
Research Article
Response of Functionally Graded Material
Plate under Thermomechanical Load Subjected to
Various Boundary Conditions

Manish Bhandari1 and Kamlesh Purohit2

1 Jodhpur Institute of Engineering and Technology, Jodhpur, Rajasthan, India
2Jai Narain Vyas University, Jodhpur, Rajasthan, India

Correspondence should be addressed to Manish Bhandari; manish.bhandari@jietjodhpur.com

Received 8 October 2014; Revised 27 December 2014; Accepted 7 January 2015

Academic Editor: Massimo Pellizzari

Copyright © 2015 M. Bhandari and K. Purohit. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Functionally graded materials (FGMs) are one of the advanced materials capable of withstanding the high temperature
environments.The FGMs consist of the continuously varying composition of two differentmaterials. One is an engineering ceramic
to resist the thermal loading from the high-temperature environment, and the other is a light metal to maintain the structural
rigidity. In the present study, the properties of the FGM plate are assumed to vary along the thickness direction according to the
power law distribution, sigmoid distribution, and exponential distribution. The fundamental equations are obtained using the
first order shear deformation theory and the finite element formulation is done using minimum potential energy approach. The
numerical results are obtained for different distributions of FGM, volume fractions, and boundary conditions. The FGM plate is
subjected to thermal environment and transverse UDL under thermal environment and the response is analysed. Numerical results
are provided in nondimensional form.

1. Introduction

Composite materials are widely in use due to their intrinsic
mechanical property such as high strength, modulus of
elasticity, and lower specific gravity. Further, as a result of
intensive studies into metallurgical aspects of material and
better understanding of structural property, it has become
possible to develop new composite materials with improved
physical and mechanical properties. The functionally graded
material (FGM) is one such material whose property can
be useful to accomplish the specific demands in various
engineering applications to achieve the advantage of the
properties of individual material. This is possible due to the
material composition of the FGMwhich changes according to
a law in a preferred direction.The thermomechanical analysis
of FGM structures is one dimension which has attracted
the attention of many researchers in the past few years. The
applications of FGMs include design of aerospace struc-
tures, heat engine components, and nuclear power plants.

A large number of research papers have been published to
evaluate the behaviour of FGM using both experimental
and numerical techniques which include both linearity and
nonlinearity in various areas. A few of published literatures
highlight the importance of the present work. The FGM
can be produced by gradually and continuously varying
the constituents of multiphase materials in a predetermined
profile. Most researchers use the power law function (P-
FGM), sigmoid function (S-FGM), or exponential function
(E-FGM) to describe the effective material properties. Delale
and Erdogan [1] indicated that the effect of Poisson’s ratio
on the deformation is much less as compared to that of
Young’s modulus. Praveen and Reddy [2] examined the
thermoelastostatic response of simply supported square FG
plates subjected to pressure loading and thickness varying
temperature fields. They used the first order shear deforma-
tion plate theory (FSDT) to develop the governing equations.
They reported that the basic response of the plates which
corresponds to properties intermediate to those of the metal
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and the ceramic does not necessarily lie in between those of
the ceramic and metal. Reddy [3] found that the nondimen-
sional deflection reached a minimum value at a particular
volume fraction index. They used the power law function
to calculate the material gradient. Cheng and Batra [4]
computed deformations due to thermal andmechanical loads
applied to the top and bottom surfaces of the rigidly clamped
elliptic FG plate separately. It was found that the through-
thickness distributions of the in-plane displacements and
transverse shear stresses in a functionally graded plate do not
agree with those assumed in classical and shear deformation
plate theories. Reddy and Zhen [5] solved the problem
using a higher order shear and normal deformable plate
theory (HONSDPT) since, in the HOSNDPT, the transverse
normal and shear stresses are computed from equation of
the plate theory rather than by integrating the balance of
linear momentum with respect to the thickness coordinate.
It was reported that the assumption of constant deflection
is not true for thermal load but it was found to be true for
mechanical load. Qian and Batra [6] found that the centroidal
deflection for a clamped plate is nearly one-third of that
for simply supported plate, and the maximum magnitude of
the axial stress induced at the centroid of the top surface is
nearly 40% larger than that for a simply supported plate. Dai
et al. [7] analyzed the plate under the mechanical loading
as well as thermal gradient and found that the relations
between the deflection and the volume fraction exponent
are quite different under the two loadings. Ferreira et al. [8]
used collocationmethod third order shear order deformation
theory and presented the effect of aspect ratio of the plate
and the volume fraction of the constituents on the transverse
deflection. Chi and Chung [9, 10] studied the effect of
loading conditions on the mechanical behaviour of a simply
supported rectangular FGMplate.They assumed that Young’s
moduli vary continuously throughout the thickness direction
according to the volume fraction of constituents defined by
sigmoid function. The maximum tensile stress of the FGM
plate was found to be at the bottom surface of the plate.
Wang and Qin [11] concluded that the appropriate graded
parameter can lead to low stress concentration and little
change in the distribution of stress fields. They assumed that
the thermoelastic constants and the temperature vary expo-
nentially through the thickness. Mahdavian [12] obtained the
equilibrium and stability equations based on the classical
plate theory (CPT) and Fourier series expansion.They found
that the critical buckling coefficients for FGM plates are
considerably higher than isotropic plates. Ashraf and Daoud
[13] derived the equilibrium and stability equations using
sinusoidal shear deformation plate theory (SPT). It was
concluded that the critical buckling temperature differences
of functionally graded plates are generally lower than the cor-
responding ones for homogeneous ceramic plates. Alieldin et
al. [14] proposed three approaches to determine the property
details of an FG plate equivalent to the original laminated
composite plate. They developed the equations of motion
based on the combination of the first order plate theory
and the Von Karman strains. Kyung-Su and Ji-Hwan [15]
compared numerical results for three types of materials. It
was found that the minimum compressive stress ratio is

observed for the fully FGMplate with largest volume fraction
index. Suresh et al. [16] studied the effect of shear defor-
mation and nonlinearity response of functionally graded
material plate and concluded that the effect of nonlinearity
in functionally graded composite plates is more predominant
in decreasing the deflections in thin plates for side to
thickness ratio of 10. Mohammad and Singh [17] obtained
the numerical results for different thickness ratios, aspect
ratios, volume fraction index, and temperature rise with
different loading and boundary conditions. They employed
the boundary conditions; for example, all edges are simply
supported (SSSS), all edges are clamped (CCCC), two edges
are simply supported and two are clamped (SCSC), two edges
are clamped and two are free (CFCF), all edges are hinged
(HHHH), and two edges are clamped and two are hinged
(CHCH). It was noticed that the maximum centre deflection
was found for simply supported boundary conditions and
least central deflection was found for clamped (CCCC)
boundary conditions. Nguyen-Xuan et al. [18] applied the
method for static, free vibration and mechanical/thermal
buckling problems of functionally graded material (FGM)
plates. They analysed the behaviour of FGM plates under
mechanical and thermal loads numerically in detail through a
list of benchmark problems. Alshorbagy et al. [19] concluded
that FG plates provide a high ability to withstand thermal
stresses, which reflects its ability to operate at elevated tem-
peratures. Bhandari and Purohit [20] presented the response
of FG plates under mechanical load for various boundary
conditions, for example, SSSS, CCCC, SCSC, CFCF, CCSS,
SSFF, SSSC, SSSF, and SSCF. The power law, sigmoid law,
and exponential law were used for the calculations of the
properties through the thickness. They also compared the
behaviour of isotropic plates (ceramic andmetal) with that of
the FGM plates. It was concluded that the isotropic ceramic
plate has the lowest tensile stress for all the boundary condi-
tions. It was also reported that the maximum tensile stress
occurs for CCFF boundary condition and the minimum
tensile stress was observed for SCSC boundary condition.
Bhandari and Purohit [21] presented the response of FG
plates under mechanical load for varying aspect ratios. The
power law, sigmoid law, and exponential law were used for
the calculations of the properties through the thickness.They
also compared the behaviour of isotropic plates (ceramic and
metal) with that of the FGM plates.

With the increasing applications of functionally graded
materials, it is vital to understand the behaviour of thermo-
mechanical response of FG plates under various boundary
conditions. It is also important to study the response of
the FG materials following various material gradient laws,
for example, power law function, sigmoid function, and
exponential function for properties. In both power law and
exponential functions, the stress concentrations appear in
one of the interfaces in which the material is continuous but
is rapidly changing. In sigmoid FGM, which is composed
of two power law functions, there is a gradual change in
volume fraction as compared to power law and exponential
function. Power law function has been applied to many of
the FGMs’ but application of sigmoid function is sparse
in literature. Power law function, sigmoid function, and
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exponential function have been used in various research
works separately but the comparisons of the three FGM
laws for various volume fraction exponents, ceramic and
metal, have been sparse. In most of the research works, FGM
plates with edges simply supported and clamped have been
considered. Plate subjected to other boundary conditions,
for example, clamped, free, hinged, and combined, is also
useful but they have been rarely reported.Thermomechanical
loaded FGM structures have been researched but thermally
loaded plates have been rarely reported.

