𝑥
𝑖−1
] ,

𝑎
1
+ 𝑏
1
(𝑥
𝑖
− 𝑥) + 𝑐

1
exp (𝑝 (𝑥

𝑖
− 𝑥))

+𝑑
1
exp (−𝑝 (𝑥

𝑖
− 𝑥)) [𝑥

𝑖−1
, 𝑥
𝑖
] ,

𝑎
1
+ 𝑏
1
(𝑥 − 𝑥

𝑖
) + 𝑐
1
exp (𝑝 (𝑥 − 𝑥

𝑖
))

+𝑑
1
exp (−𝑝 (𝑥 − 𝑥

𝑖
)) [𝑥

𝑖
, 𝑥
𝑖+1
] ,

𝑏
2
((𝑥 − 𝑥

𝑖+2
) −

1

𝑝
(sinh (𝑝 (𝑥 − 𝑥

𝑖+2
)))) [𝑥

𝑖+1
, 𝑥
𝑖+2
] ,

0 otherwise,
(3)

where

𝑎
1
=

𝑝ℎ𝑐

𝑝ℎ𝑐 − 𝑠
, 𝑏

1
=
𝑝

2
[
𝑐 (𝑐 − 1) + 𝑠

2

(𝑝ℎ𝑐 − 𝑠) (1 − 𝑐)
] ,

𝑏
2
=

𝑝

2 (𝑝ℎ𝑐 − 𝑠)
,

𝑐
1
=
1

4
[
exp (−𝑝ℎ) (1 − 𝑐) + 𝑠 (exp (−𝑝ℎ) − 1)

(𝑝ℎ𝑐 − 𝑠) (1 − 𝑐)
] ,

𝑑
1
=
1

4
[
exp (𝑝ℎ) (𝑐 − 1) + 𝑠 (exp (𝑝ℎ) − 1)

(𝑝ℎ𝑐 − 𝑠) (1 − 𝑐)
] ,

𝑠 = sinh (𝑝ℎ) , 𝑐 = cosh (𝑝ℎ) ,

𝑝 is a free parameter, ℎ =
𝑏 − 𝑎

𝑁
.

(4)

{𝐵
−1
(𝑥), 𝐵

0
(𝑥), . . . , 𝐵

𝑁+1
(𝑥)} forms a basis for the expo-

nential spline space on the interval [𝑎, 𝑏]. On the four
consecutive subintervals, an exponential B-spline 𝐵

𝑖
(𝑥) is

defined and it is second-order continuously differentiable
functions.

In Table 1, the values of 𝐵
𝑖
(𝑥), 𝐵

𝑖
(𝑥), and 𝐵

𝑖
(𝑥) at the

points 𝑥
𝑖
, which can be obtained from (3) are listed where

 denotes differentiation with respect to space variable 𝑥.
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The global approximation𝑈
𝑁
(𝑥, 𝑡) to the solution𝑈(𝑥, 𝑡)

will be searched in terms of the unknown parameters 𝛿
𝑖

and exponential B-spline function defined on the problem
domain:

𝑈
𝑁 (𝑥, 𝑡) =

𝑁+1

∑

𝑖=−1

𝛿
𝑖
𝐵
𝑖 (𝑥) . (5)

Substitution of the points 𝑥
𝑖
in (5), in its first and its second

derivatives, respectively, yields the numerical solution in
terms of parameters:

𝑈
𝑖
= 𝑈 (𝑥

𝑖
, 𝑡) = 𝑚

1
𝛿
𝑖−1
+ 𝛿
𝑖
+ 𝑚
1
𝛿
𝑖+1
,

𝑈


𝑖
= 𝑈

(𝑥
𝑖
, 𝑡) = 𝑚

2
𝛿
𝑖−1
− 𝑚
2
𝛿
𝑖+1
,

𝑈


𝑖
= 𝑈

(𝑥
𝑖
, 𝑡) = 𝑚

3
𝛿
𝑖−1
− 2𝑚
3
𝛿
𝑖
+ 𝑚
3
𝛿
𝑖+1
,

(6)

where 𝑚
1
= (𝑠 − 𝑝ℎ)/2(𝑝ℎ𝑐 − 𝑠), 𝑚

2
= 𝑝(1 − 𝑐)/2(𝑝ℎ𝑐 − 𝑠),

and𝑚
3
= 𝑝
2
𝑠/2(𝑝ℎ𝑐 − 𝑠).

