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In this paper tunnel probabilistic structural analysis (TuPSA) was performed using the first order reliability method (FORM).
In TuPSA, a tunnel performance function is defined according to the boundary between the structural stability and instability.
Then the performance function is transformed from original space into the standard normal variable space to obtain the design
point, reliability index, and also the probability of tunnel failure. In this method, it is possible to consider the design factors as the
dependent or independent random parameters with arbitrary probability distributions. A software code is developed to perform
the tunnel probabilistic structural analysis (TuPSA) using the FORM. For validation and verification of TuPSA, a typical tunnel
example with random joints orientations as well as mechanical properties has been studied. The results of TuPSA were compared
with those obtained from Monte-Carlo simulation. The results show, in spite of deterministic analysis which indicates that the
rock blocks are stable, that TuPSA resulted in key-blocks failure with certain probabilities. Comparison between probabilistic and
deterministic analyses results indicates that probabilistic results, including the design point and probability of failure, are more
rational than deterministic factor of safety.

1. Introduction

Structural instability is themost dominant failuremechanism
of underground openings in moderately jointed rock masses.
Traditional analyses in such openings have been largely based
on rock mass classification methods. Rock load [1], RQD [2],
RSR [3], RMR [4], and rock tunneling quality index (𝑄) [5]
are the most practical rock mass classifications. Despite the
empirical effectiveness of these classifications, they largely
ignored particular stability problem due to the formation of
removable rock blocks around the tunnel walls.

Block instability is not necessarily dependent on any
rock mass classifications. Block theory [6] provides a math-
ematical and geometrical procedure to define the stability
of rock structures triggered by discontinuities geometry. For
a number of joint intersections behind an excavation free
face, block theory determines the combinations of joints half
spaces which create a removable rock block, block geometry,
probable sliding or falling direction, and the safety factor of
block using a rigorous approach. Block theory method con-
siders the rock mass and support properties as deterministic
parameters. However, they improved our understanding of

structural instability of tunnels, in spite of their assumptions,
most of the geomechanical characteristics of rock masses
such as discontinuities orientation andmechanical properties
and also support properties vary in wide ranges.

Unlike the probabilistic stress-controlled instability anal-
ysis, few researches have been performed on probabilistic
instability analysis of block failures in underground openings:
[7–9].On the other hand, in these cases, the analysis is limited
to the specific case studies with limited random dimension
or specific probability distributions. So far, there is no direct
study on the probabilistic analysis of structural instability
in underground openings. Therefore, in this research a
tunnel probabilistic structural stability analysis (TuPSA) was
developed using first order reliability method.

For this purpose, at first, the reliability problem and
first order reliability method (FORM) are explained, and
then the performance function for tunnel structural stability
is presented. By combining these two definitions, tunnel
probabilistic structural stability analysis (TuPSA) will be
explained. A computer code is developed for reliability
analysis of structural failures and performing the TuPSA
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method. The reliability problem of a typical tunnel example
is solved by developing computer code assuming different
scenarios. Finally, the results are compared to those obtained
fromMonte-Carlo simulations.

2. First Order Reliability Method (FORM)

For a tunnel system, reliability could be defined as the ability
of the tunnel or its components to perform the required
functions under the specific uncertain conditions. A random
uncertain parameters vector such as (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
), which

could include rock material, support, and joints geomet-
rical parameters, follows a multivariate probability density
function 𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
). For a specific designed tunnel

system, there is a performance function 𝑃(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) that

is defined to be zero at a limit state, less than zero at system
failure domain, and greater than zero for safe state. The
objective of reliability analysis is to calculate the probability
of failure which can be expressed as [10, 11]

𝑝
𝑓
= ∫
𝑃<0

𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) 𝑑𝑥1𝑑𝑥2 ⋅ ⋅ ⋅ 𝑑𝑥𝑛, (1)

where 𝑝
𝑓
is failure probability and (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) is uncer-

tain parameters vector. The concepts of performance limit
state, failure and safe regions, and probability of failure
(domain of integration that is illustrated by shaded region)
are illustrated in Figure 1. In Figure 1, shaded area indicates
the failure domain and dashed lines are the contours that
indicate the probability distributions of two variables (for
sake of simplicity).