Keeping this in consideration, the objective of the present
work is to examine the thermomechanical behaviour for
various boundary conditions, various material gradient laws,
and various volume fraction exponents. The results are
presented in the form of nondimensional parameters. The
comparison of isotropic ceramic, metal, and FGM plates is
also presented.

2. Material Gradient of FGM Plate

Thematerial properties in the thickness direction of the FGM
plates vary with power law functions (P-FGM), exponential
functions (E-FGM), or sigmoid functions (S-FGM). A mix-
ture of the two materials composes the through-thickness
characteristics. The FGM plate of thickness “ℎ” is modeled
usually with one side of the material being ceramic and the
other side being metal as shown in Figure 1.

2.1. Power Law Distribution. Material properties of P-FGM
are dependent on the volume fraction (𝑉𝑓) which obeys
power law as defined in

𝑉𝑓 = (
𝑧

ℎ
+
1

2
)

𝑛

, (1)

where 𝑛 is a parameter that dictates the material variation
profile through the thickness known as the volume fraction
exponent, ℎ is thickness of plate, and 𝑧 is depth measured
from the neutral axis of the plate.

Thematerial properties of a P-FGMcan be determined by
the rule of mixture as given in

𝑃 (𝑧) = (𝑃𝑡 − 𝑃𝑏) 𝑉𝑓 + 𝑃𝑏, (2)

where 𝑃(𝑧) is generic material property, for example, elastic
modulus, at a particular depth 𝑧, 𝑃𝑡 and 𝑃𝑏 are generic
properties at top and bottom surface of the plate, and 𝑛 =

0 and ∞ denotes fully ceramic plate and fully metal plate,
respectively.

Consequently, at bottom surface, (𝑧/ℎ) = −1/2 and 𝑉𝑓 =
0; hence, 𝑃(𝑧) = 𝑃𝑏 and, at top surface, (𝑧/ℎ) = 1/2 and so
𝑉𝑓 = 1; hence, 𝑃(𝑧) = 𝑃𝑡.

2.2. Sigmoid Law Distribution. Material properties vary con-
tinuously throughout the thickness direction according to the
volume fraction of constituents defined by sigmoid function
[8]. The volume fraction is calculated using two power law
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Figure 1: FGM plate.

functions to ensure smooth distribution of stresses among all
the interfaces. The two power law functions are defined by

𝑔1 (𝑧) = 1 −
1

2
(
ℎ/2 − 𝑧

ℎ/2
)

𝑝

for 0 ≤ 𝑧 ≤ ℎ
2
, (3a)

𝑔2 (𝑧) =
1

2
(
ℎ/2 + 𝑧

ℎ/2
)

𝑝

for − ℎ
2
≤ 𝑧 ≤ 0. (3b)

By using the rule of mixture, Young’s modulus of the S-
FGM can be calculated by

𝐸 (𝑧) = 𝐸1𝑔1 (𝑧) + [1 − 𝑔1 (𝑧)] 𝐸2 for 0 ≤ 𝑧 ≤ ℎ
2
, (4a)

𝐸 (𝑧) = 𝐸1𝑔2 (𝑧) + [1 − 𝑔2 (𝑧)] 𝐸2 for − ℎ
2
≤ 𝑧 ≤ 0, (4b)

where 𝐸1 is Young’s modulus at the top surface and 𝐸2 is
Young’s modulus at the bottom surface.

2.3. Exponential Law. Material properties vary continuously
throughout the thickness direction according to the volume
fraction of constituents defined exponentially through the
thickness. Accordingly, the exponential law is defined as

𝐸 (𝑧) = 𝐸2𝑒
(1/ℎ) ln(𝐸

1
/𝐸
2
)(𝑧+ℎ/2)

, (5)

where 𝐸1 is Young’s modulus at the top surface and 𝐸2 is
Young’s modulus at the bottom surface.

3. Governing Equations

3.1. Displacement and Strain Field. TheFSDT theory [3] takes
into account transverse shear strain in the formulation with
the following assumptions.

(1) The transverse normals remain straight after defor-
mation but may not be orthogonal to the midsurface
of the plate.

(2) The out-of-plane normal stress 𝜎𝑧 = 0.

(3) The layers of the composite plate are perfectly bonded.

(4) The material of each layer is linear elastic and
isotropic.
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Under the same assumptions and restrictions, the first
order plate theory is based on the displacement field which
can be expressed in the following form:

𝑢 (𝑥, 𝑦, 𝑧) = 𝑢0 (𝑥, 𝑦) + 𝑧Φ𝑥 (𝑥, 𝑦) ,

V (𝑥, 𝑦, 𝑧) = V0 (𝑥, 𝑦) + 𝑧Φ𝑦 (𝑥, 𝑦) ,

𝑤 (𝑥, 𝑦, 𝑧) = 𝑤0 (𝑥, 𝑦) ,

(6)

where (𝑢0, V0, 𝑤0, Φ𝑥,Φ𝑦) are unknown functions to be
determined.

The Von Karman nonlinear strains associated with the
displacement field are (𝜀𝑧𝑧 = 0) given by

[
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(7)

𝜀𝑖𝑗 are the total strain components. The total strain
components are the sum of the elastic strains 𝜀𝑖𝑗𝑚 (due
to the applied mechanical loads) and thermal strains 𝜀𝑇𝑖
(due to temperature change). So the total strains are given
by

𝜀𝑖𝑗 = 𝜀𝑖𝑗𝑚 + 𝜀𝑇𝑖. (8)

The total strain components can be divided into tensile
strain (𝜀𝑥𝑥) and shear strain (𝜀𝑥𝑦) components given by

[
𝜀𝑦𝑦 (𝑥, 𝑦, 𝑧)

𝛾𝑥𝑦 (𝑥, 𝑦, 𝑧)
] =

[
[

[

1 0 0 𝑧 0 0

0 1 0 0 𝑧 0

0 0 1 0 0 𝑧

]
]

]

⋅

[
[
[
[
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[
[
[
[
[
[

[

𝑢0,𝑥 (𝑥, 𝑦)

V0,𝑥 (𝑥, 𝑦)

𝑢0,𝑥 (𝑥, 𝑦) + V0,𝑥 (𝑥, 𝑦)

𝜙0,𝑥 (𝑥, 𝑦)

𝜙0,𝑦 (𝑥, 𝑦)

𝜙0,𝑥 (𝑥, 𝑦) + 𝜙0,𝑦 (𝑥, 𝑦)

]
]
]
]
]
]
]
]
]
]
]

]

(9)

Or {𝜀𝑏} = [𝑍𝑠] {𝜀
0
𝑏} (10)

[
𝛾𝑥𝑧 (𝑥, 𝑦, 𝑧)

𝛾𝑦𝑧 (𝑥, 𝑦, 𝑧)
] = [

1 0

0 1
][
𝑤0,𝑥 (𝑥, 𝑦) + 𝜙𝑥 (𝑥, 𝑦)

𝑤0,𝑦 (𝑥, 𝑦) + 𝜙𝑦 (𝑥, 𝑦)
] (11)

Or {𝜀𝑠} = [𝑍𝑠] {𝜀
0
𝑠 } , (12)

where {𝜀0𝑏} and {𝜀
0
𝑠 } are the nodal bending strains and the

nodal shear strains, respectively.