Over the subregion [𝑥
𝑖
, 𝑥
𝑖+1
], the local approximation is

given by

𝑈
𝑒

𝑁
(𝑥, 𝑡) = 𝛿𝑖−1𝐵𝑖−1 (𝑥) + 𝛿𝑖𝐵𝑖 (𝑥)

+ 𝛿
𝑖+1
𝐵
𝑖+1 (𝑥) + 𝛿𝑖+2𝐵𝑖+2 (𝑥) ,

(7)

where 𝛿
𝑖−1

, 𝛿
𝑖
, and 𝛿

𝑖+1
act as subregion parameters and 𝐵

𝑖−1
,

𝐵
𝑖
, and 𝐵

𝑖+1
are known as the subregion shape parameters.

To be able to apply the collocation method formed with
the exponential B-splines, KdV equation is space-splitted as

𝑈
𝑡
+ 𝜀𝑈𝑈

𝑥
+ 𝜇𝑉
𝑥𝑥
= 0,

𝑈
𝑥
− 𝑉 = 0.

(8)

This system includes the second-order derivatives so that
smooth approximation can be done with the exponential B-
splines. To integrate system (8) in time, discretize 𝑈

𝑡
by the

usual finite difference scheme and 𝑈, 𝑈
𝑥
, and 𝑉

𝑥𝑥
by Crank-

Nicolson method and we get

𝑈
𝑛+1
− 𝑈
𝑛

Δ𝑡
+ 𝜀
(𝑈𝑈
𝑥
)
𝑛+1
+ (𝑈𝑈

𝑥
)
𝑛

2
+ 𝜇
𝑉
𝑛+1

𝑥𝑥
+ 𝑉
𝑛

𝑥𝑥

2
= 0,

𝑈
𝑛+1

𝑥
+ 𝑈
𝑛

𝑥

2
−
𝑉
𝑛+1
+ 𝑉
𝑛

2
= 0,

(9)

where 𝑈𝑛+1 = 𝑈(𝑥, (𝑛 + 1)Δ𝑡) represent the solution at the
(𝑛 + 1)th time level. Here, 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡 and Δ𝑡 is the time
step; superscripts denote 𝑛th time level, 𝑡𝑛 = 𝑛Δ𝑡.

One linearizes terms (𝑈𝑈
𝑥
)
𝑛+1 and (𝑈𝑈𝑥)𝑛 in (9) as

(𝑈𝑈𝑥)
𝑛+1
= 𝑈
𝑛+1
𝑈
𝑛

𝑥
+ 𝑈
𝑛
𝑈
𝑛+1

𝑥
− 𝑈
𝑛
𝑈
𝑛

𝑥
,

(𝑈𝑈𝑥)
𝑛
= 𝑈
𝑛
𝑈
𝑛

𝑥

(10)

to obtain the time-integrated KdVE:

𝑈
𝑛+1
− 𝑈
𝑛
+
𝜀Δ𝑡

2
(𝑈
𝑛+1
𝑈
𝑛

𝑥
+ 𝑈
𝑛
𝑈
𝑛+1

𝑥
)

−
𝜇Δ𝑡

2
(𝑉
𝑛+1

𝑥𝑥
+ 𝑉
𝑛

𝑥𝑥
) = 0,

𝑈
𝑛+1

𝑥
+ 𝑈
𝑛

𝑥

2
−
𝑉
𝑛+1
+ 𝑉
𝑛

2
= 0.

(11)

We approximate 𝑈𝑛 and 𝑉𝑛 in terms of the element parame-
ters and exponential B-splines separately as

𝑈
𝑁 (𝑥, 𝑡) =

𝑁+1

∑

𝑖=−1

𝛿
𝑖
𝐵
𝑖 (𝑥) , 𝑉

𝑁 (𝑥, 𝑡) =

𝑁+1

∑

𝑖=−1

𝜙
𝑖
𝐵
𝑖 (𝑥) . (12)

Putting the approximate solution (12) and its derivatives
into (11) and evaluating the resulting equations at the points
𝑥
𝑖
, 𝑖 = 0, . . . , 𝑁 yield the following system of equations:

𝑚
1
𝛿
𝑛+1

𝑚−1
−
𝜇Δ𝑡

2
𝛾𝜙
𝑛+1

𝑚−1
+ 𝛿
𝑛+1

𝑚

+ 𝜇Δ𝑡𝛾𝜙
𝑛+1

𝑚
+ 𝑚
1
𝛿
𝑛+1

𝑚+1
−
𝜇Δ𝑡

2
𝛾𝜙
𝑛+1

𝑚+1

= 𝑚
1
(1 −

𝜀Δ𝑡

2
𝐿) 𝛿
𝑛

𝑚−1
−
Δ𝑡

2
(𝜇𝛾 + 𝜀𝑚

1
𝐾)𝜙
𝑛

𝑚−1

+ (1 −
𝜀Δ𝑡

2
𝐿) 𝛿
𝑛

𝑚−1
−
Δ𝑡

2
(−2𝜇𝛾 + 𝜀𝐾) 𝜙

𝑛

𝑚−1

+ 𝑚
1
(1 −

𝜀Δ𝑡

2
𝐿) 𝛿
𝑛

𝑚−1
−
Δ𝑡

2
(𝜇𝛾 + 𝜀𝑚

1
𝐾)𝜙
𝑛

𝑚−1
,

𝛽𝛿
𝑛+1

𝑚−1
− 𝑚
1
𝜙
𝑛+1

𝑚−1
− 𝜙
𝑛+1

𝑚
− 𝛽𝛿
𝑛+1

𝑚+1
− 𝑚
1
𝜙
𝑛+1

𝑚+1

= −𝛽𝛿
𝑛

𝑚−1
+ 𝑚
1
𝜙
𝑛

𝑚−1
+ 𝜙
𝑛

𝑚
+ 𝛽𝛿
𝑛

𝑚+1
+ 𝑚
1
𝜙
𝑛

𝑚+1
,

𝑚 = 0, . . . , 𝑁, 𝑛 = 0, 1, . . . ,

(13)

where

𝐾 = 𝑚
1
𝛿
𝑖−1
+ 𝛿
𝑖
+ 𝑚
1
𝛿
𝑖+1
,

𝐿 = 𝑚
1
𝜙
𝑖−1
+ 𝜙
𝑖
+ 𝑚
1
𝜙
𝑖+1
,

𝛽 =
𝑝 (1 − 𝑐)

2 (𝑝ℎ𝑐 − 𝑠)
, 𝛾 =

𝑝
2
𝑠

2 (𝑝ℎ𝑐 − 𝑠)
.

(14)

The system consists of 2𝑁 + 2 linear equation in 2𝑁 + 6
unknown parameters d𝑛+1 = (𝛿𝑛+1

−1
, 𝜙
𝑛+1

−1
, 𝛿
𝑛+1

0
, 𝜙
𝑛+1

0
, . . . , 𝛿

𝑛+1

𝑁+1
,

𝜙
𝑛+1

𝑁+1
). A unique solution of the system can be obtained by

imposing the boundary conditions 𝑈(𝑎, 𝑡) = 0, 𝑈(𝑏, 𝑡) =
0, 𝑉(𝑎, 𝑡) = 0, 𝑉(𝑏, 𝑡) = 0 to have the following the equations:

𝑚
1
𝛿
−1
+ 𝛿
0
+ 𝑚
1
𝛿
1
= 0,

𝑚
1
𝜙
−1
+ 𝜙
0
+ 𝑚
1
𝜙
1
= 0,

𝑚
1
𝛿
𝑁−1

+ 𝛿
𝑁
+ 𝑚
1
𝛿
𝑁+1

= 0,

𝑚
1
𝜙
𝑁−1

+ 𝜙
𝑁
+ 𝑚
1
𝜙
𝑁+1

= 0.

(15)
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Elimination of the parameters 𝛿
−1
, 𝜙
−1
, 𝛿
𝑁+1

, 𝜙
𝑁+1

,
using (15) from system (13), gives a solvable system of 2𝑁 +
2 linear equation including 2𝑁 + 2 unknown parameters.
Placing solution parameters in (12) when computed from
the system via a variant of the Thomas algorithm gives the
approximate solution over the subregion [𝑎, 𝑏]. We need
the initial parameter vectors 𝑑

1
= (𝛿
−1
, 𝛿
0
, . . . , 𝛿

𝑁
, 𝛿
𝑁+1
),

𝑑
2
= (𝜙
−1
, 𝜙
0
, . . . , 𝜙

𝑁
, 𝜙
𝑁+1
) to start the iteration process for

system of (13). To do that, the following requirements help to
determine the initial parameters:

(𝑈
𝑁
)
𝑥
(𝑎, 0) = 0 = 𝑚2𝛿

0

−1
+ 𝑚
2
𝛿
0

1
,

(𝑈
𝑁
)
𝑥
(𝑥
𝑖
, 0) = 𝑚

1
𝛿
0

𝑖−1
+ 𝛿
0

𝑖
+ 𝑚
1
𝛿
0

𝑖+1
= 𝑈 (𝑥

𝑖
, 0) ,

𝑖 = 0, . . . , 𝑁,

(𝑈
𝑁
)
𝑥
(𝑏, 0) = 0 = 𝑚2𝛿

0

𝑁−1
+ 𝑚
2
𝛿
0

𝑁+1
,

(𝑉
𝑁
)
𝑥
(𝑎, 0) = 0 = 𝑚2𝜙

0

−1
+ 𝑚
2
𝜙
0

1
,

(𝑉
𝑁
)
𝑥
(𝑥
𝑖
, 0) = 𝑚

1
𝜙
0

𝑖−1
+ 𝜙
0

𝑖
+ 𝑚
1
𝜙
0

𝑖+1
= 𝑉 (𝑥

𝑖
, 0) ,

𝑖 = 0, . . . , 𝑁,

(𝑉
𝑁
)
𝑥
(𝑎, 0) = 𝑚2𝜙

0

𝑁−1
+ 𝑚
2
𝜙
0

𝑁+1
.

(16)

3. Numerical Tests

Since the conservation laws remain constant at all time,
first three numerical conservations are calculated using the
rectangular rule for integrals:

𝐶
1
= ∫

∞

−∞

𝑈𝑑𝑥 ≈ ∫

𝑏

𝑎

𝑈𝑑𝑥 ≈
ℎ

2

𝑁−1

∑

𝑖=0

(𝑈
𝑖
+ 𝑈
𝑖+1
) ,

𝐶
2
= ∫

∞

−∞

(𝑈
2
) 𝑑𝑥 ≈ ∫

𝑏

𝑎

(𝑈
2
) 𝑑𝑥 ≈

ℎ

2

𝑁−1

∑

𝑖=0

[(𝑈
2
)
𝑖
+ (𝑈
2
)
𝑖+1
] ,

𝐶
3
= ∫

∞

−∞

(𝑈
3
−
3𝜇

𝜀
𝑈
2

𝑥
)𝑑𝑥 ≈ ∫

𝑏

𝑎

(𝑈
3
−
3𝜇

𝜀
𝑈
2

𝑥
)𝑑𝑥

≈
ℎ

2

𝑁−1

∑

𝑖=0

[(𝑈
3
)
𝑖
−
3𝜇

𝜀
(𝑈
2

𝑥
)
𝑖
+ (𝑈
3
)
𝑖+1
−
3𝜇

𝜀
(𝑈
2

𝑥
)
𝑖+1
] .

(17)

The error norm 𝐿
∞

𝐿
∞
=
𝑈 − 𝑈𝑁

∞
= max
𝑗


𝑈
𝑗
− (𝑈
𝑁
)
𝑛

𝑗


(18)

is calculated to show the error between analytical and
numerical solutions.

(a)The soliton solution of the KdVE is

𝑈 (𝑥, 𝑡) = 3𝑐 sec ℎ2 (𝐴𝑥 − 𝐵𝑡 + 𝐷) , (19)

where 𝐴 = (1/2)√𝜀𝑐/𝜇 and 𝐵 = 𝜀𝑐𝐴. This solution
represents propagation of single soliton, having velocity 𝜀𝑐
and amplitude 3𝑐.
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Figure 1: A single soliton at some times.
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Figure 2: Error distribution.

The analytical solution (19) is used as the initial condition
when 𝑡 = 0. The Dirichlet boundary conditions 𝑈(0, 𝑡) =
𝑉(0, 𝑡) = 0 and𝑈(2, 𝑡) = 𝑉(2, 𝑡) = 0 are adapted to the system
to control numerical solutions at the boundaries. Parameters
𝜀 = 1, 𝜇 = 4.84 × 10