The general solution to (1) is the Monte-Carlo simulation
that relies on repeated random sampling based on the
multivariable density function to compute their performance
results. The probability of failure is estimated from the ratio
of number of failed cases, 𝑛

𝑓
, per total number of simulation

iterations, 𝑛, as follows:

𝑝
𝑓
≈
𝑛
𝑓

𝑛
. (2)

The sample size (𝑛)must ensure coefficient of variation of cal-
culated 𝑝

𝑓
, (CoV

𝑝𝑓
), becomes reasonably small. Coefficient

of variation of 𝑝
𝑓
is estimated using the following equation

[12]:

CoV
𝑝𝑓
= √

1 − 𝑝
𝑓

𝑝
𝑓
𝑛
. (3)

The analytical solution of (1) is not available, unless the mul-
tivariable density function is normal and the performance
function is linear or quadratic [10]. These conditions led to
the idea of FORM solution. In FORM solution, by replacing
the physical nonnormal random variables, (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
),

with the standard normal random variables (uncorrelated
Gaussian random variables with zero mean and unit stan-
dard deviation), the performance function is transmitted to
standard normal space spanned by standard normal variables
(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) (Figure 2).

P < 0
FailP > 0

Safe

P(x1, x2) = 0
x2

x1

Pf =
area of failure (shaded region)

total area of space = 1f(x1, x2)

Figure 1: General reliability problem for two probabilistic variables
[10].

Most likely failure point in standard space is called the
design point or 𝛽-point (𝑍∗ in Figure 2). By replacement of
the actual limit state (𝑃 = 0) with the approximate linear
limit state function at design point (𝑃

𝐿
= 0), the probability

of failure could be approximated by [11]

𝑝
𝑓
≈ Φ (−𝛽) . (4)

Here, 𝛽 is the distance between origin and design point in
normal space andΦ is the cumulative density function (CDF)
of standard normal variables. Using this transformation, the
multiple integration of (1) reduces to a constrained nonlinear
optimization problem as

𝛽 = min√𝑍𝑍𝑇

S.t. 𝑃 (𝑔 (𝑍)) = 𝐺 (𝑍) ≤ 0, 𝑋 = 𝑔 (𝑍) ,

(5)

where 𝑍 = (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) is the vector of standard nor-

mal random variables, 𝑍𝑇 is the transpose of 𝑍, 𝑋 =

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) is the physical nonnormal random variables

vector, and 𝑔 is the translation function used to convert the
standard normal vector to the physical variables vector. For
the noncorrelated and correlated physical variables, transla-
tion function can be defined as (6) [13] and (7), respectively:

𝑥
𝑖
= 𝐹
−1
𝑖
[Φ (𝑧
𝑖
)] , (6)

𝑥
𝑖
≈ 𝐹
−1
𝑖
[Φ ([𝑍

𝑇
𝐿]
𝑖
)] . (7)

Each nonnormal component, 𝑥
𝑖
, can follow any arbitrary

cumulative distribution function, 𝐹
𝑖
, and 𝐿 is the Cholesky

factor of correlation coefficients matrix of random variables,
𝐶, [10]. Cholesky factor can be determined using the follow-
ing relation:

𝐶 = 𝐿
𝑇
𝐿. (8)

Here, 𝐶 is the correlation coefficients matrix of physical
randomvariables and𝐿𝑇 is the transposematrix of𝐿.The first
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Figure 2: (a) General reliability problem, (b) solution using FORM.

order reliability method (FORM) could be performed on
the systems with known performance function and specific
random parameters by using (4)–(8).

3. Tunnel Probabilistic Structural Stability
Analysis (TuPSA)

In TuPSA method, by defining the tunnel performance
function, it is possible to perform the FORM analysis using
(4)–(8). Definition of tunnel structural performance function
is one of the most important stages in TuPSA which is
determined by the goals of tunnel design. The goal of
geomechanical designs in dealing with structural instabilities
is to prevent the blocks and wedges from sliding and falling
into the underground opening. Therefore, the performance
function is defined as follows:

𝑃

{{{{

{{{{

{

= 0 limit state

< 0 blocks fall or slide into the tunnel

> 0 stable blocks.

(9)

It is difficult to develop an analytical performance function
which includes all (most important) design factors, but it
is possible by using the nested functions. Details of the
performance function calculation, used in this paper, are
presented here. The main assumptions of TuPSA are as
follows:

(i) The blocks formed around the tunnel have maximum
possible volume (considering the key blocks).

(ii) Specific falling/sliding blocks have no influence on
other blocks’ stability.