3.2. MinimumTotal Potential Energy Formulation. For all the
conditions of equilibrium, the potential energy is minimal.
The minimum total potential energy formulation is a com-
mon approach in generating finite element models in solid
mechanics. External loads applied to a body will cause the
body to deform. During the deformation, the work done by
the external forces is stored in the material in the form of
elastic energy, called strain energy. The governing equations
for the plate equilibrium are derived based on the principle of
minimum total potential energy. So, the total potential energy
takes the form as in

Π = (0.5 ∫
𝐴
{𝜀
0
𝑏}
𝑇
[𝐷𝐸𝑏] {𝜀

0
𝑏} 𝑑𝐴 − ∫

𝐴
{𝜀
0
𝑏}
𝑇
[𝐷𝑇𝑏] 𝑑𝐴)

+ (0.5 ∫
𝐴
{𝜀
0
𝑠 }
𝑇
[𝐷𝐸𝑠] {𝜀

0
𝑠 } 𝑑𝐴 − ∫

𝐴
{𝜀
0
𝑠 }
𝑇
[𝐷𝑇𝑠] 𝑑𝐴)

− Σ {𝑃} {𝑢
𝑜
} ,

(13)

where [𝐷𝑇𝑏] and [𝐷𝑇𝑠] are given by

[𝐷𝑇𝑏] = ∫
𝑧
{𝑍𝑏}
𝑇
[𝐷𝑏] 𝜀𝑇𝑏𝑑𝑧,

[𝐷𝑇𝑠] = ∫
𝑧
{𝑍𝑠}
𝑇
[𝐷𝑠] 𝜀𝑇𝑠𝑑𝑧,

(14)

where {𝜀𝑇𝑏} = [
𝛼(𝑧)𝛿𝑇(𝑧)
𝛼(𝑧)𝛿𝑇(𝑧)
0

], {𝜀𝑇𝑠} = [ 00 ], 𝛼(𝑧) is the
thermal coefficient of expansion, and 𝛿𝑇(𝑧) is the continuum
temperature change through the plate thickness. Based on the
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principal of the equivalent single-layer theories, a heteroge-
neous plate is treated as a statically equivalent, single layer
having a complex constitutive behaviour, reducing the 3D
continuum problem to 2D problem. The equivalent layer of
the FG plate can be obtained by integrating the plate material
properties through the plate thickness as in

[𝐷𝐸𝑏] = ∫

ℎ/2

−ℎ/2
{𝑍𝑏}
𝑇
[𝐷𝑏]
𝑇
{𝑍𝑏} 𝑑𝑧, (15a)

[𝐷𝐸𝑠] = ∫

ℎ/2

−ℎ/2
{𝑍𝑠}
𝑇
[𝐷𝑠]
𝑇
{𝑍𝑠} 𝑑𝑧, (15b)

where [𝐷𝑏] and [𝐷𝑠] are the bending and shear material
matrices, respectively. These material matrices provide the
stress-strain relations for FG plates as in

[𝐷𝑏] =
[
[
[

[

𝑄11 𝑄12 𝑄16

𝑄12 𝑄22 𝑄26

𝑄16 𝑄26 𝑄66

]
]
]

]

,

[𝐷𝑠] = [
𝑄44 𝑄45

𝑄45 𝑄55

] .

(16)

The 𝑄𝑖𝑗(𝑧) are the equivalent material property types of
stiffness as a function of the plate thickness direction (𝑧)
which follows the power law function (2), sigmoid function
((3a) and (3b)), and exponential function (5). The equivalent
material types of stiffness of isotropic FG plate are as in

𝑄11 (𝑧) = 𝑄22 (𝑧) =
𝐸 (𝑧)

1 − ]2
,

𝑄12 (𝑧) = ]𝑄11 (𝑧) ,

𝑄66 (𝑧) =
1 − ]
2
𝑄11 (𝑧) ,

𝑄44 (𝑧) = 𝑄55 (𝑧) = 𝑘
1 − ]
2
𝑄11 (𝑧) ,

𝑄16 (𝑧) = 𝑄26 (𝑧) = 𝑄45 (𝑧) = 0,

(17)

where 𝑄(𝑧) is the effective young’s modulus, 𝑘 (= 5/6) is
shear correction factor, and ] is the effective Poisson’s ratio
of the material through the plate thickness.

3.3. Finite Element Model. The displacements and normal
rotations at any point into a finite element “𝑒” may be
expressed, in terms of the 𝑛 nodes of the element, as in

[
[
[
[
[
[
[
[

[

𝑢0 (𝑥, 𝑦)

V0 (𝑥, 𝑦)

𝑤0 (𝑥, 𝑦)

𝜙𝑥 (𝑥, 𝑦)

𝜙𝑦 (𝑥, 𝑦)

]
]
]
]
]
]
]
]

]

=

𝑛

∑

𝑖=1

[
[
[
[
[
[
[
[

[

𝜑
𝑒
𝑖 0 0 0 0 0

0 𝜑
𝑒
𝑖 0 0 0 0

0 0 𝜑
𝑒
𝑖 0 0 0

0 0 0 𝜑
𝑒
𝑖 0 0

0 0 0 0 0 𝜑
𝑒
𝑖

]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[

[

𝑢𝑗

V𝑗
𝑤𝑗

𝑠𝑗1

𝑠𝑗2

]
]
]
]
]
]
]
]

]

, (18)

where 𝜑𝑒𝑖 is the Lagrange interpolation function at node 𝑖.
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Figure 2: Eight-node quadratic Lagrange element.

The Lagrange interpolation functions for eight-node
rectangular element (Figure 2) are given by (19) in terms of
the natural coordinates:

{𝐿𝑒} =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜑1

𝜑2

𝜑3

𝜑4

𝜑5

𝜑6

𝜑7

𝜑8

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=
1

4

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(1 − 𝜉) (1 − 𝜂) (−𝜉 − 𝜂 − 1)

(1 + 𝜉) (1 − 𝜂) (𝜉 − 𝜂 − 1)

(1 + 𝜉) (1 + 𝜂) (𝜉 + 𝜂 − 1)

(1 − 𝜉) (1 + 𝜂) (−𝜉 + 𝜂 − 1)

2 (1 − 𝜉
2
) (1 − 𝜂)

2 (1 + 𝜉) (1 − 𝜂
2
)

2 (1 − 𝜉
2
) (1 + 𝜂)

2 (1 − 𝜉) (1 − 𝜂
2
)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (19)

The nodal bending strain can be written as in

{𝜀
0
𝑏} =

[
[
[
[
[
[
[
[
[
[
[

[

𝑢0,𝑥 (𝑥, 𝑦)

V0,𝑥 (𝑥, 𝑦)

𝑢0,𝑥 (𝑥, 𝑦) + V0,𝑥 (𝑥, 𝑦)

𝜙𝑥,𝑥 (𝑥, 𝑦)

𝜙𝑦,𝑦 (𝑥, 𝑦)

𝜙𝑥,𝑦 (𝑥, 𝑦) + 𝜙𝑦,𝑥 (𝑥, 𝑦)

]
]
]
]
]
]
]
]
]
]
]

]

=

8

∑

𝑖=1

[
[
[
[
[
[
[
[
[
[
[

[

𝜑
𝑒
𝑖 0 0 0 0

0 𝜑
𝑒
𝑖 0 0 0

𝜑
𝑒
𝑖 𝜑
𝑒
𝑖 0 0 0

0 0 0 𝜑
𝑒
𝑖 0

0 0 0 0 𝜑
𝑒
𝑖

0 0 0 𝜑
𝑒
𝑖 𝜑
𝑒
𝑖

]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[

[

𝑢𝑗

V𝑗
𝑤𝑗

𝑠𝑗1

𝑠𝑗2

]
]
]
]
]
]
]
]

]

Or {𝜀
0
𝑏} =

8

∑

𝑖=1

[𝐵𝑏𝑗] {𝑢
0
𝑗} .

(20)
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The nodal shearing strain can be written as in

{𝜀
0
𝑠 } = [

𝑤0,𝑥 (𝑥, 𝑦) + 𝜙𝑥 (𝑥, 𝑦)

𝑤0,𝑦 (𝑥, 𝑦) + 𝜙𝑦 (𝑥, 𝑦)
]

=

8

∑

𝑖=1

[
0 0 𝜑

𝑒
𝑖 𝜑
𝑒
𝑖 0

0 0 𝜑
𝑒
𝑖 0 𝜑

𝑒
𝑖

]

[
[
[
[
[
[
[
[

[

𝑢𝑗

V𝑗
𝑤𝑗

𝑠𝑗1

𝑠𝑗2

]
]
]
]
]
]
]
]

]

Or {𝜀
0
𝑠 } =

8

∑

𝑖=1

[𝐵𝑠𝑗] {𝑢
0
𝑗} ,

(21)

where [𝐵𝑏𝑗] is the curvature-displacement matrix, [𝐵𝑠𝑗] is
the shear strain-displacement matrix, and {𝑢0𝑗} are the nodal
degrees of freedom.

The total potential energy can be given in

Π = (0.5 ∫
𝐴
{𝑢
𝑜
}
𝑇
[𝐵𝑏]
𝑇
[𝐷𝐸𝑏] {𝑢

𝑜
} [𝐵𝑏] 𝑑𝐴

−∫
𝐴
{𝑢
𝑜
}
𝑇
[𝐵𝑏]
𝑇
[𝐷𝑇𝑏] 𝑑𝐴)

+ 0.5 ∫
𝐴
{𝑢
𝑜
}
𝑇
[𝐵𝑠]
𝑇
[𝐷𝐸𝑠] {𝑢

𝑜
} [𝐵𝑠] 𝑑𝐴

− ∫
𝐴
{𝑢
𝑜
}
𝑇
[𝐵𝑠]
𝑇
[𝐷𝑇𝑠] 𝑑𝐴

− Σ {𝑃} {𝑢
𝑜
}
𝑇
.