−4, 𝑐 = 0.3, 𝐷 = −6, space step
ℎ = 0.01, and time step Δ𝑡 = 0.005 on the interval [0, 2] from
time 𝑡 = 0 to 𝑡 = 3 are chosen. At time 𝑡 = 3, numerical
magnitude of the single soliton is calculated as 0.9, so that
the numerical amplitude is obtained to be almost the same as
the analytical amplitude. Figure 1 illustrates the amplitudes at
some times. The distribution of the absolute values of errors
can be observed in Figure 2.
𝐿
∞

error norms and invariants are presented at the
selected times in Table 2, as seen from the table that 𝐿

2
error

norm is found small enough and conservation invariants are
excellent throughout the simulation. The method gives good
results when the free parameter 𝑝 = 1.64 × 10

−5 is used.
Invariants 𝐶

2
and 𝐶

3
remain constant during the run and 𝐶

1
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Table 2: Error norms and invariants for single soliton.

Time 𝐿
∞
× 10
3

𝑝 × 10
5

𝐿
∞
× 10
3

𝑝 = 1
𝐶
1

𝐶
2

𝐶
3

Method

0.0 0 0 0.144597 0.086759 0.046849

Pre.

0.5 0.521 (𝑝 = 1.37) 0.51 0.144602 0.086759 0.046849

1.0 0.589 (𝑝 = 1.64) 0.75 0.144593 0.086759 0.046849

1.5 0.533 (𝑝 = 1.64) 1.03 0.144592 0.086759 0.046849

2.0 0.595 (𝑝 = 1.64) 1.26 0.144591 0.086759 0.046849

2.5 0.657 (𝑝 = 1.64) 1.50 0.144597 0.086759 0.046849

3.0 0.740 (𝑝 = 1.64) 1.61 0.144597 0.086759 0.046849

3.0 0.08 0.014460 0.08676 0.04685 [23]
3.0 1.04 0.014460 0.08675 0.04685 [24]
3.0 0.04 0.144597 0.086761 0.0468524 [17]
3.0 0.14 0.144601 0.086760 0.046850 [25]

Table 3: Invariant for Maxwellian.

𝜀 = 1.0, 𝜇 = 0.04

𝑡 𝐶
1

𝐶
2

𝐶
3

0 1.77245 1.25331 0.87292
2.5 1.77243 1.25332 0.87412
5.0 1.77248 1.25333 0.87437
7.5 1.77170 1.25332 0.87442
10.0 1.77203 1.25333 0.87442
12.5 1.77367 1.25330 0.87442

remains the constant up to the third decimal digits seen in
Table 2.

(b) Wave generation is performed by using the
Maxwellian initial condition:

𝑈 (𝑥, 0) = exp (−𝑥2) (20)

and boundary conditions:

𝑈 (−15, 𝑡) = 𝑈 (15, 𝑡) = 0, 𝑡 > 0. (21)

ℎ = 0.1 and Δ𝑡 = 0.01 and 𝜀 = 1.0 are taken. We
have verified the case in which 𝜇

𝑐
is some critical parameter

and, according to the parameters 𝜇 ≪ 𝜇
𝑐
, initial condition

breaks up into a number of solitons and, for values 𝜇 ≫

𝜇
𝑐
, soliton turns into exhibiting the rapidly oscillating wave

packets. When 𝜇 ≈ 𝜇
𝑐
together with parameters 𝜀 = 1.0,

𝜇 = 0.04, ℎ = 0.1, and Δ𝑡 = 0.01, the solution takes the
form of the leading soliton and an oscillating tail. This case
is shown in Figure 3.

For 𝜇 = 0.04, we observe a solitary wave plus an
oscillating tail (Figure 3). The actual velocity of the wave 𝑉

𝑛

has been measured and also computed from the measured
amplitude using the formula𝑉

𝑎
= 𝑎𝜀/3. We find that𝑉

𝑛
= 0.4

and 𝑉
𝑎
= (1.1978 × 1)/3 = 0.39926, so the solitary waves are

indeed solitons. In Table 3 invariant for Maxwellian 𝜀 = 1.0
and 𝜇 = 0.04.

Table 4: Invariant for Maxwellian.

𝜀 = 1.0, 𝜇 = 0.01

𝑡 𝐶
1

𝐶
2

𝐶
3

0 1.77245 1.25331 0.98572
2.5 1.77244 1.25362 0.99277
5.0 1.77250 1.25374 0.99558
7.5 1.77243 1.25376 0.99576
10.0 1.77242 1.25377 0.99582
12.5 1.77222 1.25378 0.99582

Table 5: Invariant for Maxwellian.