(iii) Bolts are considered as the simple forces applied to the
blocks in specific directions.

(iv) The influence of field stress on blocks stability [14] is
not considered.

(v) The distribution of uncertain parameters is available.

Many parameters are influencing the tunnel structural insta-
bilities. The main parameters governing the overall stability
of opening and their symbols used in analysis are as follows:

(1) geometrical parameters:

(a) tunnel axis orientation: trend and plunge, TO,
(b) tunnel radius, 𝑟,
(c) joints orientation: joints dip and dip direction,

JD,

(2) mechanical parameters:

(d) cohesion of joints, 𝐶
𝑗
,

(e) friction angle of joints, 𝜑
𝑗
,

(f) tensile strength of joints, Ten,
(g) water pressure on joints face, 𝑢,
(h) unit weight of rock mass, 𝛾,
(i) unit weight of shotcrete, 𝛾

𝑠
,

(j) shotcrete thickness, 𝑡,
(k) shotcrete shear strength, 𝜏

𝑠
,

(l) bolts force pattern around the tunnel, 𝐹
𝑏
,

(m) seismic coefficient, 𝐾,
(n) seismic force direction, Sd.

There are different consecutive stages to define the tunnel
structural performance function. Some of these stages deal
with the geometry of blocks and other ones deal with the
limit-equilibrium analysis. Different software codes have
been developed to compute these functions. By combining
these codes using the procedure presented in Figure 3, the
performance function for tunnel structural stability has been
achieved. Some of these stages, which are used in this
research, are presented here briefly and in the functional
form.
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Figure 3: Procedure for TuPSA performance function definition for a specific block.

3.1. Removability Function. For 3 joint sets, considering all
combinations of joints half spaces, there are eight tetrahedral
block types codified 000, 001, 010, 011, 100, 101, 110, and 111. A 0
in the 𝑖th place signifies that spherical triangle belongs to the
upper half-space of 𝑖th joint plane and conversely a 1 signifies
that spherical triangle belongs to the lower half-space of 𝑖th
joint plane. As defined by Figure 3, by checking the kinematic
instability of a block combined from joints half spaces, the
removability of block is determined (froma geometrical point
of view) based on block theory method (BTM).The inputs of
this function are joints and tunnel axis orientations and also
the code indicating the block and the binary output indicates
the removability of the block:

Flag = removable (TO, JD,BC) , (10)

where Flag is a binary 0 or 1 that indicates the removability of
the block (0: not removable, 1: removable) and BC is the block
code.

3.2. Key-Block Geometry Function. By determining the re-
movable blocks with kinematic analysis, it is possible to check
the kinetic instability of these blocks (Figure 3). At first, the
geometry of biggest/critical blocks (key blocks) around the
tunnel is determined based on BTM. Key-block geometry
function determines the key-block volume, 𝑉

𝑏
, block face

area, 𝑆
𝑏
, excavation face area of the block, 𝑆

𝑒
, trace length of

joints in excavation rim, 𝐿
𝑡
, and angular intervals of block

outcrops in the tunnel, 𝜃
1
and 𝜃

2
(Figure 4). The key-block

geometry function could be presented by

[𝑉
𝑏
, 𝑆
𝑏
, 𝑆
𝑒
, 𝐿
𝑡
, 𝜃1, 𝜃2]𝑖

= key-block-geometry (TO, 𝑟, JD,BC) .
(11)

3.3. Factor of Safety Function. Bydefining a specific key-block
geometry, it is possible to calculate the active andpassive force
vectors (in global ENU coordinate system) acting on the key
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Table 1: Properties of the circular tunnel.

Deterministic parameters Probabilistic parameters
Parameter Value Parameter Distribution
𝑇𝑇𝑃 0∘, 0∘ 𝐷

1

∗/∘ Normal (𝜇 = 30, 𝜎 = 5)
𝑟 2.5m 𝐷𝐷

1

∗∗/∘ Normal (𝜇 = 25, 𝜎 = 3)
𝑢 0KPa 𝐷

2
/∘ Normal (𝜇 = 55, 𝜎 = 7)

𝛾 2.7 𝐷𝐷
2
/∘ Normal (𝜇 = 110, 𝜎 = 5)

𝐾 0 𝐷
3
/∘ Normal (𝜇 = 70, 𝜎 = 4)

Support No support

𝐷𝐷
3
/∘ Normal (𝜇 = 240, 𝜎 = 7)

𝐶/KPa Truncated normal (𝜇 = 20, 𝜎 = 11) ≥0
𝜑/∘ Log-normal (𝜇 = 30, CoV = 0.07)

Ten/KPa Uniform ([0–8])
∗
𝐷𝑖: dip of 𝑖th joint set; ∗∗𝐷𝐷𝑖: dip direction of 𝑖th joint set.