(22)

The minimum potential energy principle states that

𝛿Π = (∫
𝐴
[𝐵𝑏]
𝑇
[𝐷𝐸𝑏] [𝐵𝑏] 𝑑𝐴) {𝑢

𝑜
}

+ (∫
𝐴
[𝐵𝑠]
𝑇
[𝐷𝐸𝑠] [𝐵𝑠] 𝑑𝐴) {𝑢

𝑜
}

− ∫
𝐴
[𝐵𝑏]
𝑇
[𝐷𝑇𝑏] 𝑑𝐴

− ∫
𝐴
[𝐵𝑠]
𝑇
[𝐷𝑇𝑠] 𝑑𝐴 − Σ {𝑃} [𝜑

𝑒
𝑖 ]
𝑇
= 0.

(23)

In another form,

[[𝐾𝑏] + [𝐾𝑠]] {𝑢
𝑜
} = {𝐹𝑇} + {𝑃} , (24)

where [𝐾𝑏], [𝐾𝑠] are the element bending and shear stiffness
matrices, respectively, defined as in (25a) and (25b). {𝐹𝑇},

{𝑃} are the element thermal and mechanical load vectors,
respectively, defined as in (26a), (26b), and (26c). Consider

[𝐾𝑏] = ∫
𝐴
[𝐵𝑏]
𝑇
[𝐷𝐸𝑏] [𝐵𝑏] 𝑑𝐴, (25a)

[𝐾𝑠] = ∫
𝐴
[𝐵𝑠]
𝑇
[𝐷𝐸𝑠] [𝐵𝑠] 𝑑𝐴, (25b)

{𝑃} = ∫
𝐴
[𝜑
𝑒
𝑖 ]
𝑇
{𝜎} 𝑑𝐴, (26a)

{𝐹𝑇𝑏} = ∫
𝐴
[𝐵𝑏]
𝑇
[𝐷𝑇𝑏] 𝑑𝐴, (26b)

{𝐹𝑇𝑠} = ∫
𝐴
[𝐵𝑠]
𝑇
[𝐷𝑇𝑠] 𝑑𝐴. (26c)

Substituting (20) and (21) into (9) and (11), the bending
and shear strain vectors can be obtained. The normal stress
components can be determined as in

[
[
[

[

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑥𝑦

]
]
]

]

=
[
[
[

[

𝑄11 𝑄12 0

𝑄12 𝑄22 0

0 0 𝑄66

]
]
]

]

×
[
[
[

[

[
[
[

[

𝜀𝑥𝑥

𝜀𝑦𝑦

𝛾𝑥𝑦

]
]
]

]

−
[
[

[

𝛼 (𝑧) 𝛿𝑇 (𝑧)

𝛼 (𝑧) 𝛿𝑇 (𝑧)

0

]
]

]

]
]
]

]

Or {𝜎𝑏} = [𝐷𝑏] {𝜀𝑏} .

(27)

The shear stress components are determined as in

[
𝜎𝑦𝑧

𝜎𝑥𝑧

] = [
𝑄44 0

0 𝑄55

][
𝛾𝑥𝑧 (𝑥, 𝑦, 𝑧)

𝛾𝑦𝑧 (𝑥, 𝑦, 𝑧)
] [[

𝛾𝑦𝑧

𝛾𝑥𝑧

] − [
0

0
]]

Or {𝜎𝑠} = [𝐷𝑠] {𝜀𝑠} .

(28)

4. Numerical Examples

To ascertain the accuracy and proficiency of the present
finite element formulation, two examples have been analysed
for thermomechanical deformations of the FGM plates. In
this section, the finite element formulation of FGM plate
described in previous section has been applied to a few
problems to test its validity, versatility, and accuracy.

Example 1. The results are compared with those given by
Ferreira et al. [8] in which meshless collocation method and
first order shear deformation theory have been used. A square
(1m × 1m) simply supported FGM plate is considered for
the investigation. The plate is made of a ceramic material
(ZrO2 :𝐸 = 151GPa, ] = 0.3) at the top surface and
metallic material (Al :𝐸 = 70Gpa, ] = 0.3) at the bottom
surface. The length to thickness ratio (𝑎/ℎ) was taken to
be 20. Volume fraction exponent studied was 𝑛 = 0; pure
ceramic 0.5, 1.0, 2, and∝; pure metal. Where 𝐸 is modulus of
elasticity and ] is Poisson’s ratio, the FGM plate problem with
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Table 1: Transverse displacement of a simply supported (SSSS)
square FGM plate subjected to UDL.

Volume
fraction
exponent (𝑛)

Transverse displacement 𝑢𝑧 = 𝑢𝑧/ℎ %
DifferenceFerreira et al.

[8] Present results

Ceramic (0) 0.0205 0.0203 0.97

0.5 0.0262 0.0264 0.76

1 0.0294 0.0297 1.02

2 0.0323 0.0326 0.93

Metal (∝) 0.0443 0.0447 0.90

abovementioned inputs is solved by proposed finite element
formulation, implemented through ANSYS Software. The
properties were calculated using power law function and
externalmechanical load in the formof uniformly distributed
load which have been applied with intensity of 10 kN/m2.The
numerical solution of this FGM plate for nondimensional
transverse displacement 𝑢𝑧 = 𝑢𝑧/ℎ is computed for different
values of volume fraction exponent “𝑛.” These results are
reported in Table 1.

The comparison of present results with those of Ferreira
et al.’s [8] shows that the results obtained by proposed finite
element methodology is in good agreement with published
results. The difference between the two results is nearly 1%.

Example 2. In this example, the results are compared with
those given by Chi and Chung [10] in which classical plate
theory and Fourier series expansion have been used. A simply
supported FGM plate is considered for the investigation.The
aspect ratio (𝑎/𝑏) of the plate in which 𝑎 = 0.1m and “𝑏” is
kept varying. Also the length to thickness ratio 𝑎/ℎ is taken
as 50. The properties at the top surface are 𝐸 = 21GPa,
] = 0.3 and those at the bottom surface are 𝐸 = 210GPa,
] = 0.3. Volume fraction exponent studied was 𝑛 = 2

where 𝐸 is modulus of elasticity and ] is Poisson’s ratio. The
FGM plate problem with abovementioned inputs is solved by
proposed finite element formulation, implemented through
ANSYS Software. The properties were calculated using sig-
moid law function and external mechanical load in the form
of uniformly distributed load which have been applied with
intensity of 10 kN/m2. In order to study the convergence,
nondimensional transverse displacement 𝑢𝑧 = 𝑢𝑧/ℎ and
nondimensional tensile stress 𝑆𝑦 = 𝑆𝑦/𝑝 are compared with
those of the published results. The comparison of present
results with Chi and Chung’s [10] are presented in Figures 3
and 4.

Figures 3 and 4 show the variation of maximum trans-
verse displacement and maximum tensile stress for varying
aspect ratios (𝑎/𝑏). An excellent agreement between the
present and published results can be observed. The results
show that the performance of the present formulation is very
good in terms of solution accuracy.
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Figure 3: Maximum transverse displacement of an S-FGM plate
versus aspect ratio (𝑎/𝑏).
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Figure 4: Maximum tensile stress of an S-FGM plate versus aspect
ratio (𝑎/𝑏).

5. Thermal and Thermomechanical Analysis

The thermal and thermomechanical analysis is conducted for
FGM made of combination of metal and ceramic. The metal
and ceramic chosen are aluminium and zirconia, respectively.
Young’s modulus for aluminium is 70GPa and that for
zirconia is 151 GPa. The coefficient of thermal expansion for
aluminium is 23× 10−6/∘Cand that for zirconia is 10× 10−6/∘C.
Poisson’s ratio for both the materials was chosen to be 0.3.
The effect of Poisson’s ratio on the deformation is much
less as compared to that of Young’s modulus [1]. Thermal
analysis was performed by applying thermal load on the FGM
plate. The ceramic top surface is exposed to a temperature
of 100∘C. The lower metallic surface and all the edges are
kept at a temperature of 0∘C.The thermomechanical analysis
has been performed by applying uniformly distributed load
(1𝐸6N/m2) along with thermal load on FGM plate for
various boundary conditions. Various boundary conditions
of plate used for the analysis are as follows: all edges are simply
supported (SSSS), all edges are clamped (CCCC), alternate
edges are simply supported and clamped (SCSC), alternate
edges are clamped and free (CFCF), two edges are clamped
and two are free (CCFF), two edges are clamped and two are
simply supported (CCSS), two edges are simply supported
and two are free (SSFF), three edges are simply supported and
one is clamped (SSSC), three edges are simply supported and
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one is free (SSSF), and two edges are simply supported, one
edge is clamped, and one is kept free (SSCF). A square FGM
plate is considered here.The thickness of the plate (ℎ) is taken
as 0.02m and the side lengths are taken as 1m; that is, aspect
ratio is taken unity and the length to thickness ratio is 50.The
uniformly distributed load (udl) was equal to 1 × l06N/m2.
The analysis is performed for E-FGMand for various values of
the volume fraction exponent (𝑛) in P-FGM and S-FGM.The
results are presented in terms of nondimensional parameters,
that is, nondimensional deflection (𝑢𝑧), nondimensional
tensile stress (𝜎𝑥), and nondimensional shear stress (𝜎𝑥𝑦).