𝜀 = 1.0, 𝜇 = 0.001

𝑡 𝐶
1

𝐶
2

𝐶
3

0 1.77245 1.25331 1.01956
2.5 1.77245 1.25356 1.02461
5.0 1.77245 1.25365 1.02644
7.5 1.77245 1.25365 1.02654
10.0 1.77244 1.25365 1.02656
12.5 1.77244 1.25365 1.02656

When 𝜇 = 0.01, we find three solitons.We havemeasured
the velocity of the largest solitary wave as 𝑉

𝑛
= 0.52 and

calculated the expected velocity from the observed amplitude
1.54468 as 𝑉

𝑎
= (1.5535 × 1)/3 = 0.51783. In Figure 4,

Maxwellian initial condition is depicted for 𝑡 = 12.5, 𝜀 = 1.0,
𝜇 = 0.01, ℎ = 0.1, and Δ𝑡 = 0.01. The invariants are given in
Tables 4 and 5 for 𝜀 = 1.0, 𝜇 = 0.01 and 𝜀 = 1.0, 𝜇 = 0.001,
respectively.

For 𝜇 = 0.001, we observed nine solitons moving to the
right in Figure 5. The measured velocity of leading soliton is
𝑉
𝑛
= 0.62 and the corresponding velocities calculated from

their measured amplitudes are 𝑉
𝑎
= (1.7949 × 1)/3 = 0.60.

The agreement is good. The initial perturbation breaks up
into a number of solitons in the course of time depending on
the value of 𝜇 chosen. So, if we decrease the value of 𝜇, then
the number of solitons, amplitude, and the velocity increase.
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Figure 3: Soliton at 𝑡 = 12.5.
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Figure 4: Generated waves at 𝑡 = 12.5, 𝜀 = 1.0, 𝜇 = 0.01, ℎ = 0.1,
and Δ𝑡 = 0.01.

(c) As a final test example, initial condition

𝑈 (𝑥, 0) =
1

2
[1 − tanh(|𝑥| − 25

5
)] (22)

together with boundary conditions

𝑈 (−50, 𝑡) = 𝑈 (150, 𝑡) = 0, 𝑡 > 0 (23)

cause the production of a train of solitons depending on the
value of 𝜇 for the KdVE. Computation is done on region
[−50, 150] up to time 𝑡 = 800 with parameters 𝜀 = 0.2, 𝜇 =
0.1, Δ𝑡 = 0.05, and ℎ = 0.4. Visual representation of the
solution in Figures 6(a)–6(f) is drawn that 10 solitons have
been broken up from the given initial condition.
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0

u

Figure 5: 𝑡 = 12.5Maxwellian initial condition; 𝜀 = 1.0, 𝜇 = 0.001,
ℎ = 0.025, and Δ𝑡 = 0.005.

Table 6: Conservation laws 𝜀 = 0.2, 𝜇 = 0.1.

𝑡 𝐶
1

𝐶
2

𝐶
3

0 50.0001 45.0004 40.6207
100 49.9999 45.0011 40.4055
200 50.0009 45.0032 40.5267
300 49.9996 45.0044 40.4286
400 49.9989 45.0048 42.6020
500 49.9984 45.0049 40.6564
600 49.9997 45.0051 40.6786
700 50.0009 45.0051 40.4270
800 50.0011 45.0049 40.4629

The first three conservation laws are recorded at some
times in Table 6. These are favorably constant. The observed
velocity of the leading soliton having the amplitude 1.96342 is
𝑉
𝑛
= 0.128which was in close agreement with that calculated

from its observed amplitude of𝑉
𝑎
= (1.9379×0.2)/3 = 0.129.

4. Conclusion

The numerical solution of the KdVE is obtained by the
collocation method using the exponential basis functions.
Performance of the present method is shown by calculating
𝐿
∞
—the error norm, and conservation laws. The present

method gives accurate results and simulations such as the
propagation of soliton and generation of waves which are
substantiated fairly. Using the exponential cubic B-splines,
alternative numerical methods can be set up for finding
numerical solutions of the differential equations with high
accuracy when an appropriate free parameter is chosen.
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Figure 6: (a) The solution graph for 𝑡 = 0. (b) The solution graph for 𝑡 = 100. (c) The solution graph for 𝑡 = 200. (d) The solution graph for
𝑡 = 400. (e) The solution graph for 𝑡 = 600. (f) The solution graph for 𝑡 = 800.
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