𝜃1

𝜃2

Angular intervals of block

Block face area

Excavation face area

Joint trace length

Figure 4: Block geometry definitions.

block. In this study, the resultant active and passive force
vectors are obtained from (12) and (13), respectively [15, 16]:

𝐴 = 𝑊+𝐶+𝑈+𝐸, (12)

𝐹
𝑝
= 𝐻+𝐵, (13)

where 𝐴 is active force vector,𝑊 is block weight vector, 𝐶 is
shotcrete weight vector, 𝑈 is water force vector, 𝐸 is seismic
force vector, 𝐹

𝑝
is passive force vector, 𝐻 is shotcrete shear

resistance force vector, and 𝐵 is bolt force vector.
The probable sliding direction is computed by con-

sidering active forces (𝐴 vector). By knowing the sliding
direction, it is possible to calculate the joints shear and
tension strength using one of the joint behavior models
such as Mohr-Coulomb model (Figure 3). Finally, a limit

equilibrium analysis is performed to calculate the safety
factor. The general formulation is as follows:

𝐹
𝑆

=
Resisting forces (e.g., shear, tensile, and support forces)
Driving forces (e.g., weight, water, and seismic forces)

.
(14)

In this study the performance function of each key block has
been defined by block factor of safety as follows:

𝑃 = 𝐹
𝑆
− 1. (15)

The reliability problem of structural stability has been defined
by placing of tunnel performance function (15) in general
FORM problem (5). To solve resulting problem, a computer
code has been developed. Due to high complexity of the
tunnel performance function, it is impossible to introduce
an analytical and or a closed form solution for the resulted
optimization problem. To overcome this issue, a numerical
optimization method based on “interior-point algorithm”
[17] has been used. The optimization problem was solved
using TuPSA code for a typical example which is presented
in this work. The results show the great capability of FORM
method to reliability analysis of structural instability with low
failure probability instead of Monte-Carlo simulation.

4. Typical Example

Deterministic and probabilistic properties of a circular tunnel
and surrounding rock mass are given in Table 1. Clear corre-
lations are observed between joints mechanical properties as
well as joints geometrical parameters. Correlation coefficient
matrix of random parameters is illustrated in Table 2. The
stability of the tunnel has been studied by considering 5
different scenarios from deterministic to fully probabilistic
analysis. These scenarios are as follows:

(S1) The parameters variability has no influence on the
stability and only the mean values are effective in
analysis. A deterministic safety factor and block
performance were determined using the algorithm
presented in Figure 3.
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(S2) Only the joints strength parameters (𝐶, 𝜑,Ten) vari-
ability has an influence on the stability and these
parameters are assumed as the independent variables.

(S3) It is similar to scenario 2, but with considering the
effects of correlations between random variables.

(S4) Only the joints orientation parameters (𝐷𝐷
1
, 𝐷
1
,

𝐷𝐷
2
, 𝐷
2
, 𝐷𝐷
3
, 𝐷
3
) variability has an influence on the

stability and these parameters are assumed as the
correlated random variables.

(S5) All the joints properties (mechanical and geometrical
properties) variability has an influence on the stability

and these parameters are assumed as correlated ran-
dom variables.

Here, the reliability analysis steps for the general case (sce-
nario 5) are expressed.The other solutions are simply derived
from this case.