The various nondimensional parameters used are as
follows.

Nondimensional deflection 𝑢𝑧 = 𝑢𝑧/ℎ, nondimensional
tensile stress (𝜎𝑥) = 𝜎𝑥/𝑝𝑜, and nondimensional shear stress
(𝜎𝑥𝑦) = 𝜎𝑥𝑦/𝑝𝑜.

“𝑢𝑧” is deflection, “𝜎” is stress, “ℎ” is plate thickness, “𝑎”
and “𝑏” are side lengths of plate, and “𝑝𝑜” is applied load
(1𝐸6N/m2).

The material properties of the FGM vary throughout the
thickness; the numerical model is to be broken up into num-
ber of “layers” in order to capture the change in properties.
These “layers” are of finite thickness and are treated like
isotropic materials. Material properties are calculated using
various volume fraction distribution laws. The “layers” and
their associated properties are then layered together to estab-
lish the through-thickness variation of material properties.
Although the layered structure does not reflect the gradual
change in material properties, a sufficient number of “layers”
can reasonably approximate the material gradation.

In this paper, the modeling and analysis of FGM plate
is carried out using ANSYS-APDL Software. ANSYS offers
a number of elements to choose from for the modeling of
gradient materials. An eight-node quadratic Lagrange ele-
ment with six degrees of freedom at each node for the present
model is used. The FGM characteristics under thermal and
thermomechanical loads are studied on a flat plate. Based
on the established approach and analysis 100 × 100 mesh
has been used for the analysis. These have been used for
computing results unless it is stated otherwise.

5.1. Variation of Boundary Conditions in Thermal Environ-
ment. This section discusses the results of the analyses
performed on FGM plate with various boundary condi-
tions subject to constant thermal environment. The results
are presented in terms of nondimensional parameters, that
is, nondimensional deflection (𝑢𝑧), nondimensional tensile
stress (𝜎𝑥), and nondimensional shear stress (𝜎𝑥𝑦).

5.1.1. Nondimensional Deflection (𝑢𝑧). Tables 2 and 3 show
the nondimensional deflection 𝑢𝑧 for various boundary
conditions of a square plate in constant thermal environment
for P-FGM, S-FGM, and E-FGM, respectively. In case of
P-FGM and S-FGM, the comparison of various values of
volume fraction exponent (𝑛) has been presented.

The following can be observed from Tables 2 and 3.
(a) The metal plate has the largest deflection for all the

boundary conditions considered here as compared to

the other FGM plate. The deflection values of FGM
plate are much lower than those of fully metal plate.
This clearly shows that the FGM plate can resist high-
temperature conditions very well.

(b) The nondimensional deflection in the ceramic rich
portion may be comparable to that in the metal rich
region, because the ceramic has a lower coefficient of
thermal expansion than that of the metal. Hence, the
nondimensional deflection depends on the product
of the temperature and the thermal expansion coef-
ficient. Therefore, the response of the graded plate is
not intermediate to the metal and ceramic plate.

(c) The maximum deflection occurs for clamped free
(CCFF) boundary conditions and minimum deflec-
tion occurs for clamped (CCCC) boundary condition
among all the cases considered here.

5.1.2. Nondimensional Tensile Stress (𝜎𝑥). Tables 4 and 5
show the variation of nondimensional tensile stress (𝜎𝑥) for
various boundary conditions of a square plate in thermal
environment for P-FGM, S-FGM, and E-FGM, respectively.
In case of P-FGM and S-FGM, the comparison of various
values of volume fraction exponent (𝑛) has been presented.

A close study of Tables 4 and 5 reveals the following.
(a) The nondimensional tensile stress in the ceramic rich

portion may be comparable to that in the metal rich
region, because the ceramic has a lower coefficient
of thermal expansion than the metal and, at the
same time, ceramic has more stiffness than that of
the metal. Hence, the nondimensional tensile stress
depends on the product of the modulus of elasticity
and the thermal expansion coefficient. Therefore, the
response of the graded plate is not intermediate to the
metal and ceramic plate.

(b) The tensile stress increases with increasing volume
fraction exponent “𝑛” for the FGM plate.

(c) The maximum tensile stress occurs for simply sup-
ported clamped free (SSCF) boundary conditions
and minimum tensile stress occurs for clamped free
(CFCF) boundary condition among all the cases
considered here.

5.1.3. Nondimensional Shear Stress (𝜎𝑥𝑦). Tables 6 and 7
show the variation of nondimensional shear stress (𝜎𝑥𝑦) for
various boundary conditions of a square plate in thermal
environment for P-FGM, S-FGM, and E-FGM, respectively.
In case of P-FGM and S-FGM, the comparison of various
values of volume fraction exponent (𝑛) has been presented.

The following can be observed from Tables 6 and 7.
(a) The isotropic ceramic and metal plate has the lowest

shear stress for all the boundary conditions consid-
ered here.

(b) The shear stress becomes higher with increasing 𝑛 for
the FGM plates.

(c) The maximum shear stress occurs for simply sup-
ported clamped (SSSC) boundary conditions and
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Table 2: Nondimensional deflection (𝑢𝑧) for various boundary conditions of a square plate in thermal environment for P-FGM and E-FGM.

BC P-FGM E-FGM
𝑛 = 0 0.1 0.2 0.5 1 2 5 10 100 ∝

SSSS 0.46 0.10 0.15 0.23 0.29 0.33 0.35 0.41 0.46 0.52 0.30
CCCC 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
SCSC 0.10 0.02 0.03 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.07
CFCF 0.22 0.05 0.07 0.11 0.14 0.16 0.17 0.20 0.22 0.25 0.15
CCFF 1.98 0.44 0.65 1.01 1.25 1.40 1.52 1.75 1.97 2.22 1.29
CCSS 0.18 0.04 0.06 0.09 0.11 0.13 0.14 0.16 0.18 0.20 0.12
SSFF 1.77 0.40 0.58 0.90 1.11 1.25 1.35 1.56 1.76 1.98 1.15
SSSC 0.27 0.06 0.09 0.14 0.17 0.19 0.21 0.24 0.27 0.30 0.18
SSSF 0.63 0.14 0.21 0.32 0.39 0.44 0.48 0.55 0.62 0.70 0.41
SSCF 0.27 0.06 0.09 0.14 0.17 0.19 0.21 0.24 0.27 0.30 0.18

Table 3: Nondimensional deflection (𝑢𝑧) for various boundary conditions of a square plate in thermal environment for S-FGM.

BC S-FGM
𝑛 = 0 0.1 0.2 0.5 1 2 5 10 100 ∝

SSSS 0.46 0.10 0.12 0.14 0.19 0.21 0.25 0.30 0.35 0.52
CCCC 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01
SCSC 0.10 0.02 0.03 0.03 0.04 0.05 0.05 0.07 0.08 0.11
CFCF 0.22 0.05 0.06 0.07 0.09 0.10 0.12 0.15 0.17 0.25
CCFF 1.98 0.42 0.50 0.62 0.82 0.89 1.06 1.28 1.50 2.22
CCSS 0.18 0.04 0.05 0.06 0.07 0.08 0.10 0.12 0.14 0.20
SSFF 1.77 0.38 0.45 0.55 0.73 0.79 0.95 1.15 1.34 1.98
SSSC 0.27 0.06 0.07 0.08 0.11 0.12 0.15 0.18 0.21 0.30
SSSF 0.63 0.13 0.16 0.20 0.26 0.28 0.34 0.41 0.48 0.70
SSCF 0.27 0.06 0.07 0.08 0.11 0.12 0.15 0.18 0.20 0.30

Table 4: Nondimensional tensile stress (𝜎𝑥) for various boundary conditions (BC) of a square plate in thermal environment for P-FGM and
E-FGM.

BC P-FGM E-FGM
𝑛 = 0 0.1 0.2 0.5 1 2 5 10 100 ∝

SSSS 8.03 19.10 22.04 27.87 37.40 43.25 68.56 86.49 106.73 12.34 37.90
CCCC 41.82 99.43 114.71 145.09 194.67 225.14 356.86 450.21 555.57 64.25 197.27
SCSC 14.42 34.29 39.57 50.04 67.14 77.65 123.08 155.28 191.62 22.16 68.04
CFCF 4.66 11.08 12.79 16.17 21.70 25.10 39.78 50.18 61.93 7.16 21.99
CCFF 29.22 69.47 80.15 101.38 136.02 157.31 249.34 314.57 388.19 44.90 137.84
CCSS 9.08 21.59 24.91 31.51 42.28 48.89 77.50 97.77 120.65 13.95 42.84
SSFF 23.65 56.22 64.87 82.05 110.08 127.31 201.79 254.58 314.16 36.33 111.55
SSSC 5.73 13.62 15.71 19.87 26.66 30.83 48.87 61.65 76.08 8.80 27.01
SSSF 50.08 119.06 137.37 173.75 233.11 269.60 427.33 539.12 665.29 76.94 236.23
SSCF 52.03 123.71 142.73 180.52 242.21 280.12 444.00 560.16 691.25 79.95 245.45

minimum shear stress occurs for clamped (CCCC)
boundary condition among all the cases considered
here.

The nondimensional deflection, tensile stress, and shear
stress for S-FGM remain closer for various values of “𝑛” as

compared to those of P-FGMsincematerial gradation ismore
uniform in S-FGM as compared to P-FGM.

5.2. Comparison of P-FGM, S-FGM, E-FGM, Ceramic, and
Metal. It is also interesting to see the comparison of various
parameters like nondimensional deflection, tensile stress,
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Table 5: Nondimensional tensile stress (𝜎𝑥) for various boundary conditions (BC) of a square plate in thermal environment for S-FGM.

BC S-FGM
𝑛 = 0 0.1 0.2 0.5 1 2 5 10 100 ∝

SSSS 8.03 18.34 25.00 31.04 37.40 40.04 43.60 45.60 47.44 12.34
CCCC 41.82 95.49 130.16 161.59 194.67 208.44 226.95 237.36 246.93 64.25
SCSC 14.42 32.93 44.89 55.73 67.14 71.89 78.28 81.87 85.17 22.16
CFCF 4.66 10.64 14.51 18.01 21.70 23.23 25.30 26.46 27.52 7.16
CCFF 29.22 66.72 90.94 112.91 136.02 145.64 158.58 165.85 172.53 44.90
CCSS 9.08 20.74 28.27 35.09 42.28 45.27 49.29 51.55 53.63 13.95
SSFF 23.65 54.00 73.60 91.38 110.08 117.87 128.33 134.22 139.63 36.33
SSSC 5.73 13.08 17.82 22.13 26.66 28.54 31.08 32.50 33.81 8.80
SSSF 50.08 114.35 155.86 193.50 233.11 249.60 271.77 284.23 295.69 76.94
SSCF 52.03 118.81 161.94 201.06 242.21 259.34 282.37 295.32 307.23 79.95

Table 6: Nondimensional shear stress (𝜎𝑥𝑦) for various boundary conditions (BC) of a square plate in thermal environment for P-FGM and
E-FGM.

BC P-FGM E-FGM
𝑛 = 0 0.1 0.2 0.5 1 2 5 10 100 ∝

SSSS 378.1 423.4 426.5 429.6 465.0 515.7 580.6 642.4 644.9 400.2 487.0
CCCC 97.9 109.6 110.4 111.2 120.4 133.5 150.3 166.3 166.9 103.6 126.1
SCSC 324.5 363.4 366.1 368.6 399.1 442.6 498.3 551.3 553.5 343.4 418.0
CFCF 237.3 265.7 267.7 269.5 291.8 323.6 364.3 403.1 404.7 251.1 305.6
CCFF 238.7 267.3 269.3 271.2 293.5 325.6 366.5 405.5 407.1 252.6 307.4
CCSS 331.2 370.9 373.6 376.3 407.3 451.8 508.6 562.7 564.9 350.5 426.6
SSFF 224.1 250.9 252.7 254.5 275.5 305.6 344.0 380.6 382.1 237.1 288.6
SSSC 397.6 445.2 448.5 451.7 488.9 542.3 610.5 675.5 678.2 420.8 512.1
SSSF 351.9 394.0 396.9 399.7 432.7 479.9 540.3 597.8 600.2 372.4 453.2
SSCF 258.2 289.1 291.3 293.3 317.5 352.2 396.4 438.7 440.4 273.2 332.5

Table 7: Nondimensional shear stress (𝜎𝑥𝑦) for various boundary conditions (BC) of a square plate in thermal environment for S-FGM.

BC S-FGM
𝑛 = 0 0.1 0.2 0.5 1 2 5 10 100 ∝

SSSS 378.1 386.2 410.9 437.1 465.0 477.6 537.6 594.9 597.2 400.2
CCCC 97.9 100.0 106.3 113.1 120.4 123.6 139.2 154.0 154.6 103.6
SCSC 324.5 331.5 352.6 375.1 399.1 409.9 461.4 510.5 512.5 343.4
CFCF 237.3 242.3 257.8 274.3 291.8 299.7 337.4 373.3 374.8 251.1
CCFF 238.7 243.8 259.4 275.9 293.5 301.5 339.4 375.5 377.0 252.6
CCSS 331.2 338.3 359.9 382.9 407.3 418.3 470.9 521.1 523.1 350.5
SSFF 224.1 228.8 243.4 259.0 275.5 283.0 318.6 352.5 353.9 237.1
SSSC 397.6 406.1 432.0 459.6 488.9 502.2 565.3 625.5 628.0 420.8
SSSF 351.9 359.4 382.3 406.7 432.7 444.4 500.3 553.6 555.8 372.4
SSCF 258.2 263.7 280.5 298.4 317.5 326.1 367.1 406.2 407.8 273.2

shear stress, transverse strain and shear strain for ceramic,
metal, and FGMs following power law, sigmoid, and expo-
nential distribution. Figures 5, 6, and 7 show the comparison
graphs for pure ceramic (𝑛 = 0), pure metal (𝑛 = ∞), P-FGM
(𝑛 = 2), P-FGM (𝑛 = 0.5), S-FGM (𝑛 = 2), S-FGM (𝑛 = 0.5),
and E-FGM.

5.2.1. Nondimensional Deflection (𝑢𝑧). The following is
observed from Figures 5, 6, and 7.

(a) The nondimensional deflection for the three FGMs is
more than that of the ceramic and metal.

(b) The nondimensional parameters, for example, tensile
stress and shear stress, for the three FGMs are less
than those of the ceramic and metal.

(c) It is evident from the above comparison that P-FGM
(𝑛 = 0.5) plate has the smallest deflection and
stress among all kinds of FGM plates. The reason is
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Figure 5: Nondimensional deflection (𝑢𝑧) for various boundary
conditions of a square plate for various FGMs in thermal environ-
ment.
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Figure 6: Nondimensional tensile stress (𝜎𝑥) for various boundary
conditions of a square plate for various FGMs in thermal environ-
ment.

observable that the coefficient of thermal expansion
of the P-FGM (𝑛 = 0.5) plate is more than that of E-
FGM plate and stiffness of the E-FGM plate is more
than that of P-FGM (𝑛 = 2).

5.2.2. Nondimensional Tensile Stress (𝜎𝑥). See Figure 6.

5.2.3. Nondimensional Shear Stress (𝜎𝑥𝑦). See Figure 7.

5.3. Variation of Boundary Condition in under UDL in
Thermal Environment. This section discusses the results of
the analyses performed on FGM plate with various boundary
conditions subject to constant UDL in thermal environment.
The results are presented in terms of nondimensional param-
eters, that is, nondimensional deflection (𝑢𝑧), nondimen-
sional tensile stress (𝜎𝑥), and nondimensional shear stress
(𝜎𝑥𝑦).

5.3.1. Nondimensional Deflection (𝑢𝑧). Tables 8 and 9 show
nondimensional deflection (𝑢𝑧) for various boundary con-
ditions of a square plate under uniformly distributed load
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Figure 7: Nondimensional shear stress (𝜎𝑥𝑦) for various boundary
conditions of a square plate for various FGMs in thermal environ-
ment.

in thermal environment for P-FGM, S-FGM, and E-FGM,
respectively.

A study of Tables 8 and 9 reveals the following informa-
tion.