(1) Determine physical randomvector using the standard
normal variables.
Consider 𝑋 = (𝐶, 𝜑,Ten, 𝐷𝐷

1
, 𝐷
1
, 𝐷𝐷2, 𝐷2, 𝐷𝐷3,

𝐷
3
) as the physical random variables vector and

𝑍 = (𝑧
1
, 𝑧
2
, . . . , 𝑧

9
) as the standard normal variables

vector. The following steps are used to determine the
translation function (𝑋 = 𝑔(𝑍) in (5)):

(a) Define the Cholesky factor of correlationmatrix
based on (8):

𝐿 = chol

(
(
(
(
(
(
(
(
(
(
(
(
(

(

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 −0.3 0.8
−0.3 1 −0.2 0
0.8 −0.2 1

1 0.93 0.5 −0.4 −0.4 −0.07
0.93 1 0.45 −0.3 −0.3 −0.1
0.5 0.45 1 −0.7 −0.5 −0.1

0 −0.4 −0.3 −0.7 1 0.3 0.2
−0.4 −0.3 −0.5 0.3 1 0.2
−0.07 −0.1 −0.1 0.2 0.2 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

)
)
)
)
)
)
)
)
)
)
)
)
)

)

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 −0.3 0.8
0 0.95 0.042 0
0 0 0.60

1 0.93 0.5 −0.4 −0.4 −0.07
0 0.37 −0.04 0.20 0.20 −0.095
0 0 0.87 −0.57 −0.34 −0.08

0 0 0 0 0.69 −0.13 0.21
0 0 0 0 0.82 0.23
0 0 0 0 0 0.94

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(16)

(b) Transform standard normal vector to the corre-
lated normal vector:

𝑍
𝑐
= 𝑍𝐿. (17)

(c) Transform correlated normal variables to the
physical random variables based on (7):

𝑧1𝑇 = Φ
−1
(Φ(0− 20

11
)+Φ (𝑍

𝑐1)

⋅ (Φ (∞)−Φ(0− 20
11
))) ,

𝐶 = 20+ 11× 𝑧1𝑇KPa,

𝜉 = √ln (1 + 0.072),

𝜆 = ln (30) − 0.5× 𝜉2,

𝜑 = exp (𝜆 + 𝜉 ×𝑍
𝑐2) ,

Ten = 0+ 8×Φ (𝑍
𝑐3) KPa,

𝐷𝐷1 = 25+ 3×𝑍
𝑐4,

𝐷1 = 30+ 5×𝑍
𝑐5,
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Table 2: Correlation coefficient matrix of random parameters.

Variable 𝐶 𝜑 Ten 𝐷𝐷
1

𝐷
1

𝐷𝐷
2

𝐷
2

𝐷𝐷
3

𝐷
3

𝐶 1 −0.5 +0.8
𝜑 −0.5 1 −0.3 0
Ten +0.8 −0.3 1
𝐷𝐷
1

1 0.93 0.5 −0.4 −0.4 −0.07
𝐷
1

0.93 1 0.45 −0.3 −0.3 −0.1
𝐷𝐷
2 0 0.5 0.45 1 −0.7 −0.5 −0.1

𝐷
2

−0.4 −0.3 −0.7 1 0.3 0.2
𝐷𝐷
3

−0.4 −0.3 −0.5 0.3 1 0.2
𝐷
3

−0.07 −0.1 −0.1 0.2 0.2 1

000

001

110

010

101

111

Figure 5: Removable key blocks positions around the tunnel.

𝐷𝐷2 = 110+ 5×𝑍
𝑐6,

𝐷2 = 55+ 7×𝑍
𝑐7,

𝐷𝐷3 = 240+ 7×𝑍
𝑐8,

𝐷3 = 70+ 4×𝑍
𝑐9.

(18)

(2) Solve the nonlinear optimization problem of (5) by
using the TuPSA computer code.

5. Results and Discussion

By deterministic stability analysis using the mean values
of joints properties (scenario 1), six removable blocks have
been found and analyzed using the kinematic and kinetic
instability analysis. The position of these blocks around the
circular tunnel has been illustrated in Figure 5. The perfor-
mance function determination algorithm which is illustrated
in Figure 3 has been used in this analysis. The results of key
blocks removability, geometry, safety factor, and performance
are presented in Table 3.
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Figure 6: Reliability indexes for each block considering different
scenarios. ∗: no 𝛽-point found.
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Figure 7: Failure probability of each block considering different
scenarios.

The probabilistic analysis using the TuPSA method has
been carried out for scenarios 2–5 and the results are
presented in Figures 6 and 7. Figure 6 illustrates the reliability
index of each key block for different scenarios. Figure 7
illustrates the probability of each block failure for different
scenarios. Note that the small probability of failures is
illustrated in logarithmic scale. For validation, aMonte-Carlo
simulation has been carried out for scenario 2. In the Monte-
Carlo simulation, the number of iterations is selected so
that, based on (3), the coefficient of variation of 𝑝

𝑓
(CoV
𝑝𝑓
)

becomes less than 0.1. A comparison between results of
TuPSA method and Monte-Carlo simulation for scenario 2
is presented in Table 4.