(a) The nondimensional deflection in the ceramic rich
portion may be comparable to that in the metal rich
region. The nondimensional deflection is maximum
for the case of pure metal (𝑛 = ∞) and pure
ceramic (𝑛 = 0). The nondimensional deflection of
both the metallic and the ceramic plates is higher
in magnitude than the graded plates. The deflection
therefore depends on the product of the temperature
and the thermal expansion coefficient. Therefore, the
response of the graded plates is not intermediate to
the metal and ceramic plates.

(b) The deflections become higher with increasing 𝑛. It
is observed that when thermal effect is induced, the
bending response of the functionally graded plate is
not necessarily intermediate to those of the metal and
the ceramic plate.

(c) It is also found that the maximum deflection occurs
for simply supported free (SSFF) boundary condi-
tions and minimum deflection occurs for clamped
(CCCC) boundary condition for all the cases consid-
ered here.

5.3.2. Nondimensional Tensile Stress (𝜎𝑥). Tables 10 and 11
show the variation of nondimensional tensile stress (𝜎𝑥)
for various boundary conditions of a square plate under
uniformly distributed load in thermal environment for P-
FGM, S-FGM, and E-FGM, respectively. In case of P-FGM
and S-FGM, the comparison of various values of volume
fraction exponent (𝑛) have been presented.

The following can be observed from Tables 10 and 11.

(a) The isotropic ceramic and metallic plates have the
lowest tensile stress for all the boundary conditions
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Table 8: Nondimensional deflection (𝑢𝑧) for various boundary conditions (BC) of a square plate under udl in thermal environment for
P-FGM and E-FGM.

BC P-FGM E-FGM
𝑛 = 0 0.1 0.2 0.5 1 2 5 10 100 ∝

SSSS 3.9 2.2 2.3 2.6 3.0 3.2 3.4 3.5 3.8 4.0 3.1
CCCC 1.2 0.6 0.7 0.7 0.8 0.9 1.0 1.0 1.1 1.2 0.9
SCSC 1.8 1.0 1.0 1.2 1.3 1.4 1.5 1.6 1.7 1.9 1.4
CFCF 2.7 1.4 1.5 1.6 1.7 1.9 2.1 2.3 2.6 2.9 1.8
CCFF 40.7 21.5 22.3 24.5 27.1 29.6 32.4 34.7 38.9 42.9 28.0
CCSS 2.1 1.1 1.2 1.4 1.5 1.7 1.8 1.9 2.0 2.2 1.6
SSFF 169.3 91.0 95.3 111.3 125.4 136.4 139.2 148.1 158.6 178.2 121.8
SSSC 2.7 1.5 1.6 1.8 2.0 2.2 2.4 2.4 2.6 2.8 2.1
SSSF 12.1 6.6 6.9 7.8 8.7 9.5 10.2 10.7 11.7 12.7 9.0
SSCF 5.6 3.0 3.2 3.5 3.9 4.3 4.6 4.9 5.4 5.9 4.0

Table 9: Nondimensional deflection (𝑢𝑧) for various boundary conditions (BC) of a square plate under udl in thermal environment for
S-FGM.

BC S-FGM
𝑛 = 0 0.1 0.2 0.5 1 2 5 10 100 ∝

SSSS 3.9 2.7 2.7 2.8 3.0 3.1 3.2 3.3 3.3 4.0
CCCC 1.2 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 1.2
SCSC 1.8 1.2 1.2 1.3 1.3 1.4 1.4 1.4 1.4 1.9
CFCF 2.7 1.8 1.8 1.7 1.7 1.8 1.8 1.8 1.8 2.9
CCFF 40.7 26.9 26.8 26.9 27.1 27.5 28.0 28.1 28.2 42.9
CCSS 2.1 1.4 1.4 1.5 1.5 1.6 1.7 1.7 1.7 2.2
SSFF 169.3 113.4 115.5 120.8 125.4 131.6 136.5 137.8 138.2 178.2
SSSC 2.7 1.9 1.9 2.0 2.0 2.1 2.2 2.2 2.2 2.8
SSSF 12.1 8.2 8.3 8.5 8.7 9.0 9.3 9.3 9.4 12.7
SSCF 5.6 3.8 3.8 3.8 3.9 4.0 4.1 4.1 4.1 5.9

Table 10: Nondimensional tensile stress (𝜎𝑥) for various boundary conditions (BC) of a square plate under udl in thermal environment for
P-FGM and E-FGM.

BC P-FGM E-FGM
𝑛 = 0 0.1 0.2 0.5 1 2 5 10 100 ∝

SSSS 400.8 418.9 421.0 438.7 479.6 534.5 570.4 584.2 613.1 380.7 488.8
CCCC 520.5 566.0 586.8 637.2 688.9 732.8 778.9 807.4 769.4 494.5 710.9
SCSC 148.0 155.8 155.8 185.1 212.4 232.8 417.6 277.4 303.8 140.6 220.7
CFCF 1130.4 1205.6 1244.5 1342.6 1445.5 1536.1 1632.3 1690.8 1628.1 1073.9 1472.3
CCFF 4170.4 4381.9 4482.4 4744.8 5041.1 5330.3 5699.6 5962.2 5857.1 3961.9 5143.8
CCSS 893.0 990.7 1037.2 1141.8 1241.5 1321.3 1388.6 1416.8 1327.7 848.4 1256.9
SSFF 1249.9 1315.7 1307.7 1377.9 1506.4 1678.8 1609.6 1834.7 1925.7 1187.4 1416.5
SSSC 256.0 269.5 269.9 282.7 318.1 358.9 393.1 408.7 436.1 243.2 326.3
SSSF 1231.7 1296.5 1288.7 1300.9 1374.3 1495.6 1591.7 1636.7 1720.4 1170.1 1390.8
SSCF 1937.0 2078.3 2148.8 2317.8 2492.4 2646.8 2808.6 2901.4 2787.5 1840.2 2525.5

considered here. In the presence of the above tem-
perature field, compression occurs at the top surface
while tension is at the bottom surface. Excepting fully
ceramic or fully metal plates, the stress distribution of
FGM plates has a similar trend. The nondimensional
tensile stress is minimum for the case of pure metal
(𝑛 = ∞) and pure ceramic (𝑛 = 0).

(b) The tensile stress becomes higher with increasing 𝑛.
This is due to the fact that the bending stiffness is
the maximum for ceramic plate, while being minimal
for metallic plate, and degrades continuously as 𝑛
increases.

(c) The nondimensional tensile stress therefore depends
on the product of the temperature and the thermal
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Table 11: Nondimensional tensile stress (𝜎𝑥) for various boundary conditions (BC) of a square plate under udl in thermal environment for
S-FGM.

BC S-FGM
𝑛 = 0 0.1 0.2 0.5 1 2 5 10 100 ∝

SSSS 400.8 490.2 483.6 475.2 479.6 500.6 528.0 535.8 538.4 380.7
CCCC 520.5 623.0 636.9 666.2 688.9 698.9 698.8 698.5 698.5 494.5
SCSC 148.0 217.9 209.7 196.1 212.4 222.0 223.1 222.8 222.4 140.6
CFCF 1130.4 1346.1 1366.8 1411.1 1445.5 1459.6 1457.0 1455.2 1454.1 1073.9
CCFF 4170.4 4883.3 4923.0 4997.3 5041.1 5038.1 5006.9 4998.4 4995.4 3961.9
CCSS 893.0 1109.6 1137.4 1195.6 1241.5 1264.5 1267.0 1265.8 1264.5 848.4
SSFF 1249.9 1469.0 1449.3 1424.1 1506.4 1572.3 1658.4 1682.8 1690.8 1187.4
SSSC 256.0 334.0 326.8 315.8 318.1 330.8 343.2 347.8 349.2 243.2
SSSF 1231.7 1456.7 1430.6 1386.7 1374.3 1405.3 1458.2 1473.7 1478.8 1170.1
SSCF 1937.0 2332.1 2367.8 2439.2 2492.4 2511.2 2504.2 2499.9 2497.4 1840.2

Table 12: Nondimensional shear stress (𝜎𝑥𝑦) for various boundary conditions (BC) of a square plate under udl in thermal environment for
P-FGM and E-FGM.

BC P-FGM E-FGM
𝑛 = 0 0.1 0.2 0.5 1 2 5 10 100 ∝

SSSS 544.6 605.2 614.8 635.1 668.7 713.7 734.5 735.9 745.2 517.4 657.7
CCCC 129.2 135.5 139.2 148.2 157.6 165.9 175.6 182.4 178.3 122.7 160.6
SCSC 294.5 310.0 322.6 349.7 379.8 420.4 294.9 499.9 468.0 279.8 351.6
CFCF 365.6 286.2 287.8 291.8 304.7 329.0 351.9 360.0 369.0 347.4 296.6
CCFF 750.7 780.3 800.0 849.8 904.3 957.3 1023.0 1065.9 1041.6 713.1 917.4
CCSS 339.4 315.5 328.4 356.1 386.8 428.2 486.6 508.9 476.3 322.5 358.1
SSFF 2745.2 2889.7 2979.2 3032.5 3193.1 3408.0 3445.8 3513.8 3558.5 2608.0 3270.0
SSSC 530.3 558.2 566.8 584.6 615.0 658.0 681.8 685.3 694.3 503.8 601.7
SSSF 688.4 724.6 733.1 753.6 791.9 842.9 864.4 867.4 885.5 653.9 785.2
SSCF 309.2 286.2 295.3 315.3 329.9 332.3 373.1 401.1 409.5 293.7 352.3

expansion coefficient. Therefore, the response of the
graded plates is not intermediate to the metal and
ceramic plates.

(d) It is also found that the maximum tensile stress
occurs for simply supported free (CCFF) boundary
conditions and minimum tensile stress occurs for
clamped (SCSC) boundary condition for all the cases
considered here.

5.3.3. Nondimensional Shear Stress (𝜎𝑥𝑦). Tables 12 and 13
show the variation of nondimensional shear stress (𝜎𝑥𝑦)
for various boundary conditions of a square plate under
uniformly distributed load in thermal environment for P-
FGM, S-FGM, and E-FGM, respectively. In case of P-FGM
and S-FGM, the comparison of various values of volume
fraction exponent (𝑛) has been presented.

The following can be observed from Tables 12 and 13.
(a) The isotropic ceramic and metallic plate has the

lowest shear stress for all the boundary conditions
considered here. In the presence of the above tem-
perature field, compression occurs at the top surface
while tension is at the bottom surface. Excepting fully
ceramic or fully metal plates, the stress distribution of
FGM plates has a similar trend. The nondimensional

tensile stress is minima for the case of pure metal
(𝑛 = ∞) and pure ceramic (𝑛 = 0).

(b) The shear stress becomes higher with increasing 𝑛.
This is due to the fact that the bending stiffness is
maximum for ceramic plate, while being minimal
for metallic plate, and degrades continuously as 𝑛
increases.

(c) The response of the graded plates is not intermediate
to the metal and ceramic plates.

(d) It is also found that the maximum shear stress
occurs for simply supported free (SSFF) boundary
conditions and minimum shear stress occurs for
clamped (CCCC) boundary condition for all the cases
considered here.

The nondimensional deflection, tensile stress, and shear
stress for S-FGM remain closer for various values of “𝑛” as
compared to those of the P-FGM since material gradation is
more uniform in S-FGM as compared to P-FGM.

5.4. Comparison of P-FGM, S-FGM, E-FGM, Ceramic, and
Metal. It is also interesting to see the comparison of various
parameters like nondimensional deflection, tensile stress,
shear stress, transverse strain, and shear strain for ceramic,
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Table 13: Nondimensional shear stress (𝜎𝑥𝑦) for various boundary conditions (BC) of a square plate under udl in thermal environment for
S-FGM.

BC S-FGM
𝑛 = 0 0.1 0.2 0.5 1 2 5 10 100 ∝

SSSS 544.6 675.0 670.6 664.5 668.7 688.6 713.4 718.8 719.5 517.4
CCCC 129.2 150.0 151.7 155.1 157.6 158.5 158.4 158.4 158.4 122.7
SCSC 294.5 410.5 408.6 398.5 379.8 354.4 328.4 318.6 313.4 279.8
CFCF 365.6 330.9 324.6 312.2 304.7 304.9 309.4 310.2 309.9 347.4
CCFF 750.7 875.7 883.1 896.7 904.3 903.3 897.3 895.4 894.6 713.1
CCSS 339.4 417.9 416.0 405.8 386.8 361.0 334.5 324.6 319.2 322.5
SSFF 2745.2 3169.0 3148.4 3119.6 3193.1 3288.1 3406.6 3432.4 3435.7 2608.0
SSSC 530.3 629.7 624.2 614.9 615.0 629.5 649.1 653.1 653.2 503.8
SSSF 688.4 797.3 792.0 785.3 791.9 817.8 850.0 857.6 859.0 653.9
SSCF 309.2 337.7 331.4 315.2 329.9 350.1 366.4 372.2 375.1 293.7
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Figure 8: Nondimensional deflection (𝑢𝑧) for various boundary
conditions of a square plate under uniformly distributed load for
various FGMs in thermal environment.

metal, and FGMs following power law, sigmoid, and expo-
nential distribution. Figures 8, 9, and 10 show the comparison
graphs for pure ceramic (𝑛 = 0), pure metal (𝑛 = ∞), P-FGM
(𝑛 = 2), P-FGM (𝑛 = 0.5), S-FGM (𝑛 = 2), S-FGM (𝑛 = 0.5),
and E-FGM.

5.4.1. Nondimensional Deflection (𝑢𝑧). See Figure 8.

5.4.2. Nondimensional Tensile Stress (𝜎𝑥). See Figure 9.
The following is observed from Figures 8, 9, and 10:

(a) The nondimensional parameters deflection, strain,
and shear strain for the three FGMs are maximum for
the ceramic and metal.

(b) The nondimensional parameters tensile stress and
shear stress for the three FGMs are minimum for the
ceramic and metal.

(c) P-FGM (𝑛 = 0.5) plate has the smallest deflection
and stress among all kinds of FGM plate. The reason
is observable in which the stiffness of the P-FGM
(𝑛 = 0.5) plate is more than that of E-FGM plate and
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Figure 9: Nondimensional tensile stress (𝜎𝑥) for various boundary
conditions of a square plate under uniformly distributed load for
various FGMs in thermal environment.

stiffness of the E-FGM plate is more than that of P-
FGM (𝑛 = 2).

5.4.3. Nondimensional Shear Stress (𝜎𝑥𝑦). See Figure 10.

6. Conclusion and Future Scope

(a) It is seen that the intermediate response of graded plates
under thermal and thermomechanical loads is quite different
from the pure mechanical load [20]. The deflections become
higher with increasing 𝑛. It is observed that when thermal
effect is induced, the bending response of the functionally
graded plate is not necessarily intermediate to those of the
metal and the ceramic plate.

(b) The nondimensional deflection of isotropic plates
(pure metal and pure ceramic) is higher in magnitude
than the graded plates. The deflection therefore depends on
the product of the temperature and the thermal expansion
coefficient.Therefore, the response of the graded plates is not
intermediate to the metal and ceramic plates. It is clear that
the FGM plates can resist high-temperature conditions very
well.
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Figure 10: Nondimensional shear stress (𝜎𝑥𝑦) for various boundary
conditions of a square plate under uniformly distributed load for
various FGMs in thermal environment.

(c) The maximum deflection occurs for clamped free
(CCFF) boundary conditions and minimum deflection
occurs for clamped (CCCC) boundary condition under ther-
mal loadwhile, under thermomechanical load, themaximum
deflection occurs for simply supported free (SSFF) boundary
conditions and minimum deflection occurs for clamped
(CCCC) boundary condition.

(d) The maximum tensile stress under thermal load
occurs for simply supported clamped free (SSCF) boundary
conditions and minimum tensile stress occurs for clamped
free (CFCF) boundary condition while, under thermome-
chanical load, the maximum tensile stress occurs for simply
supported free (CCFF) boundary conditions and minimum
tensile stress occurs for clamped (SCSC) boundary condition.

(e) The isotropic ceramic and metallic plates have the
lowest tensile and shear stress for all the boundary conditions
considered here. In the presence of the above temperature
field, compression occurs at the top surface while tension is
at the bottom surface. Excepting fully ceramic or fully metal
plates, the stress distribution of FGM plates has a similar
trend.

(f)Themaximum shear stress under thermal load occurs
for simply supported clamped (SSSC) boundary conditions
and minimum shear stress occurs for clamped (CCCC)
boundary conditions while, under thermomechanical load,
maximum shear stress occurs for simply supported free
(SSFF) boundary conditions and minimum shear stress
occurs for clamped (CCCC) boundary condition.

(g)The nondimensional deflection, nondimensional ten-
sile stress, and nondimensional shear stress for S-FGM
remain closer for various values of “𝑛” as compared to those
of the P-FGM.

The efforts taken in this work are to solve and analyze
FGM plate with various loadings and boundary conditions
should pave a way for more research in the future.

(1) More complex geometries can be taken for analysis.
The geometries to be analyzed can be selected in such
away that they could be used in real-time engineering
in the future.

(2) A further investigation of functionally graded plate
structures with material properties varying in direc-
tions other than through the thickness is recom-
mended.

(3) Since the prediction of the thermomechanical proper-
ties is not a simple task, the techniques for estimating
effective material properties of functionally graded
material structure are required.
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