A comparison between reliability analysis using corre-
lated and uncorrelated joint friction and cohesion strength
(Figures 6-7) indicates that considering the negative correla-
tion between joints friction and cohesion strength parameters
reduces the probability of block failure and increases the
tunnel reliability index.

As can be seen from Figures 6-7 (scenario 4), for the
removable blocks with high safety factor (greater than 3),
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Table 3: Results of deterministic analysis considering the mean values of random parameters (scenario 1).

Block code (BC)
Key-block geometry

𝐹
𝑆

Performance (𝑃)Volume (V𝑏) m3 Joints area (𝑆
𝑏
)

m2
Excavation face
area (𝑆

𝑒
) m2

Joints trace
length (𝐿

𝑡
) m

0 0 0/UUU 0.1906
0.9486
0.6044
0.5544

1.3972
3.3441
2.3024
3.0437

∞ (stable) ∞

0 0 1/UUL∗ 0.0098
0.0630
0.2109
0.0650

0.2768
1.0916
1.7541
1.3197

47.08 46.08

0 1 0/ULU 0.6032
1.1896
1.3302
1.9408

2.5946
3.8899
3.5865
4.3141

18.33 17.33

1 0 1/LUL 0.6032
1.1896
1.3302
1.9408

2.5946
3.8899
3.5865
4.3141

3.05 2.05

1 1 0/LLU 0.0098
0.0630
0.2109
0.0650

0.2768
1.0916
1.7541
1.3197

8.97 7.97

1 1 1/LLL 0.1906
0.9486
0.6044
0.5544

1.3972
3.3441
2.3024
3.0437

1.05 0.05

∗UUL: key block created by combination of 1st and 2nd joints upper half spaces and 3rd joint lower half space (based on BTM; see [6]).

Table 4: Results of the reliability analysis of tunnel stability, considering the joints strength parameters (C,𝜑, Ten) as the independent random
variables (scenario 2).

Block code
(BC)

FORM analysis Monte-Carlo simulation

Reliability
index (𝛽)

Probability of
failure (𝑝

𝑓
) %

Calculation
time (sec)∗

Function
iterations

Iterations
(∼needed)

Probability of
failure (𝑝

𝑓
) %

Simulation
time (sec)∗
(∼needed)

Actual CoV
𝑝𝑓

0 0 0 — — — — — — — —
0 0 1 3.838 6.19 × 10−3 10.6 58 ∼1.62 × 106 N-A∗∗ ∼2.82 × 105 N-A
0 1 0 10.320 2.76 × 10−23 9.4 57 ∼6.61 × 1026 N-A ∼1.15 × 1026 N-A
1 0 1 1.569 5.8 8.5 52 2000 5.5 348 0.093
1 1 0 2.021 2.17 9.7 52 5000 2.01 890 0.099
1 1 1 0.066 47.4 10.6 67 600 47.5 104.9 0.043
∗: calculation (simulation) time using a 2.67GHz, core i5 processor.
∗∗: it is not possible to calculate in reasonable time period with ordinary processing units.

the variability of joints orientation has very little impact on
the event of failure. By performing a comparison between
scenarios 2, 3, and 4, it can be concluded that for these blocks
the variability of strength parameters has a more effective
role in failure events. By comparing scenarios 2, 3, and 4
for block [1 1 1], it can be concluded that, for the marginal
blocks which have a low safety factor (between 1 and 2), both
of the geometrical and strength variabilities are important,
separately as well as together, in the failure event.

Table 4 illustrates the results of FORM analysis and the
Monte-Carlo simulation for the assumed case study. Con-
sidering the running time and accuracy of results, it is clear
that FORM is more efficient and more precise than ordinary
Monte-Carlo simulation (in finite iterations). This fact is
more evident when the probability of failure is too small and
consequently it requires too many simulation iterations to
evaluate accurate probability based on (3). Table 4 illustrates

that, on the contrary to FORM analysis, the simulation
iterations and simulation time increase when the probability
of failure decreases.

6. Conclusions

A reliability-based design methodology for tunnel structural
instability (TuPSA) is developed. Many sources of uncer-
tainties can be modeled and analyzed in evaluating the
probabilistic tunnel stability. The physical random variables
are considered to have arbitrary probability distribution
with any types of correlations. A combination of tunnel
structural stability models and first order reliability method
(FORM) has been used for reliability analysis of structural
instabilities around the circular tunnels. In this method,
by transforming the performance functions from the space
spanned by physical random variables into the noncorrelated
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standard normal random variables space, the reliability index
and probability of failure are calculated via optimization
techniques.

A case study with five scenarios from deterministic to full
probabilistic state is presented to show the implementation of
the TuPSA model and to obtain an estimate of the target 𝛽-
value for each removable key block. It is possible to replace
factor of safety with the performance of tunnel considering
the tunnel design goals. Comparison between probabilistic
and deterministic analyses results indicates that probabilistic
results, including the design point and probability of failure,
aremore rational than deterministic factor of safety. Compar-
ison between the failure probabilities obtained from FORM
and those obtained from Monte-Carlo simulations indicates
that FORM is the most efficient reliability method and its
accuracy is very high and more than sufficient.

Deterministic methods are the base of design and anal-
ysis in rock engineering. However, the reliability analysis
presented in this paper demonstrates the applicability of
the statistical and probabilistic analysis in problems dealing
with uncertainties and variability.However reliability analysis
could consider the effects of uncertainties in stability analysis,
faced with the same problem as the deterministic approaches.
Both of the deterministic and probabilistic analyses use the
same failure models that may have inherent weaknesses.
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Felsmechanik Mécanique des Roches, vol. 6, no. 4, pp. 189–236,
1974.

[6] R. E. Goodman and G. Shi, Block Theory and Its Application to
Rock Engineering, Prentice-Hall, 1985.

[7] G. Chen, “Probabilistic key block analysis of a mine ventilation
shaft stability—a case study,”Geomechanics andGeoengineering,
vol. 7, no. 4, pp. 255–262, 2012.

[8] D. Li, C. Zhou, W. Lu, and Q. Jiang, “A system reliability
approach for evaluating stability of rock wedges with correlated
failure modes,” Computers and Geotechnics, vol. 36, no. 8, pp.
1298–1307, 2009.

[9] B.K. LowandH.H. Einstein, “Reliability analysis of roofwedges
and rockbolt forces in tunnels,” Tunnelling and Underground
Space Technology, vol. 38, pp. 1–10, 2013.

[10] K. K. Phoon, Reliability-Based Design in Geotechnical Engineer-
ing: Computations and Applications, Taylor & Francis, 2008.

[11] A. M. Hasofer and N. C. Lind, An Exact and Invariant First-
Order Reliability Format, Solid Mechanics Division, University
of Waterloo, 1973.

[12] M. L. Shooman, Probabilistic Reliability: An Engineering
Approach, McGraw-Hill, New York, NY, USA, 1968.

[13] R. Y. Rubinstein, Simulation and theMonteCarloMethod,Wiley,
New York, NY, USA, 1981.

[14] B. H. G. Brady and J. W. Bray, “The boundary element method
for determining stresses and displacements around long open-
ings in a triaxial stress field,” International Journal of Rock
Mechanics andMining Sciences and, vol. 15, no. 1, pp. 21–28, 1978.

[15] Rocscience, Unwedge Theory Manual—Factor of Safety Cal-
culations, Rocscience Inc, http://www.rocscience.com/help/
unwedge/webhelp/pdf files/theory/unwedge theory.pdf.

[16] J. H. Curran, B. Corkum, and R. E. Hammah, “Three-
dimensional analysis of underground wedges under the influ-
ence of stresses,” in Proceedings of the Gulf Rocks Conference, pp.
449–466, Elsevier Science, June 2004.

[17] R.H. Byrd,M. E.Hribar, and J. Nocedal, “An interior point algo-
rithm for large-scale nonlinear programming,” SIAM Journal on
Optimization, vol. 9, no. 4, pp. 877–900, 1999.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Climatology
Journal of

Ecology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Earthquakes
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

Applied &
Environmental
Soil Science

Volume 2014

Mining

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

 International Journal of

Geophysics

Oceanography
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

  Journal of 
 Computational 
Environmental Sciences
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of
Petroleum Engineering

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Geochemistry
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Atmospheric Sciences
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oceanography
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mineralogy
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Meteorology
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Paleontology Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Scientifica
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Geological Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Geology  
Advances in


